
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXXX 2019 1

Construction of Diverse Image Datasets from Web
Collections with Limited Labeling

Niluthpol Chowdhury Mithun, Member, IEEE, Rameswar Panda, Member, IEEE,
and Amit K. Roy-Chowdhury, Fellow, IEEE

Abstract—Image datasets play a pivotal role in advancing
computer vision and multimedia research. However, most of the
datasets are created by extensive human effort, and are extremely
expensive to scale up. To address these issues, several automatic
and semi-automatic approaches have been proposed for creating
datasets by refining web images. However, these approaches
either include significant redundant images in the dataset or fail
to provide a diverse enough set to train a robust classifier. Ideally,
a representative subset should be both semantically and visually
diverse so as to provide the maximum amount of information
under the current budget. Most current approaches are entirely
based on analysis of visual features, which may not well correlate
with image semantics and hence, collected images may not be
enough to give a detailed understanding of a category. In this
paper, we propose a system for creating diverse image dataset
collections from the web with limited manual labeling effort. It
is based upon a semi-supervised sparse coding framework that
employs a joint visual-semantic space to simultaneously utilize
both images and associated textual information from the web
for dataset construction. Additionally, the proposed system is
online that is capable of collecting more discriminative images
continuously as new data becomes available, which is also suitable
for enriching existing datasets. Experiments demonstrate that
our system can create and enrich datasets with limited manual
labeling, with better cross-dataset generalization capability and
diversity compared to the state-of-the-art datasets.

Index Terms—Image Dataset, Active Learning, Sparse Opti-
mization, Joint Image-Text Analysis.

I. INTRODUCTION

The efficiency of several visual recognition tasks depends
upon the ability to identify suitable training examples to learn
initial models. The majority of the success in this regard has
been achieved by models trained on large-scale hand-labeled
image datasets (e.g., SUN [73], ImageNet[50]). Although,
these datasets cover large numbers of categories, expanding
them to new categories or providing new examples to an
existing category, is extremely costly and labor-intensive [32].
Moreover, there exist various types of bias in the popular
image datasets and hence, they do not demonstrate satisfactory
cross-dataset generalization (training on a dataset, testing on
a different dataset) capability [29], [65]. Future multimedia
and image analysis research requires examining even a greater
number of visual categories and adapting to higher intra-class
variation present within a category [7]. The complexity of the
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Fig. 1. The significance and challenges in collecting a diverse and informative
set of images for dataset construction. (a),(b) Few top-ranked images from
Google and Twitter for query ‘Bike’. (c) Accuracy of a classifier (10 classes
and 400 per class) for different combinations of train and test data.

models will increase over time to cope with this. Hence, cre-
ating high-quality image datasets and continuously updating
existing datasets with new diverse examples is becoming more
important over time. Complete human labeling based solution
is unlikely to keep pace with this growing need.

Motivated by the above, the main goal of this work is to
develop a system for constructing high-quality image datasets
with a limited labeling budget. The images in each category
of the dataset should be relevant and diverse both visually
and semantically so as to provide the maximum amount of
information for a category under the current budget. The
secondary goal is to develop an online framework, that is
capable of collecting more diverse images continuously as new
data becomes available, which is suitable for enriching existing
image datasets. In order to achieve these goals, we propose a
sparse coding based framework with human in the loop for
dataset creation from web images. Our system is capable of
concurrently utilizing images and associated text, by learning
a joint latent space upon the image-text association.

Motivation: To address the issues of creating large-scale
hand-labeled image datasets, and inspired by streams of im-
ages available on the web, there has been lot of recent interest
in developing systems for curating web images for creating a
dataset with no or minimal human labeling [71], [34], [4], [2],
[75], [76], [7]. However, most of these approaches rely heavily
on a reliable search engine (e.g. Google [32], [19]), for image
collection or initial selection of seed images. This may bring
up issues of bias and lack of diversity. Moreover, most of
the approaches primarily aim at collecting as many relevant
images as possible. Hence, in spite of causing serious wastage
of space, the dataset loses quality, and training with these
images may not provide expected performance gain (See Fig. 1
for an illustrative example). We observe that search-engines
usually provide relevant but archetypal images [40], and hardly
represent the diversity of real-world scenarios. On the contrary,
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social media provides diverse real-world images, but there is
a high chance of getting irrelevant images. A high-quality
dataset should cover both relevance and diversity aspects of a
query. Hence, it is important to efficiently leverage a relatively
clean but less diverse set of images, in conjunction with a
diverse but noisy annotated image set in creating datasets.

Recently, many dataset construction methods have been
proposed to utilize freely available images with user-generated
tags or captions from social media websites like Flickr. How-
ever, most existing methods use only one of the modalities
(i.e., image or text) for refining web images [76], [81],
[81], [52], [35], [4], [81], [80], [62], [58], [59]. Text-based
approaches [4], [52], [81] suffer from the ambiguous nature
of textual description and fail to connect relevant images under
different keyword indices. Moreover, many images indexed by
the same tag may be irrelevant [81]. Visual-only methods [76]
are effective for images with similar visual content but often
fail to find relevant images having the same semantic meaning
but a moderate difference in visual content.

In this regard, several methods have been proposed that use
both modalities sequentially for dataset construction [52], [75],
[74], [35], [49], [25], [82], [71], [11]. To increase diversity in a
created dataset and to overcome the download restrictions of
the image search engines, some previous works [11], [75],
[74], [44] use query expansion to collect many candidate
images from the search engines. Then visual feature based
analysis is applied to the collected images to select the final
set. There are also many works to clean up web images
utilizing both visual information and associated text [71],
[82], which utilizes rationale of visual consistency to clean up
images [35]. These methods leverage visually close images to
assign tags to a new image [71], [82], utilize relationships
between images labeled with the same tag [82], and learn
visual classifiers from socially tagged examples [34], [52]. The
above works exploit the image modality and the text modality
in a sequential way. By contrast, our approach focuses on
concurrently exploiting both the image and all the associated
tags (if available) in creating a semantically and visually
diverse dataset. This allows us to better model the correlations
between the visual data and tags.

The significance of using images and associated text con-
currently for dataset construction can be identified from Fig. 2.
The tags in 2(a) and 2(b) are similar and represent the same
event, but they look very different. The same can be said of
2(c) and 2(d). On the contrary, the tags in 2(a) and 2(c) rep-
resent different events but the images look similar. Selecting
a subset of these images based on text/image only methods or
sequential methods is likely to be sub-optimal. Jointly utilizing
both image and text modality has been shown to be effective
in several applications, e.g., cross-modal retrieval [31], [43],
image captioning [26], image search[21], video summarization
[5]. We believe that the ability to simultaneously use image
and text will also be a catalyst for web-based dataset construc-
tion methods to reach full potential.

