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Joint Embeddings with Multimodal Cues for Video-Text Retrieval

Niluthpol C. Mithun - Juncheng Li - Florian Metze - Amit K. Roy-Chowdhury

Abstract For multimedia applications, constructing a joint representation that could carry information for multiple modalities
could be very conducive for downstream use cases. In this paper, we study how to effectively utilize available multimodal cues
from videos in learning joint representations for the cross-modal video-text retrieval task. Existing hand labeled video-text
datasets are often very limited by their size considering the enormous amount of diversity the visual world contains. This
makes it extremely difficult to develop a robust video-text retrieval system based on deep neural network models. In this regard,
we propose a framework that simultaneously utilizes multi-modal visual cues by a “mixture of experts" approach for retrieval.
We conduct extensive experiments to verify that our system is able to boost the performance of the retrieval task compared to
the state-of-the-art. In addition, we propose a modified pairwise ranking loss function in training the embedding and study
the effect of various loss functions. Experiments on two benchmark datasets show that our approach yields significant gain
compared to the state-of-the-art.
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Some recent works [38,30,59,25, 17] attempt to utilize cross-
modal joint embeddings to address the gap. By projecting

data from multiple modalities into the same joint space, the Fig. 1: Illustration of Video-Text retrieval task: given a text
similarity of the resulting points would reflect the seman-  query, retrieve and rank videos from the database based on
tic closeness between their corresponding original inputs. ~ how well they depict the text, and vice versa.

In this work, we focus on learning joint video-text embed-

ding models and combining video cues for different purposes
effectively for developing robust video-text retrieval system.

The video-text retrieval task is one step further than the
image-text retrieval task, which is a comparatively well-
studied field. Most existing approaches for video-text re-
trieval are very similar to the image-text retrieval methods
by design and focus mainly on the modification of loss func-
tions [12,61,50,40,41]. We observe that simple adaptation
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A dog is barking in field” “Gunshot broke out at the concert”

Fig. 2: Example frame from two videos and associated cap-
tion to illustrate the significance of utilizing supplementary
cues from videos to improve the chance of correct retrieval.

scene entities, and thus they often can only retrieve some
generic responses related to the appearance of static frame.
They may fail to retrieve the most relevant information in
many cases to understand important questions for efficient
retrieval such as “What happened in the video’, or “Where did
the video take place’. This greatly undermines the robustness
of the systems; for instance, it is very difficult to distinguish
a video with the caption “a dog is barking" apart from an-
other “a dog is playing" based only on visual appearance
(See Fig. 2). Associating video motion content and the envi-
ronmental scene can give supplementary cues in this scenario
and improve the chance of correct prediction. Similarly, to
understand a video described by “gunshot broke out at the
concert" may require analysis of different visual (e.g., appear-
ance, motion, environment) and audio cues simultaneously.
On the other hand, a lot of videos may contain redundant or
identical contents, and hence, an efficient video-text retrieval
should utilize the most distinct cues in the content to resolve
ambiguities in retrieval.

While developing a system without considering most
available cues in the video content is unlikely to be compre-
hensive, an inappropriate fusion of complementary features
could adversely increase ambiguity and degrade performance.
Additionally, existing hand labeled video-text datasets are
very small and very restrictive considering the amount of rich
descriptions that a human can compose and the enormous
amount of diversity in the visual world. This makes it ex-
tremely difficult to train deep models to understand videos
in general to develop a successful video-text retrieval sys-
tem. To ameliorate such cases, we analyze how to judiciously
utilize different cues from videos. We propose a mixture of
experts system, which is tailored towards achieving high per-
formance in the task of cross-modal video-text retrieval. We
believe focusing on three major facets (i.e., concepts for Who,
What, and Where) from videos is crucial for efficient retrieval
performance. In this regard, our framework utilizes three
salient features (i.e., object, action, place) from videos (ex-
tracted using pre-trained deep neural networks) for learning
joint video-text embeddings and uses an ensemble approach
to fuse them. Furthermore, we propose a modified pairwise
ranking loss for the task that emphasizes on hard negatives

and relative ranking of positive labels. Our approach shows
significant performance improvement compared to previous
approaches and baselines.

Contributions: The main contributions of this work can
be summarized as follows.

e The success of video-text retrieval depends on more ro-
bust video understanding. This paper studies how to achieve
the goal by utilizing multimodal features from a video (dif-
ferent visual features and audio inputs). Our proposed frame-
work uses action, object, place, text and audio features by a
fusion strategy for efficient retrieval.

e We present a modified pairwise loss function to better
learn the joint embedding which emphasizes on hard nega-
tives and applies a weight-based penalty on the loss based on
the relative ranking of the correct match in the retrieval.

e We conduct extensive experiments and demonstrate a
clear improvement over the state-of-the-art methods in the
video to text retrieval tasks on the MSR-VTT dataset [60]
and MSVD dataset [9].

This paper is an extended version of our work [35] with
significantly more insights and detailed discussions about
the proposed framework. The main extension in our pipeline
is adding scene cues from videos, along with object and ac-
tivity cues for learning joint embeddings to develop a more
comprehensive video-text retrieval system. The previous ver-
sion utilized object-text and activity-text embeddings which
focused mainly on resolving ambiguities arising related to
concepts for Who and What. We add a place-text embedding
network in our framework to make it more robust which
will help us resolve ambiguities arising from concepts for
Where. Experiments show that this change results in a signifi-
cant improvement over the previous works in two benchmark
datasets.

2 Related Work

Image-Text Retrieval. Recently, there has been significant
interest in learning robust visual-semantic embeddings for
image-text retrieval [38,26,21,57]. Based on a triplet of ob-
ject, action and, scene, a method for projecting text and image
to a joint space was proposed in early work [14]. Canoni-
cal Correlation Analysis (CCA) and several extensions of it
have been used in many previous works for learning joint
embeddings for the cross-modal retrieval task [49,22,18,62,
44,19] which focuses on maximizing the correlation between
the projections of the modalities. In [18], authors extended
classic two-view CCA approach with a third view coming
from high-level semantics and proposed an unsupervised
way to derive the third view from clustering the tags. In [44],
authors proposed a method named MACC (Multimedia Ag-
gregated Correlated Components) aiming to reduce the gap
between cross-modal data in the joint space by embedding



visual and textual features into a local context that reflects
the data distribution in the joint space. Extension of CCA
with deep neural networks named deep CCA (DCCA) has
also been utilized to learn joint embeddings [62,1], which
focus on learning two deep neural networks simultaneously
to project two views that are maximally correlated. While
CCA-based methods are popular, these methods have been
reported to be unstable and incur a high memory cost due
to the covariance matrix calculation with large-amount of
data [58,32]. Recently, there are also several works leverag-
ing adversarial learning to train joint image-text embeddings
for cross-modal retrieval [57,10].

Most recent works relating to text and image modality
are trained with ranking loss [28,17,58,13,39,52]. In [17],
authors proposed a method for projecting words and visual
content to a joint space utilizing ranking loss that applies a
penalty when a non-matching word is ranked higher than the
matching one. A cross-modal image-text retrieval method
has been presented in [28] that utilizes triplet ranking loss to
project image feature and RNN based sentence description to
a common latent space. Several image-text retrieval methods
have adopted a similar approach with slight modifications in
input feature representations [39], similarity score calcula-
tion [58], or loss function [13]. VSEPP model [13] modified
the pair-wise ranking loss based on violations caused by
the hard-negatives (i.e., non-matching query closest to each
training query) and has been shown to be effective in the
retrieval task. For image-sentence matching, a LSTM based
network is presented in [24] that recurrently selects pair-
wise instances from image and sentence descriptions, and
aggregates local similarity. In [39], authors proposed a multi-
modal attention mechanism to attend to sentence fragments
and image regions selectively for similarity calculation. Our
method complements these works that learn joint image-text
embedding using a ranking loss ( e.g., [28,52,13]). The pro-
posed retrieval framework can be applied to most of these
approaches for improved video-text retrieval performance.

Video Hyperlinking. Video hyperlinking is also closely
relevant to our work. Given an anchor video segment, the task
is to focus on retrieving and ranking a list of target videos
based on the likelihood of being relevant to the content of the
anchor [2,5]. Multimodal representations have been utilized
widely in video hyperlinking approaches in recent years [6,
56,2]. Most of these approaches rely heavily on multimodal
autoencoders for jointly embedding multimodal data [55, 15,
8]. Bidirectional deep neural network (BiDNN) based repre-
sentations have also been shown to be very effective in video
hyperlinking benchmarks [56,54]. BiDNN is also a varia-
tion of multimodal autoencoder, which performs multimodal
fusion using a cross-modal translation with two interlocked
deep neural networks [55,54]. Considering the input data,
video-text retrieval is dealing with the same multimodal input
as video hyperlinking in many cases. However, video-text

retrieval task is more challenging than hyperlinking since it
requires to distinctively retrieve matching data from a dif-
ferent modality, which requires effective utilization of the
correlations in between cross-modal cues.

Video-Text Retrieval. Most relevant to our work are
the methods that relate video and language modalities. Two
major tasks in computer vision related to connecting these
two modalities are video-text retrieval and video captioning.
In this work, we only focus on the retrieval task. Similar
to image-text retrieval approaches, most video-text retrieval
methods employ a shared subspace. In [61], authors vector-
ize each subject-verb-object triplet extracted from a given
sentence by word2vec model [34] and then aggregate the
Subject, Verb, Object (SVO) vector into a sentence level vec-
tor using RNN. The video feature vector is obtained by mean
pooling over frame-level features. Then a joint embedding
is trained using a least squares loss to project the sentence
representation and the video representation into a joint space.
Web image search results of input text have been exploited
by [40], which focused on word disambiguation. In [53],
a stacked GRU is utilized to associate sequence of video
frames to a sequence of words. In [41], authors propose an
LSTM with visual-semantic embedding method that jointly
minimizes a contextual loss to estimate relationships among
the words in the sentence and a relevance loss to reflect the
distance between video and sentence vectors in the shared
space. A method named Word2Visual Vec is proposed in [12]
for the video to sentence matching task that projects vector-
ized sentence into visual feature space using mean squared
loss. A shared space across image, text and sound modality
is proposed in [4] utilizing ranking loss, which can also be
applied to video-text retrieval task.

Utilizing multiple characteristics of video (e.g., activi-
ties, audio, locations, time) is evidently crucial for efficient
retrieval [63]. In the closely related task of video captioning,
dynamic information from video along with static appear-
ance features has been shown to be very effective [65,45].
However, most of the existing video-text retrieval approaches
depend on one visual cue for retrieval. In contrast to the ex-
isting works, our approach focuses on effectively utilizing
different visual cues and audio (if available) concurrently for
more efficient retrieval.

Ensemble Approaches. Our retrieval system is based on
an ensemble framework [42,16]. A strong psychological con-
text of the ensemble approach can be found from its intrinsic
connection in decision making in many daily life situations
[42]. Seeking the opinions of several experts, weighing them
and combining to make an important decision is an innate be-
havior of human. The ensemble methods hinge on the same
idea and utilize multiple models for making an optimized
decision, as in our case diverse cues are available from videos
and we would like to utilize multiple expert models which



focus on different cues independently to obtain a stronger
prediction model. Moreover, ensemble-based systems have
been reported to be very useful when dealing with a lack
of adequate training data [42]. As diversity of the models is
crucial for the success of ensemble frameworks [43], it is
important for our case to choose a diverse set of video-text
embeddings that are significantly different from one another.

3 Approach

In this section, we first provide an overview of our proposed
framework (Section 3.1). Then, we describe the input fea-
ture representation for video and text (Section 3.2). Next, we
describe the basic framework for learning visual-semantic
embedding using pair-wise ranking loss (Section 3.3). After
that, we present our modification on the loss function which
improves the basic framework to achieve better recall (Sec-
tion 3.4). Finally, we present the proposed fusion step for
video-text matching (Section 3.5).

3.1 Overview of the Proposed Approach

In a typical cross-modal video-text retrieval system, an em-
bedding network is learned to project video features and
text features into the same joint space, and then retrieval is
performed by searching the nearest neighbor in the latent
space. Since in this work we are looking at videos in general,
detecting most relevant information such as object, activities,
and places could be very conducive for higher performance.
Therefore, along with developing algorithms to train bet-
ter joint visual-semantic embedding models, it is also very
important to develop strategies to effectively utilize differ-
ent available cues from videos for a more comprehensive
retrieval system.

In this work, we propose to leverage the capability of
neural networks to learn a deep representation first and fuse
the video features in the latent spaces so that we can develop
expert networks focusing on specific subtasks (e.g. detecting
activities, detecting objects). For analyzing videos, we use
a model trained to detect objects, a second model trained to
detect activities, and a third model focusing on understanding
the place. These heterogeneous features may not be used to-
gether directly by simple concatenation to train a successful
video-text model as intra-modal characteristics are likely to
be suppressed in such an approach. However, an ensemble of
video-text models can be used, where a video-text embedding
is trained on each of the video features independently. The
final retrieval is performed by combining the individual deci-
sions of several experts [42]. An overview of our proposed
retrieval framework is shown in Fig. 3. We believe that such
an ensemble approach will significantly reduce the chance of
poor/wrong prediction.

We follow network architecture proposed in [28] that
learns the embedding model using a two-branch network
using image-text pairs. One of the branches in this network
takes text feature as input and the other branch takes in a
video feature. We propose a modified bi-directional pairwise
ranking loss to train the embedding. Inspired by the success
of ranking loss proposed in [13] in image-text retrieval task,
we emphasize on hard negatives. We also apply a weight-
based penalty on the loss according to the relative ranking of
the correct match in the retrieved result.

3.2 Input Feature Representation

Text Feature. For encoding sentences, we use Gated
Recurrent Units (GRU) [11]. We set the dimensionality of
the joint embedding space, D, to 1024. The dimension of
the word embeddings that are input to the GRU is 300. Note
that the word embedding model and the GRU are trained
end-to-end in this work.

Object Feature. For encoding image appearance, we
adopt deep pre-trained convolutional neural network (CNN)
model trained on ImageNet dataset as the encoder. Specif-
ically, we utilize state-of-the-art 152 layer ResNet model
ResNet152 [20]. We extract image features directly from the
penultimate fully connected layer. We first rescale the image
to 224x224 and feed into CNN as inputs. The dimension of
the image embedding is 2048.

Activity Feature. The ResNet CNN can efficiently cap-
ture visual concepts in static frames. However, an effective
approach to learning temporal dynamics in videos was pro-
posed by inflating a 2-D CNN to a deep 3-D CNN named I3D
in [7]. We use 13D model to encode activities in videos. In
this work, we utilize the pre-trained RGB-I3D model and ex-
tract 1024 dimensional feature utilizing continuous 16 frames
of video as the input.

Place Feature. For encoding video feature focusing on
scene/place, we utilize deep pre-trained CNN model trained
on Places-365 dataset as the encoder [66]. Specifically, we
utilize 50 layer model ResNet50 [20]. We extract image
features directly from the penultimate fully connected layer.
We re-scale the image to 224x224 and feed into CNN as
inputs. The dimension of the image embedding is 2048.

Audio Feature. We believe that by associating audio,
we can get important cues to the real-life events, which would
help us remove ambiguity in many cases. We extract audio
feature using state-of-the-art SoundNet CNN [3], which pro-
vides 1024 dimensional feature from input raw audio wave-
form. Note that, we only utilize the audio which is readily
available with the videos.