A few works have also explored user information along
with visual information and tag information for refining tags
of social images [51], [60], [61]. The key idea is that user
information is likely to reveal important cues regarding the
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Fig. 2. Example Web images from Flickr for query ’aeroplane grand prix’
to illustrate the significance of jointly using images and associated text for
dataset construction.

correctness of the tags. Different tensor completion based ap-
proaches have been explored in these works for tag refinement
[51], [60], [61]. In contrast, we only use visual information
and associated tags in our work. However, an interesting future
work would be to investigate how user information can be
integrated into the current framework for resolving ambiguities
in collecting web images in many cases.

Contributions: The main contributions of this work can be
summarized as follows.
• This paper presents a novel system to construct image

datasets that are diverse given limited labeling. The proposed
framework is online, i.e., capable of collecting diverse images
continuously as new data becomes available. Hence, it can be
utilized for both creating a high-precision image dataset from
scratch and/or efficiently updating an already created dataset
with diverse examples when new data becomes available.
• The proposed approach explores both visual information

and associated tags from noisy web image collection for
dataset construction. To the best of our knowledge, this is
the first proposal for image dataset construction using joint
image-text embedding. Our system not only allows to select
visually diverse images but also gives a way to select images
that are semantically more representative and diverse.
• We develop a diversity-aware sparse representative selec-

tion based active learning approach, which provides flexibility
that permits filtering out irrelevant images and obtaining a
reliable set of diverse images based on the budget available.
• Experimental results demonstrate that our system is not

only useful in reducing the manual annotation efforts, but also
successful in collecting images with high precision, scalability,
and diversity, and robust image classifiers can be trained from
these images which shows better cross-dataset generalization
compared to other methods.

This paper is an extended version of our work [44].
The main extension is taking both visual modality and text
modality (when available) into account concurrently using a
joint embedding space in the process of diverse representative
selection, instead of using only visual modality. Ideally, a good
representative subset will be both semantically and visually
diverse. The second difference is, using SVM based active
learning scheme, where the SVM classifier model is used for
actively selecting samples, that can be incrementally updated
with new labeled samples. A sparse reconstruction based
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Fig. 3. A brief illustration of our proposed framework for collecting images. Please see the text in Sec. III for details.

method was used in our previous work [44], which utilizes
all previously selected positive labeled dataset images of that
category for labeling new samples. The incremental SVM-
based active learning scheme not only has a less computational
load but also utilizes negatively labeled samples in updating
the model. Experiments show that these changes result in an
improvement over the previous work.

II. RELATED WORKS

Our method builds upon several machine learning tools, e.g.,
visual-semantic embedding [30], [69], active learning [53],
[64], sparse coding [14], [70].

Active learning. Despite the advances in machine learning,
human in the loop remains a popular concept for achieving
desired performance and adapting learned models[16]. Active
learning with human in the loop, in which a limited number
of unlabeled examples are selected to be labeled by a human
[67], [68], is an iterative and interactive process, which is a
natural fit for our scenario of refining web images with limited
labeling budget. In active learning [53], the system selects a
few instances that are assumed to be the most informative and
then asks queries about these instances to a human, who labels
only instances that are assumed to be the most informative.
Recently, a few semi-supervised approaches have been devel-
oped for large-scale dataset creation that minimizes human
effort for dataset creation using active learning framework
[76], [9], [7]. However, these methods generally fail to select
a diverse set of examples to train a robust classifier. Moreover,
these approaches [7], [76] may select many samples for human
labeling that have significant information overlap [15].

Sparse Coding. Recently, there has been a growing interest
in applying sparse coding techniques in many computer vision
tasks, such as image restoration [37], activity recognition
[57], face recognition [70] and classification [79], [63]. Sparse
coding based techniques have been highly successful in finding
an informative representative subset of a large number of
data points [12], [8], [14], which fits well in the scenario of
selecting informative examples for dataset construction. The
representatives can be used to obtain high precision classifiers
using few selected samples and annotated from a large pool
of unlabeled samples [15], [13].

Visual-Semantic Embedding. Recently, joint image-text
models have shown impressive performance on several com-
puter vision tasks, such as cross-modal retrieval [78], [69],
image captioning [38], [26], image classification [20] video

summarization [48]. Motivated by these applications, we build
on top of a joint image-text embedding for dataset creation.
The embedding is given by transformation functions trained
to project visual and textual features into a common space
where similar image and text are mapped nearby. We follow
[30] to learn a joint embedding utilizing image-text pairs and
the learned embedding is used as the representation of image
and associated text for selecting a diverse image subset.

III. PROPOSED SYSTEM

We start by giving notations and overview of our system
and then present the detailed system of dataset creation.

Notation: Throughout this paper, we use uppercase letters
to denote matrices and lowercase letters to denote vectors. For
matrix X = (xi j), its i-th row and j-th column are denoted by
xi,. and xj respectively. | |X | |F is Frobenius norm of X . The lp-
norm of the vector x ∈ Rn is defined as | |x | |p =

∑N
j=1(|xj |

p)1/p

and l0-norm is defined as | |x | |0 =
∑N

j=1‖xj ‖0. The Frobenius

norm of X ∈ Rn×m is defined as | |X | |F =
√∑n

i=1
∑m

j=1 x2
i j .

Generalized lr,p norm is defined as | |X | |r,p =
∑N

i=1(|xi,. |
p
r )

1/p .
When r ≥ 1 and p ≥ 1, the lr,p norm is a valid norm since it
satisfies the three basic conditions of a norm. However, when
r < 1 or p < 1, lr,p norm is not valid, but we also call them
norms for convenience. The operator diag(.) puts a vector on
the main diagonal of a matrix.

Overview of the system: In our system, collecting images
of one category is independent of other categories. Hence,
images for different categories can be collected in parallel.
Fig 3 summarizes our incremental image collection framework
for a category ‘birthday’ from a web source (e.g., Flickr).
Initially, we collect images and associated tags related to
the category from several web-sources. Our framework for
selecting images for dataset is an incremental one, so that
information learned about a category from previous batches
can be utilized in estimating the relevance of next batch of
images. Hence, our system is suitable for both creating a new
dataset and enriching an existing dataset with new examples.
During each run of incremental update, we process a batch
from the collected images. First, we employ a diversity-aware
sparse representative selection approach to choose a smaller
set of representative images that not only best represents this
batch, but also is distinctive to the images in current dataset.
Then, we calculate relevance of each representative image
based on previously labeled images using a SVM classifier
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model. Initially, we learn the prior SVM classifier model from
a few positive (few top ranked images from a reliable search
engine) and negative images (few images related to other query
words) corresponding to the concept. Based on the relevance
score, we employ active learning to decide whether to label an
image manually or not. As collecting images for one category
is independent of others, we ask only binary questions to
annotator. When we have sufficient new images in a buffer
labeled by the active learning system, we update the SVM
model with new images labeled by the system and add positive
examples to the dataset. We continuously update the dataset
with images labeled by the system and update the model.

A. Image Collection and Pre-processing

Since the number of returned images from a web search
based on a query is limited, we use a query expansion scheme
to increase the amount of data. The expansion is done using
ConceptNet [56]. We use only synonyms and derived phrases
as expanded queries, as these are highly relevant. For example,
given a query ‘Bike’, we expand to queries such as ‘Bicycle’,
‘Ride Bike’, ‘Mountain Bike’ etc. The expanded queries are
used to collect images from different web sources (e.g. Google,
Bing, Flickr). We also collect associated tags from web sources
(e.g. Flickr) when available. We filter out meaningless tags. We
also filter out the images having very low quality, e.g., out-of-
focus or blurred, too white or black, empty or too small.

We divide the training data into batches of size 200. The
first batch is used to train the prior SVM model. Rest of the
batches are processed using our framework sequentially to
select diverse examples from the batch that are also dissimilar
to the previously selected examples and update the SVM
models. We considered no manually labelled image is available
beforehand. We take advantage of the high-precision of few
top-ranked image from Google search-engine by utilizing them
as the first batch and initially collected images. For updating
this model, we obtain the newly labeled instances from the
active learner and store them in a buffer. We use the obtained
labels from a batch for incremental training of the models. We
also use the obtained labels to update the dataset.

B. Feature Extraction

In this work, we process relatively clean set of images
from web search engines (Google or Bing) initially. After
these images are processed, we process images collected
from social media (e.g., Flickr). In order to better utilize,
the relationship between image and corresponding tags from
social media images, we extract visual and textual features
utilizing a joint image-text embedding space. If no text is
available for a Flickr image, we consider the query as the
associated tag. In this work, we employ a pre-trained joint
embedding model learned using two-branch network utilizing
image-text pairs from MSCOCO dataset [36] with pairwise
ranking loss following [30]. However, our method does not
depend on specific joint embedding methods and any image-
text embedding method can be used [66], [42]. Here, initially
a deep pre-trained CNN is used to produce visual feature
representation [55], denoted by v ∈ RB

(v)
and word2vec model

is used [41] to produce the representation of words, denoted
by t ∈ RB

(t )
. One of the branches of this network takes in

visual features and the another takes in text features. We briefly
describe the method for training the embedding below.

Learning joint embedding of image and Text. Given
visual feature representation, the projections for images can be
derived as x(v) = W (v)v (x(v) ∈ RB), where W (v) ∈ RB×B

(v)
is

the transformation matrix that projects the visual content into
the joint embedding. On the other hand, given representation
for tags, the projection of text in the joint embedding x(t) is
found from the hidden state of the LSTM. Here, given the
feature representation of both images and corresponding text,
our goal is to learn a joint embedding characterized by θ (i.e.,
W (v) and LSTM weights) such that the visual and semantic
content are projected into the joint space. The network is
trained by minimizing a pairwise ranking loss combining bi-
directional ranking terms in order to learn to maximize the
similarity between a image embedding and its corresponding
text embedding and minimize similarity to all other non-
matching ones. The optimization problem can be written as,

min
θ

∑
x(v)

∑
x(t )
−

max{0, α − S(x(v), x(t)) + S(x(v), x(t)
−

)} +∑
x(t )

∑
x(v)

−

max{0, α − S(x(t), x(v)) + S(x(t), x(v)
−

)}
(1)

Here, x(t) is a matching text embedding for image embedding
x(v) and x(t)

−

is non-matching text embedding. α is the margin
value for the pairwise ranking loss. The scoring function
S(x(v), x(t)) is defined as cosine similarity to measure the
similarity between the embedded images and text. In (1),
the first term ensures that for each visual feature, matching
text features should be closer than non-matching ones, and
similarly, the second term ensures text features that correspond
to the image should be closer to each other than non-matching
image features. The joint embedding is trained on the com-
bination of image-text pairs from MS COCO dataset [36],
which contains multiple annotations for a large number of
images. The embedding was trained using stochastic gradient
descent for 30 epoch with an initial learning rate of 0.001 and
decreased by a factor of 10 after every 10 epoch. The margin
α was set as 0.2 following [30].

After learning the embedding, we map visual and text fea-
tures from our Flickr image collection to the shared semantic
space and use them to compute our objective of selecting a
small representative set, that will be both semantically and
visually diverse so as to provide the maximum amount of
information under the current budget. As the joint space ex-
hibit multimodal linguistic regularity phenomenon [30], when
multiple tags are available for an image, we generate the
feature representation by summing over the embeddings of all
associated tags and then normalizing it by the number of tags.
Averaged word vectors has been shown to be a strong feature
for text in several tasks [77], [28], [27], especially when the
order is unknown.

C. Diverse Representative Set Selection
The goal of this step is to find a small set of images from

the input batch that conveys the most important details of the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXXX 2019 5

batch. Since importance is a subjective notion, we define a
good representative set as one that has the following properties.

Representativeness. The input set of web images should be
reconstructed with high accuracy using the extracted subset.
We extend this notion of representative as finding a subset that
simultaneously minimizes reconstruction error of collected im-
ages of the category, as well as the set of semantic information
associated with the images.

Sparsity. Although the subset should be representative and
diverse, the total number of images in the subset should be as
small as possible.

Diversity. The selected subset should be diverse, as much
as possible, capturing different aspects of the input collection.
Moreover, the amount of redundancy with respect to previ-
ously collected images should be minimal.

Based on the above, we design the subset selection ob-
jective, enforcing representativeness, sparsity and diversity, as
explained below.

1) Representative and Sparse Subset Selection: The goal
of this step is to find an optimal subset of the current batch
of images. In particular, we are trying to represent the current
batch of images by selecting only a few representative images,
which are also dissimilar to the images in the current dataset.
Our representative selection algorithm is based on sparse
representative selection (SRS) [8], [13], [14] approach. The
basic idea behind SRS is to utilize the self-expressiveness
property, which states that each point in the dataset can be
described as a linear combination of a few of the selected
representative points [8], [13], [14]. The natural goal for SRS
is to establish a image level sparsity which can be induced by
performing l1 regularization on rows of the selection matrix
Z ∈ RN×N . By introducing the row sparsity regularizer, the
problem can now be succinctly formulated as

min
Z
| |X(v) − X(v)Z | |2F + λ | |X

(t) − X(t)Z | |2F ; s.t. | |Z | |2,0 ≤ τ, (2)

‖Z ‖2,0 gives the number of nonzero rows of the matrix Z .
λ and τ are tradeoff parameters and N denotes the number
of images in the batch. X (v) ∈ RB×N is the feature matrix
for all images in the current batch, where X (v) = {x(v)j ∈

RB, j = 1, · · · , N}. Each column of X (v) i.e., x(v)j represents
the feature descriptor of an image in current batch in joint
embedding space. Similarly, X (t) ∈ RB×N is feature matrix
for tags corresponding to images in current batch.

(2) is a NP-hard problem since it requires searching over
every subset of the τ columns of X. A standard relaxation to
the problem (2) is given by

min
Z
| |X(v) − X(v)Z | |2F + λ | |X

(t) − X(t)Z | |2F ; s.t. | |Z | |2,1 ≤ τ, (3)

‖Z ‖2,1 ,
∑N

i=1‖zi,.‖2 is the row sparsity regularizer, i.e., sum
of l2 norms of the rows of Z .