3.3 Learning Joint Embedding

In this section, we describe the basic framework for learning
joint embedding based on bi-directional ranking loss.
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Fig. 3: An overview of the proposed retrieval process. We propose to learn three joint video-text embedding networks as
shown in Fig. 3. One model learns a joint space (Object-Text Space) between text features and visual object features. Another
model learns a joint space (Activity-Text Space) between text feature and activity features. Similarly, there is a third model
which learns a joint space (Place-Text Space) between scene features and text features. Here, Object-Text space is the expert
in solving ambiguity related to who is in the video, whereas Activity-Text space is the expert in retrieving what activity is
happening and place-Text space is the expert in solving ambiguity regarding locations in the video. Given a query sentence,
we calculate the sentence’s similarity scores with each one of the videos in the entire dataset in all of the three embedding
spaces and use a fusion of scores for the final retrieval result. Please see Section 3.1 for an overview and Section 3 for details.

Given a video feature representation (i.e., appearance
feature, or activity feature, or scene feature) v (v € RY),
the projection for a video feature on the joint space can be
derived as v = W7 (v € RP). In the same way, the pro-
jection of input text embedding Z(f € R”) to joint space is
t = WOL(t € RP). Here, W) € RP*V s the transfor-
mation matrix that projects the video content into the joint
embedding space, and D denotes the dimension of the joint
space. Similarly, W ® e RP*T maps input sentence/caption
embedding to the joint space. Given feature representation
for words in a sentence, the sentence embedding ¢ is found
from the hidden state of the GRU. Here, given the feature
representation of both videos and corresponding text, the
goal is to learn a joint embedding characterized by 6 (i.e.,

W@, W® and GRU weights) such that the video content
and semantic content are projected into the joint embedding
space. We keep image encoder (e.g., pre-trained CNN) fixed
in this work, as the video-text datasets are small in size.

In the embedding space, it is expected that the similarity
between a video and text pair to be more reflective of seman-
tic closeness between videos and their corresponding texts.
Many prior approaches have utilized pairwise ranking loss
for learning joint embedding between visual input and textual
input. They minimize a hinge based triplet ranking loss com-
bining bi-directional ranking terms, in order to maximize the
similarity between a video embedding and the corresponding
text embedding, and while at the same time, minimize the
similarity to all other non-matching ones. The optimization



problem can be written as,

mein Z Z[a = Sv,t)+ S(v,t7)]+
" (1
+3 Y o= S(tv) + St o).

where, [f]+ = max(0, f). t~ is a non-matching text
embedding, and ¢ is the matching text embedding for video
embedding v. This is similar for text embedding ¢. « is the
margin value for the pairwise ranking loss. The scoring func-
tion S(v,t) is defined as the similarity function to measure
the similarity between the videos and text in the joint embed-
ded space. We use cosine similarity in this work, as it is easy
to compute and shown to be very effective in learning joint
embeddings. [28, 13].

In Eq. (1), in the first term, for each pair (v, t), the sum is
taken over all non-matching text embedding ¢ . It attempts to
ensure that for each visual feature, corresponding/matching
text features should be closer than non-matching ones in the
joint space. Similarly, the second term attempts to ensure
that text embedding that corresponds to the video embedding
should be closer in the joint space to each other than non-
matching video embeddings.

3.4 Proposed Ranking Loss

Recently, focusing on hard-negatives has been shown to be
effective in many embedding tasks [13,48,33]. Inspired by
this, we focus on hard negatives (i.e., the negative video
and text sample closest to a positive/matching (v, t) pair)
instead of summing over all negatives in our formulation.
For a positive/matching pair (v, t), the hardest negative sam-
ple can be identified using & = argmax S(t,v~) and { =
o

arg max S(v,t~). The optimization problem can be rewrit-
P

ten as following to focus on hard-negatives,

min > o= S(v,t) + S(v, D)4
N (2)
+ o= S(t,v) + S(t,0))+

The loss in Eq. 2 is similar to the loss in Eq. 1 but it is
specified in terms of the hardest negatives [13]. We start with
the loss function in Eq. 2 and further modify the loss function
following the idea of weighted ranking [51] to weigh the loss
based on the relative ranking of positive labels.

min > L(ry)a— S(v,t) + S(v, 1)+

3)
+3 L(ry)e— S(t,v) + S(t,0)]+

where L(.) is a weighting function for different ranks. For
a video embedding v, r, is the rank of matching sentence ¢
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Fig. 4: An example showing the significance of the pro-
posed ranking loss. The idea is that if a large number of
non-matching instances are ranked higher than the match-
ing one given the current state of the model, then the model
must be updated by a larger amount (Case: (b). However, the
model needs to be updated by a smaller amount if the match-
ing instance is already ranked higher than most non-matching
ones. (Case: (a))

among all compared sentences. Similarly, for a text embed-
ding ¢, r is the rank of matching video embedding v among
all compared videos in the batch. We define the weighting
function as L(r) = (1 + 8/(N —r + 1)), where N is the
number of compared videos and 3 is the weighting factor.
Fig. 4 shows an example showing the significance of the
proposed ranking loss.

It is very common, in practice, to only compare samples
within a mini-batch at each iteration rather than comparing
the entire training set for computational efficiency [33,48,
25]. This is known as semi-hard negative mining [33,48].
Moreover, selecting the hardest negatives in practice may of-
ten lead to a collapsed model and semi-hard negative mining
helps to mitigate this issue [33,48]. We utilize a batch-size
of 128 in our experiment.

It is evident from Eq. 3 that the loss applies a weight-
based penalty based on the relative ranking of the correct
match in retrieved result. If a positive match is ranked top in
the list, then L(.) will assign a small weight to the loss and
will not cost the loss too much. However, if a positive match
is not ranked top, L(.) will assign a much larger weight to the
loss, which will ultimately try to push the positive matching
pair to the top of rank.

3.5 Matching and Ranking

The video-text retrieval task focuses on returning for each
query video, a ranked list of the most likely text descrip-
tion from a dataset and vice versa. We believe, we need to
understand three main aspects of each video: (1) Who: the
salient objects of the video, (2) What: the action and events
in the video and (3) Where: the place aspect of the video. To
achieve this, we learn three expert joint video-text embedding
spaces as shown in Fig. 3.



The Object-Text embedding space is the common space
where both appearance features and text feature are mapped
to. Hence, this space can link video and sentences focusing
on the objects. On the other hand, the Activity-Text embed-
ding space focuses on linking video and language description
which emphasizes more on the events in the video. Action
features and audio features both provide important cues for
understanding different events in a video. We fuse action and
audio features (if available) by concatenation and map the
concatenated feature and text feature into a common space,
namely, the Activity-Text space. If the audio feature is absent
from videos, we only use the action feature as the video repre-
sentation for learning the Activity-Text space. The Place-Text
embedding space is the common space where visual features
focusing on scene/place aspect and text feature are mapped to.
Hence, this space can link video and sentences focusing on
the entire scene. We utilize the same loss functions described
in Sec. 3.4 for training these embedding models.

At the time of retrieval, given a query sentence, we com-
pute the similarity score of the query sentence with each
one of the videos in the dataset in three video-text embed-
ding spaces and use a fusion of similarity scores for the final
ranking. Conversely, given a query video, we calculate its
similarity scores with all the sentences in the dataset in three
embedding spaces and use a fusion of similarity scores for
the final ranking.

Svft(’lh t) = wISoft + U)QSaft + w3Sp7t (4)

It may be desired to use a weighted sum when it is necessary
in a task to put more emphasis on one of the facets of the
video (objects or captions or scene). In this work, we empiri-
cally found putting comparatively higher importance to .S,_;
(Object-Text) and S, (Activity-Text), and slightly lower
importance to S),_; (Place-Text) works better in evaluated
datasets than putting equal importance to all. We empirically
choose w1 = 1, we = 1 and w3z = 0.5 in our experiments
based on our evaluation on the validation set.

4 Experiments

In this section, we first describe the datasets and evaluation
metric (Section 4.1). Then, we describe the training details.
Next, we provide quantitative results on MSR-VTT dataset
(Section 4.3) and MSVD dataset (Section 4.4) to show the
effectiveness of our proposed framework. Finally. we present
some qualitative examples analyzing our success and failure
cases (Section 4.5).

4.1 Datasets and Evaluation Metric

We present experiments on two standard benchmark datasets:
Microsoft Research Video to Text (MSR-VTT) Dataset [60]

and Microsoft Video Description dataset (MSVD) [9] to eval-
uate the performance of our proposed framework. We adopt
rank-based metric for quantitative performance evaluation.

MSR-VTT. The MSR-VTT is a large-scale video de-
scription dataset. This dataset contains 10,000 video clips.
The dataset is split into 6513 videos for training, 2990 videos
for testing and 497 videos for the validation set. Each video
has 20 sentence descriptions. This is one of the largest video
captioning dataset in terms of the quantity of sentences and
the size of the vocabulary.

MSVD. The MSVD dataset contains 1970 Youtube clips,
and each video is annotated with about 40 sentences. We
use only the English descriptions. For a fair comparison,
we used the same splits utilized in prior works [53], with
1200 videos for training, 100 videos for validation, and 670
videos for testing. The MSVD dataset is also used in [40]
for video-text retrieval task, where they randomly chose 5
ground-truth sentences per video. We use the same setting
when we compare with that approach.

Evaluation Metric. We use the standard evaluation crite-
ria used in most prior work on image-text retrieval and video-
text retrieval task [40,28,12]. We measure rank-based per-
formance by RQK, Median Rank(M ed R) and Mean Rank
(MeanR). RQK (Recall at K) calculates the percentage of
test samples for which the correct result is found in the top-K
retrieved points to the query sample. We report results for
R@1, RQ5 and R@10. Median Rank calculates the median
of the ground-truth results in the ranking. Similarly, Mean
Rank calculates the mean rank of all correct results.

4.2 Training Details

We used two Titan Xp GPUs for this work. We implemented
the network using PyTorch following [13]. We start training
with a learning rate of 0.002 and keep the learning rate fixed
for 15 epochs. Then the learning rate is lowered by a factor of
10 and the training continued for another 15 epochs. We use
a batch-size of 128 in all the experiments. The embedding
networks are trained using ADAM optimizer [27]. When
the L2 norm of the gradients for the entire layer exceeds 2,
gradients are clipped. We tried different values for margin o
in training and found 0.1 < a < 0.2 works reasonably well.
We empirically choose « as 0.2. The embedding model was
evaluated on the validation set after every epoch. The model
with the best sum of recalls on the validation set is chosen as
the final model.

4.3 Results on MSR-VTT Dataset

We report the result on MSR-VTT dataset [60] in Table 1.
We implement several baselines to analyze different compo-
nents of the proposed approach. To understand the effect of



Table 1: Video-to-Text and Text-to-Video Retrieval Results on MSR-VTT Dataset.

# Method Video-to-Text Retrieval Text-to-Video Retrieval

R@1 R@5 R@10 MedR MeanR R@1 R@5 R@10 MedR MeanR

VSE (Object-Text) 7.7 20.3 31.2 28.0 185.8 5.0 16.4 24.6 47.0 215.1

L1 | vSEPP (Object-Text) 102 254 351 250 2281 5.7 171 248 650 3008
Ours (Object-Text) 10.5 26.7 35.9 25.0 266.6 5.8 17.6 25.2 61.0 296.6

12 Ours (Audio-Text) 0.4 11 1.9 1051 2634.9 0.2 0.9 15 1292 1300
Ours (Activity-Text) 8.4 222 323 30.3 229.9 4.6 15.3 22.7 71.0 303.7

Ours (Place-Text) 7.1 19.8 28.7 38.0 275.1 4.3 14.0 211 77.0 309.6
CON(Object, Activity)-Text 9.1 24.6 36.0 23.0 181.4 55 17.6 25.9 51.0 243.4

13 | con(Object, Activity, Audio)-Text 93 278 38.0 22.0 162.3 5.7 18.4 26.8 480 2425
14 Joint Image-Text-Audio Embedding 8.7 224 321 31.0 225.8 4.8 15.3 22.9 73.0 313.6
Fusion [Object-Text, Activity (I3D)-Text] 12.3 31.3 42.9 16.0 145.4 6.8 20.7 29.5 39.0 224.7

Fusion [Object-Text, Activity(I3d-Audio)-Text] 12.5 32.1 42.4 16.0 134.0 7.0 20.9 29.7 38.0 213.8

15 Fusion [Object-Text, Place-Text] 11.8 30.1 40.8 18.0 172.1 6.5 19.9 28.5 43.0 234.1
Fusion [Activity-Text, Place-Text] 11.0 28.4 39.3 20.0 152.1 5.9 18.6 274 44.0 224.7

1.6 Fusion [Object-Text, Activity-Text, Place-Text] 13.8 335 443 14.0 119.2 7.3 217 30.9 34.0 196.1
1.7 Rank Fusion [Object-Text, Activity-Text, Place-Text] | 12.2 31.6 42.7 16.0 127.6 6.8 20.5 29.4 38.0 204.3

different loss functions, features, effect of feature concatena-
tion and proposed fusion method, we divide the table into 7
rows (1.1-1.7). In row-1.1, we report the results on applying
two different variants of pair-wise ranking loss. VSE[28] is
based on the basic triplet ranking loss similar to Eq. 1 and
VSEPP[13] is based on the loss function that emphasizes
on hard-negatives as shown in Eq. 2. Note that, all other re-
ported results in Table 1 are based on the modified pairwise
ranking loss proposed in Eq. 3. In row-1.2, we provide the
performance of different features in learning the embedding
using the proposed loss. In row-1.3, we present results for
the learned embedding utilizing a feature vector that is a
direct concatenation of different video features. In row-1.4,
we provide the result when a shared representation between
image, text and audio modality is learned using proposed
loss following the idea in [4] and used for video-text retrieval
task. In row-1.5, we provide the result based on the proposed
approach that employs two video-text joint embeddings for
retrieval. In row-1.6, we provide the result based on the pro-
posed ensemble approach that employs all three video-text
joint embeddings for retrieval. Additionally, in row-1.7, we
also provide the result for the case where the rank fusion has
been considered in place of the proposed score fusion.

Loss Function. For evaluating the performance of differ-
ent ranking loss functions in the task, we can compare results
reported in row-1.1 and row-1.2. We can choose only results
based on Object-Text spaces from these two rows for a fair
comparison. We see that VSEPP loss function and proposed
loss function performs significantly better than the traditional
VSE loss function in RQ1, RQ5, RQ10. However, VSE loss
function has better performance in terms of the mean rank.
This phenomenon is expected based on the characteristics

of the loss functions. As higher RQ1, R@Q5 and RQ10 are
more desirable for a efficient video-text retrieval system than
the mean rank, we see that our proposed loss function per-
forms better than other loss functions in this task. We observe
similar performance improvement using our loss function in
other video-text spaces too.

Video Features. We can compare the performance of
different video features in learning the embedding using the
proposed loss from row-1.2. We observe that object feature
and activity feature from video performs reasonably well in
learning a joint video-text space. The performance is very low
when only audio feature is used for learning the embedding.
It can be expected that the natural sound associated in a
video alone does not contain as much information as videos
in most cases. However, utilizing audio along with i3d feature
as activity features provides a slight boost in performance as
shown in row-1.3 and row-1.4.

Feature Concatenation for Representing Video. Rather
than training multiple video-semantic spaces, one can ar-
gue that we can simply concatenate all the available video
features and learn a single video-text space using this con-
catenated video feature [12,60]. However, we observe from
row-1.3 that integrating complementary features by static
concatenation based fusion strategy fails to utilize the full
potential of different video features for the task. Comparing
row-1.2 and row-1.3, we observe that a concatenation of ob-
ject feature, activity feature and Audio feature performs even
worse than utilizing only object feature in RQ1. Although
we see some improvement in other evaluation metrics, over-
all the improvement is very limited. We believe that both
appearance feature and action feature gets suppressed in such
concatenation as they focus on representing different entities
of a video.