In (3), the objective is motivated by the fact that the
representatives of the set should come from images in current
batch. The constraint i.e., l2,1 regularizer is to induce row
level sparsity in a matrix, which is very common in repre-
sentative selection [8], [14]. However, this formulation only
characterizes the reconstruction capability and sparsity but

does not account for the fact that the selected images should
be dissimilar to the previously selected images. As a result, it
may leave out some crucial images and select redundant ones.

2) Adding Diversity in Subset Selection : To leverage
diversity along with representativeness, we propose a simple
extension to (3) as follows:

min
Z
| |X(v) − X(v)Z | |2F + λ | |X

(t) − X(t)Z | |2F ; s.t. | |K Z | |2,1 ≤ τ,

(4)
where, K = [diag(k)]−1 and k j ∈ R

N represent the diversity
score of jth image. It is easy to see that, (4) favors selection
of diverse images by assigning a lower score prior via K . So,
optimization of (4) attempts to obtain a sparse set of images
non-redundant with previously selected images.

To estimate the dissimilarity/diversity of each image in
current set X (v) ∈ RB×N to the previously selected images of
the same category in the dataset, we propose a dissimilarity
estimation approach, which is similar to sparse representative
based classification methods [70], [79]. These methods aim
at finding the class distribution of a sample over a learned
dictionary of multiple classes. In contrast, our goal here is to
find how diverse is a sample to a particular class, given some
examples of the same class. Let, D ∈ RB×M is the feature ma-
trix of the previously selected samples of currently considered
category in the dataset, where D = {dj ∈ R

B, j = 1, · · · , M}
and M denotes the number of images of the category.

In this regard, given a sample xj , we compute its sparse
representation cj based on D. Then, we select the samples as
diverse based on how the nonzero entries in the estimate cj
are associated with the columns of D. Given the above stated
goals, the optimization problem can be written as,

min
C
| |X(v) − DC | |2F + λD | |X

(t) − DC | |2F ; s.t. | |cj | |1 ≤ κ (5)

Here, C ∈ RM×N is the sparse coefficient matrix, where C =
{cj ∈ RM, j = 1, · · · , N}. λD and κ are tradeoff parameters.

In (5), the constraint, i.e., l1 regularizer is to induce element-
wise sparsity in a column. The objective is logical as any new
sample of the same category will approximately lie in the
linear span of some samples in dataset associated with the
category. We require the coefficient matrix C to be sparse by
solving the optimization program in (5).

After getting C, the diversity score for every image is
calculated as follows,

k j = β
‖x(v)

j
− Dcj ‖2
‖x(v)

j
‖
2

+ (1 − β)
‖x(t)

j
− Dcj ‖2
‖x(t)

j
‖
2

(6)

Here, k j is diversity score of jth sample. ‖x(v)j − Dcj ‖2
indicates the residual between x(v)j and Dcj , which is recon-

struction of x(v)j using samples of the same category from the
dataset. β (0 < β < 1) determines the contribution of visual
diversity and textual diversity in diversity score calculation.

Optimization. Here, we briefly describe the strategy to
solve the optimization problem in (4) and (5). Using Lagrange
multiplier, the optimization problem in (4) can be written as
follows, where, λk is regularization parameter.

min
Z
| |X(v) − X(v)Z | |2F + λ | |X

(t) − X(t)Z | |2F + λk | |K Z | |2,1 (7)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, XXXX 2019 6

The problem (7) is equivalent to the following problem (8),

min
Z
| |X(v) − X(v)Z | |2F + λ | |X

(t) − X(t)Z | |2F + λk | |Z | |K,2,1 (8)

where, | |Z | |K,2,1 denotes the weighted l2,1 norm of Z and is
defined as | |Z | |K,2,1 = | |K Z | |2,1

The objective function (8) is a convex weighted l2,1 norm
minimization problem which can be efficiently solved using
Alternating Direction Method of Multipliers (ADMM) frame-
work [3]. The ADMM procedure to solve (8) is summarized
in Algo. 1.

For convergence, we compute the max norm of the differ-
ence between the approximation U and Z every iteration and
when it is below a threshold (e.g., 10−7), the optimization is
considered to be converged. The approximation of Z on the
last step is returned as the result of the computation. We also
consider it converged if the algorithm run for the specified
number of iterations (e.g., 1000).

Algorithm 1 An ADMM solver for (8)

1: Input: Feature Matrix X (t) and X (v), K , λ and µ > 0, T h
= 10−7, MaxIter= 1000

2: Initialization: Initialize U, Z,Λ to zero.
3: while (| |U − Z | |max < T h) OR (iter ≤ MaxIter) do
4: U ← (X (v)

T
X (v) + λX (t)

T
X (t) + µI)−1(X (v)

T
X (v) +

λX (t)
T

X (t) + µ(Z − Λ/µ));

5: Z ← max{| |U + Λ/µ| |2 −
λkK
µ
, 0}

U + Λ/µ
| |U + Λ/µ| |2

;

6: Λ← Λ + µ(U − Z);
7: iter ← iter + 1;
8: end while
9: Output: Sparse coefficient matrix Z .

We choose columns of X (v) corresponding to the nonzero
rows of final Z and denote the feature matrix of the representa-
tive set as Y ∗. Here, Y ∗ ∈ RB×L is the feature matrix for all im-
ages in representative set, where Y ∗ = {y∗i ∈ R

B, i = 1, · · · , L}.
y∗i represents the feature descriptor of the ith representative
sample in B-dimensional feature space. L denotes the number
of images in the representative set.

We also use similar ADMM procedure stated above to solve
the optimization problem in (5).

D. Image Labeling and Dataset Update

Active Learning for Image Labeling. After we have
a diverse representative set Y ∗, the next goal is to label
each image in Y ∗ as relevant or not, as the selected images
should represent the category. In other words, we want to
remove irrelevant images and keep the relevant ones. In our
proposed framework, we take the advantage of pool-based
active learning scheme to label images, where given a pool
of unlabeled examples Y ∗ = {y∗1, y

∗
2, ...} and a fixed human

labeling budget b, the learner chooses best samples from the
pool to be labeled by a human. Our active learning algorithm
is built upon SVM classifier and exploits the structure of the
SVM to determine which images to label [64].

Now, the following questions remain: when should we ask
a human and when the decision from classifier is reliable?

For an instance y∗i ∈ Y ∗ when the score f (y∗i ) is greater
than a threshold δ, we assume that current model is highly
confident about the instance. Here, f (y∗i ) is the decision score
function of the SVM classifier, which represents the distance
of the instance y∗i on to the separating hyperplane of SVM
and the sign of f (y∗i ) indicates the instance y∗i belongs to the
positive or the negative class. Hence, we label the instance y∗i
as positive or negative based on the sign of f (y∗i ) and retain
it for the incremental update. Number of instances obtained
from the classifier is not fixed and depends on the value of δ,
which we set sufficiently large so that irrelevant instances are
less likely to be added to the dataset and used to update the
current classifier model.