Table 2: Video-to-Text Retrieval Results on MSVD Dataset.
We highlight the proposed method. The methods which has
"Ours’ keyword in name are trained with the proposed loss.

Method | R@1 | R@5 | R@10 | MedR | MeanR
Results Using Partition used by JMET and JMDV
CCA 2453
JMET 208.5
JMDV 224.1
W2VV-ResNet152 16.3 44.8 140 1102
VSE (Object-Text) 15.8 30.2 41.4 120 8438
VSEPP(Object-Text) 21.2 434 52.2 9.0 792
Ours(Object-Text) 23.4 454 53.0 80 759
Ours(Activity-Text) 21.3 43.7 53.3 9.0 722
Ours(Place-Text) 11.2 25.1 343 270 1477
Ours-Fusion(O-T, P-T) 25.7 45.4 54.0 70 654
Ours-Fusion(A-T, P-T) 26.0 46.1 55.8 70 535
Ours-Fusion(O-T, A-T) 315 51.0 61.5 50 417
Ours-Fusion(O-T, A-T, P-T) 333 52.5 62.5 5.0 40.2
Rank-Fusion(O-T, A-T, P-T) 30.0 51.3 61.8 50 423
Results Using Partition used by LIRV
ST 2.99 10.9 175 770 2410
LIRV 9.85 27.1 38.4 19.0 752
W2VV/(Object-Text) 17.9 - 49.4 11.0 57.6
Ours(Object-Text) 20.9 43.7 54.9 70 561
Ours(Activity-Text) 175 39.6 51.3 10.0 5438
Ours(Place-Text) 85 233 32.7 26.0 993
Ours-Fusion(O-T, A-T) 255 51.3 61.9 50 325
Ours-Fusion(O-T, A-T, P-T) 26.4 51.9 64.5 50 311
Rank-Fusion(O-T, A-T, P-T) 24.3 49.3 62.4 6.0 346

Learning a Shared Space across Image, Text and Audio.
Learning a shared space across image, text and sound modal-
ity is proposed for cross-modal retrieval task in [4]. Following
the idea, we trained a shared space across video-text-sound
modality using the pairwise ranking loss by utilizing video-
text and video-sound pairs. The result is reported in row-1.4.
We observe that performance in video-text retrieval task de-
grades after training such an aligned representation across
3 modalities. Training such a shared representation gives
the flexibility to transfer across multiple modalities. Never-
theless, we believe it is not tailored towards achieving high
performance in a specific task. Moreover, aligning across
3 modalities is a more computationally difficult task and
requires many more examples to train.

Proposed Fusion. The best result in Table. 1 is achieved
by our proposed fusion approach as shown in row-1.6. We
see that the proposed method achieves 31.43% improvement
in RQ1 for text retrieval and 25.86% improvement for video
retrieval in RQ1 compared to best performing Ours(Object-
text) as shown in row-1.2, which is the best among the other
methods which use a single embedding space for the retrieval
task. In row-1.5, Fusion[Object-text & Activity(I3D-Audio)-
text] differs from Fusion[Object-text & Activity(I3D)-text]
in the feature used in learning the activity-text space. We
see that utilizing audio in learning the embedding improves
the result slightly. However, as the retrieval performance of
individual audio feature is very low (shown in row-1.2), we
did not utilize audio-text space separately in fusion as we
found it degraded the performance significantly.

Table 3: Text-to-Video Retrieval Results on MSVD Dataset.
We highlight the proposed method.

Method rR@1 | R@5 | R@10 | MedR |MeanRr
Results Using Partition used by JMET and JMDV
CCA 251.3
JMDV 236.3
VSE(Object-Text) 123 30.1 423 14.0 57.7
VSEPP(Object-Text) 154 396 530 9.0 438
Ours(Object-Text) 16.1 411 535 9.0 42.7
Ours(Activity-Text) 15.4 39.2 514 10.0 43.2
Ours(Place-Text) 7.9 245 36.0 21.0 64.6
Ours-Fusion(O-T, P-T) 17.0 422 56.0 8.0 36.5
Ours-Fusion(A-T, P-T) 17.2 42.6 55.6 8.0 34.1
Ours-Fusion(O-T, A-T) 20.3 47.8 61.1 6.0 28.3
Ours-Fusion(O-T, A-T, P-T) 21.3 48.5 61.6 6.0 26.3
Rank-Fusion(O-T, A-T, P-T) 19.4 45.8 59.4 7.0 29.2
Results Using Partition used by LIRV
ST 2.6 11.6 19.3 51.0 106.0
LIRV 7.7 234 35.0 21.0 49.1
Ours(Object-Text) 15.0 40.2 51.9 9.0 45.3
Ours(Activity-Text) 14.6 38.9 51.0 10.0 45.1
Ours(Place-Text) 7.9 245 36.0 21.0 64.6
Ours-Fusion(O-T, A-T) 20.2 475 60.7 6.0 29.0
Ours-Fusion(O-T, A-T, P-T) 20.7 47.8 61.9 6.0 26.8
Rank-Fusion(O-T, A-T, P-T) 18.5 44.9 58.8 7.0 30.2

Comparing row-1.6, row-1.5 and row-1.2, we find that
the ensemble approach with score fusion results in significant
improvement in performance, although there is no guarantee
that the combination of multiple models will perform better
than the individual models in the ensemble in every single
case. However, the ensemble average consistently improves
performance significantly.

Rank vs Similarity Score in Fusion. We provide the re-
trieval result based on weighted rank aggregation of three
video-text spaces in row-1.7. Comparing the effect of rank
fusion in replacement of the score fusion from row-1.6 and
row-1.7 in Table. 1, it is also evident that the proposed score
fusion approach shows consistent performance improvement
over rank fusion approach. It is possible that exploiting sim-
ilarity score to combine multiple evidences may be less ef-
fective than using rank values in some cases, as score fusion
approach independently weights scores and does not con-
sider overall performance in weighting [31]. However, we
empirically find that utilizing score fusion is more advanta-
geous than rank fusion in our system in terms of retrieval
effectiveness.

4.4 Results on MSVD Dataset

We report the results of video to text retrieval task on MSVD
dataset [9] in Table 2 and the results for text to video retrieval
in Table 3.

We compare our approach with existing video-text re-
trieval approaches, CCA[49], ST [29], JIMDV [61], LJRV
[40], JMET [41], and W2VV [12]. For these approaches, we
directly cite scores from respective papers when available.



GT: A man is petting two dogs while holding a guitar.

Object-Text: (24) a man is standing in front of a microphone
holding a violin in one hand and a violin bow in the other.

Activity-Text: (6) A couple of slow lorises are eating fruit.

Proposed Fusion: (1) A man pets a couple of dogs.

GT: A man and a woman are having a phone conversation.
Object-Text: (9) A man is drinking a large goblet of beer.
Activity-Text: (6) The lady tried to wake up the man in
costume.

Proposed Fusion: (2) The boy hugged the girl.

GT: A man slicing a bun in half with a knife appears to cut
himself.

Object-Text: (141) Man chops meat and puts it in a plate.

Activity-Text: (7) A man is cutting vegetables.
Proposed Fusion: (1) A man slicing the roasted duck.

GT: A man is riding a motorcycle in the water at the edge

of a beach.

Object-Text: (1) A man is riding a bike across the waves

by the beachside.

Activity-Text: (6) A man on a motorcycle falls into a pool

of mud.

Proposed Fusion: (1) A person is driving a motorcycle
h

GT: A woman is riding a horse on an open ground.

Object-Text: (13) A guy is riding a horse.
Activity-Text: (1) The girl rode her brown horse.

Proposed Fusion: (1) The girl rode her brown horse.

GT: A man pours a plate of shredded cheese in a pot of sauce.
Object-Text: (4) Someone is mixing up chocolate batter in a
bowl.

Activity-Text: (8) Someone has picked up a handful of white
substance from mixing bowl and squeezing it in a lump.
Proposed Fusion: (2) A person mixes flour and water in a

GT: Someone wearing blue rubber gloves is slicing a

tomato with a large knife.

Obiject-Text: (58) A woman is chopping a red bell pepper

into small pieces.

Activity-Text: (18) A cat is eating a small wedge of

watermelon.

Proposed Fusion: (3) A woman is chopping a red bell
i mall pieces.

GT: A man is drying off a woman with a towel.
Object-Text: (2) Two women are wrestling each other.

Activity-Text: (118) A young woman is putting stickers
all over her face.

Proposed Fusion: (4) Women are dancing.

GT: Several people are dancing on the patio.
Object-Text: (44) A man persuades two ladies standing by
the beach to come with him and then the three of them run
to join some other people.

Activity-Text: (1) People are dancing together near a house.
Proposed Fusion: (2) Many men and women are dancing in

street.

Fig. 5: Examples of 9 test videos from MSVD dataset and the top 1 retrieved captions by using a single video-text space
and the fusion approach with our loss function. The value in brackets is the rank of the highest ranked ground-truth caption.
Ground Truth (GT) is a sample from the ground-truth captions. Among all the approaches, object-text (ResNet152 as video
feature) and activity-text (I3D as video feature) are systems where single video-text space is used for retrieval. We also report
result for the fusion system where three video-text spaces (object-text, activity-text and place-text) are used for retrieval.

We report score for JIMET from [12]. The score of CCA is
reported from [61] and the score of ST is reported from [40].
If scores for multiple models are reported, we select the score
of the best performing method from the paper.

We also implement and compare results with state-of-
the-art image-embedding approach VSE[28] and VSEPP[13]
in the Object-Text(O-T) embedding space. Additionally, to
show the impact of only using the proposed loss in retrieval,
we also report results based on the Activity-Text(A-T) space
and Place-Text(P-T) space in the tables. Our proposed fusion
is named as Ours-Fusion(O-T,A-T,P-T) in the Table. 2 and
Table. 3. The proposed fusion system utilizes the proposed
loss and employs three video-text embedding spaces for cal-
culating the similarity between video and text. As the audio
is muted in this dataset, we train the Activity-Text space uti-
lizing only I3D feature from videos. We also report results
for our fusion approach using any two of the three video-text
spaces in the tables. Additionally, we report results of Rank-
Fusion(O-T, A-T, P-T), which uses rank in place of similarity
score in combining retrieval results of three video-text spaces
in the fusion system.

From Table 2 and Table 3, it is evident that our proposed
approach performs significantly better than existing ones.
The result is improved significantly by utilizing the fusion
proposed in this paper that utilizes multiple video-text spaces
in calculating the final ranking. Moreover, utilizing the pro-
posed loss improves the result over previous state-of-the-art
methods. It can also be identified that our loss function is
not only useful for learning embedding independently, but
also it is useful for the proposed fusion. We observe that
utilizing the proposed loss function improves the result over
previous state-of-the-art methods consistently, with a min-
imum improvement of 10.38% from best existing method
VSEPP(Object-Text) in Video-to-Text Retrieval and 4.55%
in Text-to-Video Retrieval. The result is improved further by
utilizing the proposed fusion framework in this paper that
utilizes multiple video-text spaces in an ensemble fusion ap-
proach in calculating the final ranking, with an improvement
of 57.07% from the best existing method in the video to text
retrieval and 38.31% in the text to video retrieval. Among the
video-text spaces, object-text and activity-text space show
better performance in retrieval, compared to place-text space



GT: A man is commentating while playing minecraft.
Object-Text: (4) a minecraft video shows a character
climbing a staircase.

Activity-Text: (52) Someone playing mine craft while giving
commentary.

Fusion (No Audio): (12) A video game character is
exploring a castle.

Proposed Fusion: (1) A man narrates a game of minecraft
while running through a pink house.

aman passes her.

woman attacks her.

young man looks concerned.

GT: A woman waits at a table in a restaurant and cheers after

Object-Text: (161) Guy walking alone on road.
Activity-Text: (16) A girl is talking on the phone and a

Fusion (No Audio): (14) A girl sitting on a sofa talking.
Proposed Fusion: (1) A young girl is laughing while the

1

GT: Military figures are discussing their actions on a
television news program.

Object-Text: (37) A man is giving a speech.

Activity-Text: (7) A male commentates over gameplay
while discussing his channel and an upcoming interview..
Fusion (No Audio): (6) A man giving a speech to a large
crowd of people.

Proposed Fusion : (1) A reporter speaks to a military
person in front of a large crowd on television.
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GT: A group of people talking in a professional wrestling

ring..

Object-Text: (11) Wrestlers are talking to the crowd.

Activity-Text: (10) A man discussing a wrestler as the

wrestling match starts.

Fusion-No Audio: (4) Wrestlers are in the ring talking
stove.

Proposed Fusion: (2) A wrestler at a match is talking to other
wrestlers and some people on stage with him..

show.

GT: A woman hosting the show while a man cooks a dish..

Obiject-Text: (22) The chef puts various food items into a pot
and shows the viewers how to make a dish.

Activity-Text: (30) A chef discusses needed ingredients.
Fusion (No Audio): (30) A man pours soda into a pot on the

Proposed Fusion : (4) This is a video of chef made meals in a

GT: A group of three young children singing on a stage in
front of judges..
Object-Text: (11) A girl singer perform in front of judges.

Activity-Text: (14) A girl with a guitar sings and preforms
for judges.

Fusion-No Audio: (9) The young girls sing for the judges..
Proposed Fusion: (4) The young girls sing for the judges

9

GT: Aman is talking about satellites in space.

Object-Text: (1) A man explaining about a space device.
Activity-Text: (39) Hyenas are walking around a lion waiting
for scraps.

Fusion-No Audio: (3) Characters from minecraft floating in
space talking about going to the moon.

Proposed Fusion: (2) A man is talking about the first
manned space flight.

person on the ground.

weapons.

getting ready for war.

GT: A group of people looking through ammunition.
Object-Text: (15) Military police is pointing a gun at a

Activity-Text: (7) Man describes difference between two steaks.
Fusion-No Audio: (1) Soldiers are getting ready with their

Proposed Fusion: (4) In this video there are some soldiers

GT: A woman demonstrating the functions of a baby stroller.

Object-Text: (3) A quick motion clips scene of a blue

stroller and it s details.

Activity-Text: (8) A woman is giving demo for baby trolley.

Fusion-No Audio: (1) An advertisement for a jogger stroller
awoman in black is using the stroller.

Proposed Fusion: (4) An advertisement about the stroller
baby jogger.

Fig. 6: A snapshot of 9 test videos from MSR-VTT dataset with success and failure cases, the top 1 retrieved captions for four
approaches based on the proposed loss function and the rank of the highest ranked ground-truth caption inside the bracket.
Among the approaches, Object-Text is trained using ResNet feature as video feature and Activity-Text is trained using the
concatenated I3D feature and Audio feature as the video feature. We also report results for fusion approaches where three
video-text spaces are used for retrieval. The fusion approaches use an object-text space trained with ResNet feature and
place-text space trained with ResNet50(Place) feature, while in the proposed fusion, the activity-text space is trained using
concatenated 13D and Audio feature. Fusion (No Audio) utilizes activity-text space trained with only the I3D feature.

which indicates that the annotators focused more on object
and activity aspects in annotating the videos. Similar to the
results of MSR-VTT dataset, we observe that the proposed
score fusion approach consistently shows superior perfor-
mance than rank fusion approach in both video to text and
text to video retrieval.

4.5 Qualitative Results

We report the qualitative results on MSVD dataset in Fig. 5
and the results on MSR-VTT dataset in Fig. 6.