Among the remaining samples in Y ∗, we follow an uncer-
tainty sampling scheme [53] to find the samples Y = {yj}bj=1
that the model is most uncertain about. Say, during a iteration,
we can choose a set of samples Y to be labeled by a
human, which is a subset of Y ∗. This involves evaluating the
informativeness of unlabeled instances, which are sampled
from a given distribution. The most informative instance or
the best query for human labeling ŷj can be chosen based on
the following condition:

ŷj = min
y∗i ∈Y

∗
| f (y∗i )| (9)

Here, f (y∗i ) represents the distance from the sample y∗i to the
separating hyperplane of SVM. The method is called minimum
marginal hyperplane method, which assumes that the data
with the smallest f (y∗i ) value are those that the SVM is most
uncertain about and hence, provide the greatest insight into the
underlying data distribution. We remove at most b instances
from Y ∗ using (9) and place in Y to be labeled by a human.
We only ask a binary question to the human annotator : "Does
this image belong to the category?".

To further decrease human labeling, We introduce an ad-
ditional vision-language guidance for most uncertain samples
Y from (9) based on the inter-modal similarity score between
each image and its corresponding query text. More precisely,
let, y(v)j denote the image embedding and y

(t)
j is the embedding

of corresponding query text and ζj represent cosine similarity
between them. If the similarity score ζj is greater than a
threshold, we believe these examples are relevant and we don’t
need human labeling for these samples.

Incremental Update of SVM Models. Each newly labeled
image instance yn from the active learner are stored in a buffer
with corresponding label qn. When the buffer is full with a
pool of labeled instances, N` = {(yn, qn)}`n=1 from the active
learner, the positive labeled samples from the buffer are added
to the dataset. However, all of the ` instances in the buffer are
used to incrementally update the SVM model. For updating
the model, we need an incremental SVM solver, where the
learning can be done in a batch framework. We use pegasos
SVM solver [54] for this, which suits the requirement and is
also effective in large-scale setting [54], [39]. The SVM model
is updated after f iterations. At iteration r+1, the current SVM
normal vector wr is updated to wr+1 as follows,

wr+1 = (1 − ηrν)wr +
ηr
`

∑
n∈N`

1[qn〈wr, yn〉 < 1]qnyn (10)
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Here, 1[argument] is indicator function that returns a value
of one, when the argument is true, and zero otherwise. ν is
the regularization parameter that scales SVM primal objective
function and step size, ηr = 1/νt. Finally, w f is used to update
the SVM model. We set the regularization parameter as 0.001
in SVM following [54].

Image Clustering. Due to increasing nature of our dataset,
the number of selected images for a category may be very high
over time. Comparing all of the previously selected images of
a category for diversity calculation may be no longer possible,
as it will induce significant computational load [1]. In such a
case, we use a clustering algorithm to limit the maximum size
of D to be used for diversity calculation. We use the sequential
k-means [1] algorithm, as it is simple and efficient [47]. We
select the maximum number of clusters to be 1000. This step is
optional and may not be required based on available resources
and number of images to be collected for a category.

E. Near-Duplicate Image Removal Across categories

Our approach ensures diverse/dissimilar images are col-
lected for a category. The number of near duplicates in a
category is likely to be very low. However, there may be
duplicates across categories as we collected images for each
category independently. Here, we apply a PCA based duplicate
removal algorithm (Shown in Algo. 2) following [72], which
can be applied to remove both intra-class and inter-class
duplicates. We apply this duplicate image removal algorithm
on the image dataset created by our approach. We use gist [45]
feature and set pt , gt to 0.0005 and 0.02 respectively. Note
that the algorithm does not depend on the choice of feature.

Algorithm 2 Near Duplicate Image Removal Across Category
1: Data: Feature Matrix for all images G, threshold for first

principal component pt , threshold for feature distance gt ;
2: Result: Index of images to delete;
3: Step 0: PCA on G to find 1st principal components ρ;
4: Step 1: Find candidate groups for near-duplicates:
5: for i ∈ {1, ..., total no. of images} do
6: for j ∈ {i + 1, ..., total no. of images} do
7: if (ρ( j) − ρ(i)) < pt ) then
8: if (

√
(G( j, :) − G(i, :))2 < gt ) then

9: i and j is a candidate group of duplicate.
10: end if
11: end if
12: end for
13: end for
14: Step 2: Find all members in a group of duplicates by a

connected component algorithm [23];
15: Step 3: Keep the image with highest resolution from each

group of duplicates, and select other indexes to delete.

IV. EXPERIMENTS

To evaluate the effectiveness of our system, we follow [44],
[75] and construct a dataset with 20 categories. We compare
the image classification performance (Sec. IV-C), cross-dataset
generalization ability (Sec. IV-D) and diversity (Sec. IV-E)

of our dataset with several manually labeled and automated
dataset construction methods. We also verify the performance
of our system in enriching datasets with diverse examples (Sec.
IV-F) and scalability in labeling (Sec. IV-G).

A. Image Dataset Construction

To evaluate our system, we constructed a dataset by collect-
ing images from Google, Bing, and Flickr, which we name as
Div20. Since many existing web-supervised dataset construc-
tion systems [44], [75] were evaluated on the PASCAL VOC
2012 categories [17], we focus on these categories as the target
categories for the construction of Div20. The same categories
have been utilized in prior dataset construction works [75],
[44] and these basic categories also exist in most hand-labeled
datasets (e.g., ImageNet). Hence, it allows us to compare
against both existing hand-labeled datasets and dataset con-
struction methods. The compared datasets have around 1000-
1500 images per category. The number of collected images per
category in Div20 ranges from 1201 to 1804, with an average
of 1504. We considered no image related to the concept word
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Fig. 4. Labeling for collecting images for different categories in Div20. The
labeling effort was reduced more for categories like bird, bicycle, potted plant,
whereas the labor was comparatively higher in monitor, cow, and bottle

is available beforehand in the construction of Div20. We take
advantage of the high-precision of few top returned images
for the query from Google search by utilizing them as the
initial dataset. Our framework also allows enriching existing
datasets with new examples, as shown in Section IV-F. In case
of dataset enrichment, we start with images from a particular
dataset as the initial set and collect 1K more images using our
method. The ratio of human labeling used, compared to the
total number of images in Div20 dataset is 9.28%. The average
accuracy of the labels in Div20 is estimated by manually
inspecting 1K images (50 random images per concept) from
the entire dataset. The average accuracy has been found to
be 96.8%, which is slightly lower than 99.7%, reported in
ImageNet. However, for collecting the same number of images
for any category, the manual labeling is more than 10 times
lower in our case. Fig.4 shows human labeling statistics of 20
categories from our dataset for collecting images.