MSVD Dataset. In Fig. 5, we show examples of a few
test videos from MSVD dataset and the top 1 retrieved cap-
tions for the proposed approach. We also show the retrieval
result when only one of the embeddings is used for retrieval.
Additionally, we report the rank of the highest ranked ground-
truth caption in the figure. We can observe from the figure

that in most of the cases, utilizing cue from multiple video-
text spaces helps to match the correct caption. We see from
Fig. 5 that, among 9 videos, the retrieval performance is
improved or higher recall is retained for 7 videos. Video-6
and video-9 show two failure cases, where utilizing multiple
video-text spaces degrades the performance slightly than us-
ing object-text in Video-6 and activity-text space in Video-9.

MSR-VTT Dataset. Similar to Fig. 5, we also show
qualitative results for a few test videos from MSR-VTT
dataset in Fig. 6. Video 1-6 in Fig. 6 shows a few examples
where utilizing cue from multiple video-text spaces helps to
match the correct caption compared to using only one of the
video-text space. Moreover, we also see the result was im-
proved after utilizing audio in learning the second video-text
space (Activity-text space). We observe this improvement for
most of the videos, as we also observe from Table. 1. Video
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7-9 shows some failure cases for our fusion approach in
Fig. 6. Video 7 shows a case, where utilizing multiple video-
text spaces for retrieval degrades the performance slightly
compared to utilizing only one of the video-text space. For
Video-8 and video-9 in Fig. 6, we observe that the perfor-
mance improves after fusion overall, but the performance is
better when the audio is not used in learning video-text space.
On the other hand, video 1-6 includes cases where utilizing
audio helped to improve the result.

4.6 Discussion

The experimental results are aligned with our rationale that
utilizing multiple characteristics of a video is crucial for de-
veloping an efficient video-text retrieval system. Experiments
also demonstrate that our proposed ranking loss function is
effective in learning video-text embeddings better than ex-
isting ones. However, we observe that major improvement
in experimental performance comes from our mixture of
experts system which utilizes evidence from three comple-
mentary video-text spaces for retrieval. Our mixture of expert
video-text model may not outperform the performance of a
single video-text model in the ensemble in every single case,
but it is evident from experiments that our system signifi-
cantly reduces the overall risk of making a particularly poor
decision.

From qualitative results, we observe it cannot be claimed
in general that one video feature is consistently better than
others for the task of video-text retrieval. It can be easily iden-
tified from the top-1 retrieved captions in Fig. 5 and Fig. 6
that the video-text embedding (Object-Text) learned utilizing
object appearance feature (ResNet) as video feature is sig-
nificantly different from the joint embedding (Activity-Text)
learned using Activity feature (I3D) as video feature. The
variation between the rank of the highest matching caption
further strengthens this observation. Object-text space per-
forms better than the activity-text space in retrieval for some
videos. For other videos, the activity-text space achieves
higher performance. However, it can be claimed that combin-
ing knowledge from multiple video-text embedding spaces
consistently shows better performance than utilizing only one
of them.

We observe from Fig. 6 that using audio is crucial in
many cases where there is deep semantic relation between
visual content and audio (e.g., the audio is from the third
person narration of the video, the audio is music or song)
and it gives important cues in reducing description ambiguity
(e.g., video-2, video-5 and video-6 in Fig. 6). We observe
that the performance degrades in some cases when audio
is utilized in the system (e.g., video-8 in Fig. 6). We see
an overall improvement in the quantitative result (Table 1)
which also supports our idea of using audio. Since we did not
exploit the structure of the audio and analyze the structural

alignment between audio and video, it is difficult to determine
whether audio is always helpful. For instance, audio can come
from different things (persons, animals or objects) in a video,
and it might shift our attention away from the main subject.
Moreover, the captions are provided mostly based on visual
aspects, which makes audio information very sparse. Hence,
the overall improvement using audio was limited.

5 Conclusions

In this paper, we study how to leverage diverse video features
effectively for developing a robust cross-modal video-text
retrieval system. Our proposed framework learns three expert
video-text embedding models focusing on three salient video
cues (i.e., object, activity, place) and uses a combination of
these models for high-quality prediction. A modified pair-
wise ranking loss function is also proposed for better learning
the joint embeddings, which focuses on hard negatives and
applies a weight-based penalty based on the relative ranking
of the correct match. Extensive quantitative and qualitative
evaluations of MSVD and MSR-VTT datasets demonstrate
that our framework performs significantly better than base-
lines and state-of-the-art systems. Moving forward, we would
like to improve our system by developing more sophisticated
algorithms to combine evidence from multiple joint spaces
and further analyze the role of associated audio for video-text
retrieval.

Acknowledgements This work was partially supported by NSF grants
33384, 11S-1746031, CNS-1544969, ACI-1548562 and ACI-1445606.
J. Li was supported by the Bosch Graduate Fellowship to CMU LTI,
We gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan Xp GPU used for this research.

References

1. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical
correlation analysis. In: International Conference on Machine
Learning, pp. 1247-1255 (2013)

2. Awad, G., Butt, A., Fiscus, J., Joy, D., Delgado, A., Michel, M.,
Smeaton, A.F., Graham, Y., Kraaij, W., Quénot, G., et al.: Trecvid
2017: Evaluating ad-hoc and instance video search, events de-
tection, video captioning and hyperlinking. In: Proceedings of
TRECVID (2017)

3. Aytar, Y., Vondrick, C., Torralba, A.: Soundnet: Learning sound
representations from unlabeled video. In: Advances in Neural
Information Processing Systems, pp. 892-900 (2016)

4. Aytar, Y., Vondrick, C., Torralba, A.: See, hear, and read: Deep
aligned representations. arXiv preprint arXiv:1706.00932 (2017)

5. Bois, R., Vukoti¢, V., Simon, A.R., Sicre, R., Raymond, C., Sébil-
lot, P., Gravier, G.: Exploiting multimodality in video hyperlinking
to improve target diversity. In: International Conference on Multi-
media Modeling, pp. 185-197. Springer (2017)

6. Budnik, M., Demirdelen, M., Gravier, G.: A study on multimodal
video hyperlinking with visual aggregation. In: 2018 IEEE In-
ternational Conference on Multimedia and Expo, pp. 1-6. IEEE
(2018)



13

10.

12.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new
model and the kinetics dataset. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4724-4733. IEEE (2017)
Cha, M., Gwon, Y., Kung, H.: Multimodal sparse representation
learning and applications. arXiv preprint arXiv:1511.06238 (2015)
Chen, D.L., Dolan, W.B.: Collecting highly parallel data for para-
phrase evaluation. In: Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-Volume 1,
pp. 190-200. ACL (2011)

Chi, J., Peng, Y.: Dual adversarial networks for zero-shot cross-
media retrieval. In: International Joint Conferences on Artificial
Intelligence, pp. 663-669 (2018)

. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555 (2014)

Dong, J., Li, X., Snoek, C.G.: Word2visualvec: Image and video
to sentence matching by visual feature prediction. arXiv preprint
arXiv:1604.06838 (2016)

. Faghri, F, Fleet, D.J., Kiros, J.R., Fidler, S.: Vse++: Improved

visual-semantic embeddings. British Machine Vision Conference
(BMVC) (2018)

Farhadi, A., Hejrati, M., Sadeghi, M.A., Young, P., Rashtchian, C.,
Hockenmaier, J., Forsyth, D.: Every picture tells a story: Generating
sentences from images. In: European Conference on Computer
Vision, pp. 15-29. Springer (2010)

Feng, F., Wang, X., Li, R.: Cross-modal retrieval with correspon-
dence autoencoder. In: ACM Multimedia Conference, pp. 7-16.
ACM (2014)

Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka,
A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based
approach applied to retinal blood vessel segmentation. IEEE Trans-
actions on Biomedical Engineering 59(9), 2538-2548 (2012)
Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov,
T., et al.: Devise: A deep visual-semantic embedding model. In:
Advances in Neural Information Processing Systems, pp. 2121—
2129 (2013)