NUS-WIDE. We also conduct experiments on NUS-WIDE
dataset [6] to evaluate label accuracies before and after
applying our dataset construction system. NUS-WIDE has
about 270K images and associated tags. Moreover, the dataset
provides ground-truth on 81 labels, which allows us to evaluate
label accuracies before and after dataset construction. The
dataset is divided into two sets, i.e., development set (161,789
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Fig. 5. Comparisons of the label precision before and after the dataset construction from NUS-WIDE. Proposed method improves average precision significantly.

images), and testing set (107,859 images). We follow the
experimental setting of label-specific training set construction
approach (LTS) [62] for a fair comparison, which also showed
training set construction performance on NUS-WIDE. Similar
to [62], we construct the training set from the development
part utilizing our framework. We create the set with about 8%
labeling similar to [62]. In Fig. 5, we compare accuracy of
training set constructed by our framework against accuracy of
tags in NUS-WIDE [6] and LTS [62].

We observe from the figure that after the training set
construction, the accuracies of the labels improve significantly
compared to the initial tags of NUS-WIDE and training
set construction method LTS [62]. Specifically, our method
improves average precision by about 34% from the average
precision of tags [6] and by about 12% from LTS [62].

B. Experimental Setup.

For fair comparison across datasets, we have used the same
pre-trained AlexNet CNN [33] for feature extraction from
all the compared datasets in the experiments. For all the
experiments other than image classification performance on
trained CNN in Sec. IV-C, we trained one versus all SVM
classifiers and we set the same options for all the datasets. The
type of kernel for SVM was set as a radial basis function. We
used all images for a category as positive examples and 200
randomly sampled image per category from all other categories
as negative examples for training SVM models. When we train
and test on the same dataset (e.g., train on VOC and test on
VOC), we used five-fold cross-validation to test the classifier
performance (80% training, 20% testing). When we train on
one dataset and test on another dataset (e.g., train on ImageNet,
test on VOC), we used all images from the dataset to train the
classifier model and test on all images of the other dataset.
When we test SVM classifier models, we consider a sample
as correctly classified if the score (signed distance from the
sample to the decision boundary) is more than 0.25.
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Fig. 6. Number of diverse representatives selected in 20 batches (batch size:
200) of aeroplane class for different value of regularization parameter λk (
λk = λ0/µk , where µk > 1 and λ0 is computed from the input data [14]). We
observe that the number of selected representatives increases with decreasing
value of λk , or increasing value of µk .

Parameters: There are two main parameters in solving
ADMM for representative subset selection, i.e., λ and λk .
λ(0 ≤ λ ≤ 1) determines the weight of textual information in
subset selection. When λ is set as zero, visual feature is only
considered in subset selection. When λ is set as one, textual
feature has equal weight to visual feature in subset selection. In
Div20 construction, initially, we process batches from a search
engine (Google and Bing). As there is no tag associated with
these images, we set λ as zero. Then we set λ = 1 as we
process Flickr images which usually has associated tags. λk is
the regularization parameter. We set the Lagrangian multipliers
λk = λ0/µk , where µk > 1 and λ0 is computed from the
input data [14]. The sensitivity of λk on selecting the number
of representatives from first 20 batches of aeroplane class is
shown in Fig. 6. From Fig. 6, we see that when µk is set as
10, about 60% images are retained as representative. When we
set µk as 20, about 85% images are selected and about 35%
images are selected for setting µk as 20. We empirically found
setting µk = 10 is suitable for collecting diverse representative
images in our case.

There are three main parameters in diversity score cal-
culation. λD determines the weight of textual information
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DivNet DRID VOC2012 ImageNet Div20(Visual) Div20

Average Accuracy on VOC2012

Training 

Dataset

Average 

Accuracy

DivNet 55.20

DRID 50.13

VOC2012 51.43

ImageNet 54.41

Div20(Visual) 66.42

Div20 68.54

Fig. 7. Image Classification Performance on VOC 2012 dataset, for classifiers trained on different datasets: (a) ImageNet, (b) VOC2012, (c) DRID, (d) DivNet
(e) Div20(Visual), (f) Div20. Here, the same categories between datasets are compared by training one versus all SVM classifiers (as discussed in Sec IV-B).
When we train on VOC, we used five-fold cross-validation to test the classifier performance (80% training, 20% testing). When we train on any other datasets
(e.g., ImageNet, DRID, DivNet, Div20(Visual), Div20), we use all images from a category to train and test on all images of the same category in VOC. The
accuracy per category is shown on the left plot and the average accuracy is shown in the right table. Best viewed in color.

CNN Training 

Dataset

Average 

Accuracy

DivNet 78.03

DRID 78.43

VOC2012 66.60

ImageNet 85.70

Div20(Visual) 83.23

Div20 85.88

Average Accuracy on ImageNet
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Training Datasets
DivNet DRID VOC2012 ImageNet Div20(Visual) Div20

Fig. 8. Image Classification Performance of Trained CNNs on ImageNet dataset. We randomly choose 80% images per category from ImageNet as training
image set for training ImageNet CNN and remaining 20% as testing image set for this experiment. For other datasets (e.g., VOC2012, Div20, DRID, DivNet),
we have used all images from the datasets to train CNN models and tested on testing image set of ImageNet dataset. Best viewed in color.

in computing sparse representation C based on previously
selected examples D. We set λD as 1 as we provide equal
weight to the textual information. In case of processing batches
from Google and Bing, we set λ = 0 as we do not collect
any text associated with these images. The regularization
parameter of this experiment is calculated from data [14].
The regularization parameter affects the number of examples
from D will be used to compute the sparse reconstruction.
We set this regularization parameter as 5. A higher value
will allow reconstructing a sample from a higher number of
previously selected samples in the dataset, whereas a lower
value will force to reconstruct from a smaller number of
previously selected samples. The diversity score parameter β
(0 < β < 1) determines the contribution of visual diversity
and textual diversity in diversity score calculation. We set β
as 0.5 so that the contribution is the same for textual and visual
information.

Baselines: In order to validate the performance of our
dataset, we compare with several baselines that fall into
two main categories: (1) manually labeled datasets such as
VOC2012 [17], Caltech-256 [22] and ImageNet [50], (2)
dataset constructed using two recent methods, i.e., DRID
[75] and our previous work, Divnet [44]. The VOC2012
[17] dataset has 11,530 images of 20 object categories. Each
training image has an annotation file giving a bounding box
and object class label for each object in one of the twenty
classes present in the image. The Caltech-256 [22] dataset
consists of 30,607 images covering 256 categories, where a
minimum number of images per category is 80. ImageNet
[50] is an image dataset organized according to the WordNet

hierarchy. It provides an average of 1000 images to illustrate
each category. DRID is a dataset construction method, which
uses Multiple Instance Learning to filter noisy images and
select representative images for the dataset. DivNet is our
previous work for construction of diverse image dataset, which
uses a sparse coding based approach to incrementally select
representative and diverse images and filters irrelevant images.
In order to quantify the role of tags associated with web images
contributing to the final results, we also build Div20(Visual)
dataset considering only visual features. Div20(Visual) resem-
bles our previous system [44] with incremental SVM-based
active learning scheme, instead of the sparse reconstruction
based active learning scheme utilized in the previous work.