Gong, Y., Ke, Q., Isard, M., Lazebnik, S.: A multi-view embed-
ding space for modeling internet images, tags, and their semantics.
International Journal of Computer Vision 106(2), 210-233 (2014)

. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correla-

tion analysis: An overview with application to learning methods.
Neural Computation 16(12), 2639-2664 (2004)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770-778. IEEE (2016)

Henning, C.A., Ewerth, R.: Estimating the information gap between
textual and visual representations. In: International Conference on
Multimedia Retrieval, pp. 14-22. ACM (2017)

Hodosh, M., Young, P., Hockenmaier, J.: Framing image descrip-
tion as a ranking task: Data, models and evaluation metrics. Journal
of Artificial Intelligence Research 47, 853-899 (2013)

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely
connected convolutional networks. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2261-2269. IEEE (2017)
Huang, Y., Wang, W., Wang, L.: Instance-aware image and sentence
matching with selective multimodal Istm. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2310-2318. IEEE
(2017)

Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for
generating image descriptions. In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3128-3137. IEEE (2015)
Karpathy, A., Joulin, A., Li, EFEF.: Deep fragment embeddings
for bidirectional image sentence mapping. In: Advances in Neural
Information Processing Systems, pp. 1889-1897 (2014)

Kingma, D., Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic
embeddings with multimodal neural language models. arXiv
preprint arXiv:1411.2539 (2014)

Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R.,
Torralba, A., Fidler, S.: Skip-thought vectors. In: Advances in
Neural Information Processing Systems, pp. 3294-3302 (2015)
Klein, B., Lev, G., Sadeh, G., Wolf, L.: Associating neural word
embeddings with deep image representations using fisher vectors.
In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4437-4446. IEEE (2015)

Lee, J.H.: Analyses of multiple evidence combination. In: ACM
SIGIR Forum, vol. 31, pp. 267-276. ACM (1997)

Ma, Z., Lu, Y., Foster, D.: Finding linear structure in large datasets
with scalable canonical correlation analysis. In: International Con-
ference on Machine Learning, pp. 169-178 (2015)

Manmatha, R., Wu, C.Y., Smola, A.J., Krahenbuhl, P.: Sampling
matters in deep embedding learning. In: IEEE International Con-
ference on Computer Vision, pp. 2859-2867. IEEE (2017)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Dis-
tributed representations of words and phrases and their composi-
tionality. In: Advances in neural information processing systems,
pp. 3111-3119 (2013)

Mithun, N.C,, Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning
joint embedding with multimodal cues for cross-modal video-text
retrieval. In: ACM International Conference on Multimedia Re-
trieval (2018)

Mithun, N.C., Munir, S., Guo, K., Shelton, C.: Odds: real-time
object detection using depth sensors on embedded gpus. In:
ACM/IEEE International Conference on Information Processing in
Sensor Networks, pp. 230-241. IEEE Press (2018)

Mithun, N.C., Panda, R., Roy-Chowdhury, A.K.: Generating di-
verse image datasets with limited labeling. In: ACM Multimedia
Conference, pp. 566-570. ACM (2016)

Mithun, N.C., Rameswar, P., Papalexakis, E., Roy-Chowdhury,
A.: Webly supervised joint embedding for cross-modal image-text
retrieval. In: ACM International Conference on Multimedia (2018)
Nam, H., Ha, J.W., Kim, J.: Dual attention networks for multimodal
reasoning and matching. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 299-307. IEEE (2017)

Otani, M., Nakashima, Y., Rahtu, E., Heikkild, J., Yokoya, N.:
Learning joint representations of videos and sentences with web
image search. In: European Conference on Computer Vision, pp.
651-667. Springer (2016)

Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling em-
bedding and translation to bridge video and language. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4594—
4602. IEEE (2016)

Polikar, R.: Ensemble based systems in decision making. IEEE
Circuits and systems magazine 6(3), 21-45 (2006)

Polikar, R.: Bootstrap inspired techniques in computational intel-
ligence: ensemble of classifiers, incremental learning, data fusion
and missing features. IEEE Signal Processing Magazine 24(4),
59-72 (2007)

Quynh Nhi Tran, T., Le Borgne, H., Crucianu, M.: Aggregating
image and text quantized correlated components. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 20462054 (2016)

Ramanishka, V., Das, A., Park, D.H., Venugopalan, S., Hendricks,
L.A., Rohrbach, M., Saenko, K.: Multimodal video description. In:
ACM Multimedia Conference, pp. 1092-1096. ACM (2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: Unified, real-time object detection. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 779-788. IEEE
(2016)

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-
time object detection with region proposal networks. In: Advances
in neural information processing systems, pp. 91-99 (2015)



48.

49.

50.

51.

52.

53.

54.

55.

56.

Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified em-
bedding for face recognition and clustering. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 815-823. IEEE
(2015)

Socher, R., Fei-Fei, L.: Connecting modalities: Semi-supervised
segmentation and annotation of images using unaligned text cor-
pora. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 966-973. IEEE (2010)

Torabi, A., Tandon, N., Sigal, L.: Learning language-visual em-
bedding for movie understanding with natural-language. arXiv
preprint arXiv:1609.08124 (2016)

Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered
weighted pairwise classification. In: International Conference on
Machine Learning, pp. 1057-1064. ACM (2009)

Vendrov, 1., Kiros, R., Fidler, S., Urtasun, R.: Order-embeddings
of images and language. In: International Conference on Learning
Representations (2016)

Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell,
T., Saenko, K.: Sequence to sequence-video to text. In: IEEE
International Conference on Computer Vision, pp. 4534-4542.
IEEE (2015)

Vukotié, V., Raymond, C., Gravier, G.: Bidirectional joint rep-
resentation learning with symmetrical deep neural networks for
multimodal and crossmodal applications. In: ACM International
Conference on Multimedia Retrieval, pp. 343-346. ACM (2016)
Vukoti¢, V., Raymond, C., Gravier, G.: Generative adversarial net-
works for multimodal representation learning in video hyperlinking.
In: ACM International Conference on Multimedia Retrieval, pp.
416-419. ACM (2017)

Vukoti¢, V., Raymond, C., Gravier, G.: A crossmodal approach to
multimodal fusion in video hyperlinking. IEEE MultiMedia 25(2),
11-23 (2018)

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Wang, B., Yang, Y., Xu, X., Hanjalic, A., Shen, H.T.: Adversarial
cross-modal retrieval. In: ACM Multimedia Conference, pp. 154—
162. ACM (2017)

Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch
neural networks for image-text matching tasks. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2018)

Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving
image-text embeddings. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5005-5013. IEEE (2016)

Xu, J., Mei, T., Yao, T., Rui, Y.: Msr-vtt: A large video description
dataset for bridging video and language. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5288-5296 (2016)
Xu, R., Xiong, C., Chen, W., Corso, J.J.: Jointly modeling deep
video and compositional text to bridge vision and language in a
unified framework. In: AAAI, vol. 5, p. 6 (2015)

Yan, F., Mikolajczyk, K.: Deep correlation for matching images
and text. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3441-3450. IEEE (2015)

Yan, R., Yang, J., Hauptmann, A.G.: Learning query-class depen-
dent weights in automatic video retrieval. In: ACM Multimedia
Conference, pp. 548-555. ACM (2004)

Zhang, L., Ma, B., Li, G., Huang, Q., Tian, Q.: Multi-networks joint
learning for large-scale cross-modal retrieval. In: ACM Multimedia
Conference, pp. 907-915. ACM (2017)

Zhang, X., Gao, K., Zhang, Y., Zhang, D., Li, J., Tian, Q.: Task-
driven dynamic fusion: Reducing ambiguity in video description.
In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3713-3721. IEEE (2017)

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places:
A 10 million image database for scene recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2017)