C. Image Classification

The goal of this experiment is to compare the performance
of classifiers trained on Div20 images with classifiers trained
on other baseline datasets. We select VOC 2012 as the testing
benchmark dataset for this experiment. In this experiment,
we compare our dataset with hand-labeled image datasets,
e.g., VOC2012 [17] and ImageNet[50] and automated datasets,
e.g. DivNet [44], DRID [75] and Div20(Visual). The per-
formance of classifiers trained on a dataset created by the
proposed method and other datasets are shown in Fig. 7.
Div20 outperforms the second best baseline Div20(Visual) in
terms of accuracy by an average of 3.2% across categories,
with a maximum of 9% in the cow category. Moreover,
Div20 shows significant performance improvement (average
of 19.8%) over our previous work DivNet. We believe this
is due to the fact that Div20 dataset, being constructed by
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using both visual and textual features, has more visually and
semantically diverse images than other datasets. Div20 shows
better image classification performance in other datasets too.
The results of image classification in other datasets can be
found in the supplementary material.

Classification Performance of Trained CNNs: We trained
one versus all SVM classifiers to evaluate image classification
performance following previous works [75], [44]. We also
believe that it is important to understand the performance of a
dataset by training convolutional neural networks. We trained
deep CNNs utilizing our dataset and other compared datasets.
The total number of images for 20 categories in these datasets
are not enough to train a deep CNN from scratch. Hence, we
start with pre-trained CaffeNet CNN [24] and fine-tune the
layers. We start training with a learning rate of 0.001 and
decrease it when the training loss had reached a plateau. We
used stochastic gradient descent in training the model. The
classification performance of the CNN models on ImageNet
dataset is shown below in Fig. 8. We randomly choose 80%
images per category from ImageNet as training image set for
training ImageNet CNN and remaining 20% as the testing
image set for this experiment.

It is evident from Fig. 8 that the average accuracy of
the CNN trained on Div20 is higher than CNNs trained
on other datasets. CNN trained on Div20 achieves slightly
higher accuracy than CNN trained on ImageNet CNN and
significantly higher accuracy than CNNs trained on other
datasets. It is also evident from Fig. 8 that the Div20 CNN
consistently shows high performance across categories. We
also observe a similar performance trend in other datasets. The
classification performance on VOC2012 dataset is provided in
the supplementary material.

Ablation Study: In this experiment, we focus on observing
the effects of the three most significant parts (described in
Sec.III-B, Sec.III-C, and Sec.III-D) of our proposed system on
the performance. In this regard, we perform an ablation study
of our system in Fig. 9 by removing one part of the system at
a time and constructing a dataset with average 1500 images
per category. We observe how that impacts classification
performance evaluation on VOC2012 and ImageNet datasets
in several categories. The main observations from Fig. 9 can
be summarized as follows.
• Effect of Image-Text Embedding- In order to quantify

the role of jointly utilizing both image and text modality
for dataset construction (Sec.III-B), we can compare purple
columns and green columns in Fig. 9. Div20(Visual Only)
dataset is created considering only visual features. From
Fig. 9, it is evident that jointly utilizing both image and
text in Div20(Proposed) contributes to overall performance
improvement over Div20(Visual Only) in almost all categories
across datasets. In ImageNet evaluation, the classifier trained
on Div20 (Proposed) outperforms Div20 (Visual) in terms
of average accuracy by a relative improvement of about
4.65%, with a maximum improvement of about 31% in the
chair category. We observe similar improvement in VOC2012
evaluation, where the average accuracy improved from 66.42%
in Div20(Visual Only) to 68.54% in Div20(Proposed) and the

0

20

40

60

80

100
Ablation Study of Proposed System on VOC2012
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20

40

60

80

100
Ablation Study of Proposed System on ImageNet

Div20 (No Active Learning based Labeling) Div20 (No Diverse Representative Selection)

Div20 (Visual Only) Div20 (Proposed)

Fig. 9. Ablation analysis of proposed system to evaluate relative importance
of different parts of the system

maximum relative improvement is 9% in the cow category.
• Effect of Diverse Representative Selection- We can com-

pare orange columns and green columns in Fig. 9 in order to
quantify the role of diverse representative selection step shown
in Sec.III-C. Div20(No Diverse Representative Selection) rep-
resents constructed dataset, where Sec.III-C has been omitted
and Sec.III-D (Image Labeling and Dataset Update) step is
performed after Sec.III-B (feature extraction). From Fig. 9,
we observe Div20 shows significant performance improvement
over Div20(No Diverse Representative Selection) as expected.
Diverse representative selection step effectively minimizes the
chance of including redundant instances in the dataset and
allows to better utilize human effort in labeling distinctive
instances. When diverse representative selection step is not
utilized, the average performance drops significantly from
68.54% to 51.28% in VOC2012, and from 80.32% to 69.79%
in ImageNet evaluation. We also observe large performance
drop in most categories (e.g., drop from 41.20% to 23.42% in
plant category in VOC2012).
• Effect of Active Learning based labeling- We compare

blue columns and green columns in Fig. 9 to analyze the effect
of incremental SVM based active learning scheme for actively
selecting samples (Sec.III-D) in our system. Div20(No Active
Learning based Labeling) represents constructed dataset where
Sec.III-D has been omitted in the system. Without this part,
the system mainly loses its ability to select correct examples
to update the dataset. We again observe that classifiers trained
using images from Div20 performs consistently better across
categories in both datasets, with average improvement about
56% in VOC2012 and 43% in ImageNet. Div20(No Active
Learning based Labeling) shows high variance in performance
across categories as it relies mostly on the accuracy of tags.

We observe from the above analysis that all three parts help
to achieve consistent and significant improvement in classifi-
cation performance across categories on different datasets. We
do not report the impact of near-duplicate image removal step
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(a) Test on ImageNet (b) Test on VOC2012 (c) Test on DivNet

Fig. 10. Cross-dataset performance of classifier trained on different datasets with a different number of samples per category. Cross-dataset generalization ability
of classifiers learned from ImageNet, VOC2012, DivNet, DRID and Div20, and then tested on: (a) ImageNet, (b) VOC2012, (c) DivNet. We sequentially select
[400, 800, 1200, 1500] images per category from different datasets as positive training examples. In this experiment, we calculate accuracy for each category
by training one versus all SVM classifiers. In the figure, the average classification accuracy is reported, which represents the cross-dataset generalization
ability of one dataset on another dataset. Best viewed in color.

(Sec.III-E) in this experiment, as the number of near duplicates
in a category is very low in our dataset construction and
hence, Sec.III-E has almost no impact on the classification
performance. The main purpose of Sec.III-E is removing
duplicate images across categories as we collect images for
each category independently.

D. Cross-Dataset Generalization

To evaluate the generalization ability of our constructed
dataset, we compare the dataset with VOC2012 [17], ImageNet
[50], DivNet [44], DRID [75] and DivNet. We select all twenty
categories from VOC2012 dataset [17] for this experiment.
The result for different training and testing data combinations
is shown in Fig. 10. As seen from the figures, training with
Div20 shows the best generalization among datasets, as the
average accuracy is high and cross-dataset performance drop
is minimum for Div20. Initially, with few training samples, the
performance of Div20 may be lower as it has very few labeled
samples. However, as we iteratively select more diverse images
to be labeled by our system, the performance improves at a
higher rate. We can compare the performance of the datasets
at the point of 1000 training samples (since state of the art
ImageNet has on average 1000 images per category) and see
the generalization ability of Div20 is better. The comparison
at the same number of training samples shows the average
cross-dataset performance of Div20 is significantly higher
than other baselines. Moreover, Div20 can achieve even better
performance because of its ability to scale up with limited
labeling effort.

E. Diversity

In order to illustrate the diversity of images in our collected
dataset, we follow [10], [7], which computes the average image
of each category and measure lossless JPG file size, which
reflects the amount of information in an image. A diverse
image set should result in a blurrier average image, and the
JPG file size of the average image should be smaller. We
re-size all images to 256×256, and create average images
for each category from all images of the category. Fig. 11
shows the average images and the corresponding JPG image
size comparison of four categories: person, dog, monitor,
and aeroplane. The average image of Div20 is blurrier and
harder to recognize the object than the average image of other

datasets, which are comparatively more structured and sharper
than Div20. Div20 has smaller JPG file size than ImageNet,
VOC, DRID, DivNet, and Caltech-256. This phenomenon is
common for almost all of the categories. For randomly picked
8 categories, the average loss-less JPG size has been found to
be 2.2 KB in Div20, 2.8 KB in DRID, 2.6 kB in DivNet, 2.5
KB in ImageNet and 3.5 KB in Caltech-256.

F. Dataset Enrichment

We enrich ImageNet, VOC2012, and Caltech-256 by pro-
posed system to evaluate the performance of our approach
in dataset enrichment. For this experiment, we pick eight
categories that are common in these datasets: airplane, bike,
bird, car, dog, horse, monitor, and person. For each category,
we start our dataset construction method with images from a
particular dataset as the initial dataset and collect 1000 more
images using our framework automatically with no labeling
(Enrich Dataset-Auto) and also with a manual labeling budget
of 50 (Enrich Dataset-50). We train one versus all SVM
classifiers (as described in Section IV-B) for each category
with initial dataset images and enriched dataset images, and
test on Div20. The result in Fig. 12 shows the performance of
classifier improves significantly after enriching with our frame-
work. Hence, the proposed method is suitable for extending
existing image collections with diverse examples.

G. Scalability

Runtime. A major advantage of our system is creating
a high-quality dataset with low cost. Here, we compare the
runtime of our approach to complete manual labeling based
approaches. Our initial pool consists of around 6000 candidate
images per category for 20 categories. According to [18], the
human labeling speed is 2 images per second and on average
3 annotators verify one image. Hence, the approximate time
for creating a dataset from our collected images with compete
manual labeling can be calculated as follows:

Total Time =
6000 × 20 × 3

2
sec = 3,000 min = 50 hours

On the other hand, our approach considers both images in
the current batch and previously selected images to select the
best subset for further processing. Thus, we can utilize human
effort in labeling most informative and distinctive instances
based on our labeling budget. In our pipeline, we used a batch
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Fig. 11. (a) Lossless JPG file sizes of average images in Bytes for four different categories in Div20, ImageNet, DivNet, DRID, VOC and Caltech-256.
(b)-(g) shows average images for each category in different datasets indicated in (a). We resize all images to 256×256, and create average images for each
category from all images of the category. We measure the lossless JPG file size of the average image, which reflects the amount of information in an image.
A diverse image set should result in a blurrier average image, and the JPG file size of the average image should be smaller.
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Fig. 12. Plot shows the change in image classifier performance after enriching
datasets with our framework. We utilized the proposed approach to collect
1000 more images per category and created Enriched Dataset-Auto (automatic,
no manual labeling) and Enriched Dataset-50 (with 50 manual labeling
budget). We compare the image classification performance of enriched datasets
with that of initial datasets on Div20 dataset.

size of 200 and set the maximum manual labeling budget for
each batch as 10, which we found as sufficient to achieve good
performance. Considering the same average human labeling
speed and number of annotators as the previous step, the time
required for labeling in our approach can be calculated as:

Labeling Time =
6000 × 20 × 10 × 3

200 × 2
sec = 150 min = 2.5 hours

Note that, this is the upper bound of our required manual
labeling time. We select a smaller diverse representative set
from each batch (Sec. III-C) and then utilize active learning
(Sec. III-D) to select the samples for labeling. Hence, we find
that many times the number of samples to be labeled is less
than the labeling budget, which happens regularly after we
process a number of batches. We ran our experiment on a
core i7 CPU with 16 GB RAM. The total time required for the
algorithm without manual labeling was about 93 minutes (the
average time per batch for diversity calculation optimization
was about 2.71 seconds, the subset selection optimization was
about 2.189 seconds and SVM optimization was 3.92 seconds).
The time for feature extraction (with a k40 GPU) was around
156 minutes. Hence, the total time in our approach is :

Total Time = (150 + 93 + 156) = 399 minutes = 6.65 hours

Our approach decreases the total runtime by around 7.5
times and labeling cost by around 20 times compared to the
completely manual approaches. Note that, category-wise par-
allelization is not considered in this experiment. As collecting
images per category is independent of other categories, the

required time for dataset creation can be reduced significantly.
It can be further reduced using ADMM optimization paral-
lelization [46]. We leave this as one of our future work.

Performance Change with Human Labeling. Different
from static dataset construction, our method can be used to
dynamically update datasets. It is possible to collect images
based on desired dataset size and labeling budget. Such prop-
erty makes sense as one user may be interested in collecting
more image for a category, compared to others. It is also likely
that a user may want to spend more time labeling images from
a particular category than other categories. We investigate the
scalability in labeling by collecting a fixed number of images
with different labeling budget. The accuracy of the classifier
per category increases by 3.4% on average initially, as we
increase labeling budget by 25. However, the performance
improvement usually saturates after labeling around 100-200
examples(the actual number varies by category). The classifier
performance in car, chair, bottle, and bicycle category for
different labeling budget, with a fixed number of images
collected, are shown in Fig.13. The accuracy of the classifier
increases with increasing labeling. However, it is apparent
from Fig.13 that, the performance improvement saturates after
a limited labeling effort.
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Fig. 13. The plot shows the performance change in image classifier perfor-
mance with an increase in manual labeling, with a fixed number of images
collected. We utilize the proposed approach with different labeling budget and
collect images for 4 different categories. We again train one versus all SVM
classifiers for each category (as described in Section IV-B)

V. CONCLUSIONS

In this paper, we propose a sparse coding based framework
that employs a joint visual semantic space to simultaneously
utilize both images and associated textual information from
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web collections for continuously collecting diverse images
from the web, which is suitable for dataset construction, or
enriching existing datasets with new examples. Our system
provides a flexibility that permits filtering out irrelevant images
and obtains a reliable set of diverse images based on resource
and labeling budget available so that a high-precision large-
scale image classifier can be trained. The experimental results
demonstrate that our system is not only useful in reducing the
manual annotation efforts, but also successful in collecting
images with high precision and diversity, and robust image
classifiers can be trained from these images.
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