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Abstract—In this paper, we present a novel approach to
find informative and anomalous samples in videos exploit-
ing the concept of typicality from information theory. In
most video analysis tasks, selection of the most informative
samples from a huge pool of training data in order to
learn a good recognition model is an important problem.
Furthermore, it is also useful to reduce the annotation
cost as it is time-consuming to annotate unlabeled samples.
Typicality is a simple and powerful technique which can
be applied to compress the training data to learn a good
classification model. In a continuous video clip, an activity
shares a strong correlation with its previous activities. We
assume that the activity samples that appear in a video
form a Markov chain. We explicitly show how typicality
can be utilized in this scenario. We compute an atypical
score for a sample using typicality and the Markovian
property, which can be applied to two challenging vision
problems- (a) sample selection for learning activity recog-
nition models, and (b) anomaly detection. In the first case,
our approach leads to a significant reduction of manual
labeling cost while achieving similar or better recognition
performance compared to a model trained with the entire
training set. For the latter case, the atypical score has
been exploited in identifying anomalous activities in videos
where our results demonstrate the effectiveness of the
proposed framework over other recent strategies.

Index Terms—Activity Recognition, Typicality, Sample
Selection, Active Learning, Anomaly and Novelty Detec-
tion.

I. INTRODUCTION

Classification tasks such as activity recognition, rely
on labeled data in order to learn a recognition model.
With an increase in the availability of visual data, it
is a manually intensive job to continuously label them.
In [1], it has been shown that more labeled data does
not always help a recognition model to learn better;
sometimes the performance might even degrade due to
noisy data points. Thus, selection of the most informative
samples to train a recognition model becomes crucial.
Furthermore, automatic detection of unusual or abnormal
activities is an area of significant interest in diverse video
analysis applications. We address both these problems

in this paper. We present an information-theoretic ap-
proach for obtaining a subset of informative samples to
learn a good classification model for activity recogni-
tion, and for identifying anomalous/irregular activities
in videos.

In computer vision, the selection of informative sam-
ples [2] has been widely used to reduce the manual
labeling effort for annotation tasks and to train a good
recognition model. Most of the sample selection meth-
ods devise a sample-wise informativeness utility score
based on which the samples are selected for manual
labeling [2], [3], [4]. However, they are highly dependent
on classifier uncertainty or diversity in the feature space.
Furthermore, the aforementioned approaches consider
the individual samples to be independent. Recent works
[5], [6], [7], [8] exploit the inter-relationships (or con-
textual information) between samples in order to reduce
the number of labeled samples to train the recognition
models with applications including activity recognition,
scene and object classification, document classification,
etc. Most of these approaches involve graphical models
to exploit the interrelationships between the samples,
where inference and joint entropy computation becomes
intractable in the case of acyclic graphs and requires sim-
plifying assumptions. Moreover, these methods introduce
high computational complexity at the inference step as
the number of nodes increases.

The analysis of abnormal activities in videos has
been of growing interest in security and surveillance
applications. Most of the anomaly detection methods
[9], [10], [11] train a model to learn the patterns of
normal activities and consider an activity as abnormal
whose pattern is deviated from the normal activities.
Some methods [12], [13], [14] exploit local statistics
of low-level features, local spatio-temporal descriptors,
and bag-of-word approach to detect anomalies in videos.
Recent efforts [11], [15] in anomaly detection consider
interrelationship between the activities in identifying
abnormal activities. In [15], temporal regularity patterns
are learned from the normal activities in order to detect
unusual activity. In this paper, we introduce a new way of
measuring the irregularity by utilizing temporal relation-
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ship between activities to detect abnormal activities in
video. The abnormal/anomalous activities are excluded
from the training phase. Thus, the task of identifying
anomalous sample can be referred as novelty detection.

In information theory, the idea of ‘typical set’ has
been one of the core tools behind several data processing
applications such as data compression, data transmis-
sion, data security, and data search. It is based on the
intuitive notion that not all the messages are equally
important, i.e., some messages carry more information
than others. By analogy, we can exploit this concept to
reduce the manual labeling cost by choosing the most
informative samples from a large pool of unlabeled data.
Typicality allows representation of any sequence using
entropy as a measure of information [16]. The concept of
typical sets is developed on the basis of the asymptotic
equipartition property (AEP) which is analogous to the
law of large numbers in probability theory. Consider
a sequence x1, . . . , xn of i.i.d. random variables with
probability mass function p(x). According to the AEP,
as n approaches infinity, the empirical entropy of the
sequence converges to the actual entropy H(X) for
distribution p(x). For finite n, the set of all sequences
xn is divided into two sets, the typical set, where the
empirical entropy is close to the actual entropy, and the
atypical set. Collectively, the typical set has a very high
probability, and all sequences in it have roughly the same
probability that can be approximated as 2−nH(X) for
high n. (please see Sec. III for more details).

This notion of typicality can be utilized for informative
subset selection, with the labels or a group of labels
of samples being a random variable. A sequence not
belonging to the typical set (atypical) may be termed
as informative as it does not follow the distribution of
the random variable learned from the previously labeled
instances. For example, in activity recognition, different
activities may be temporally connected, e.g., a person
opening a car trunk followed by the person carrying an
object. If a different set of semantic entities appear in a
particular scene, then the atypical score, computed based
on the deviations in typicality, would be high and will be
identified as informative. Thus, the natural interactions
between semantic entities can prove to be a rich source of
information in order to identify informative samples for
applications like active learning, and anomaly detection.

Our previous work [7] showed preliminary results
employing the concept of typicality on joint classification
tasks, e.g, scene-object for images. In this work, we
extend this idea more thoroughly for a range of com-
puter vision problems in videos, such as selection of
informative samples for training a model, and anomaly
detection in videos. Moreover, [7] employs typicality
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Fig. 1: The figures present how typical set can be applied
in vision problems to compute an atypical score. (a)
represents training phase where we learn entropy rate by
computing transition matrix and stationary distribution
(please see Sec. III-B). In (b), a sequence is generated
from the prediction of activity labels given a test video.
Then, the probability of the sequence is calculated from
the transition matrix and stationary distribution which are
learned during the training phase. Finally, we compute
an atypical score for each sample in a video.

by utilizing information flow from scene or activity to
objects in a joint classification scenario, by conditioning
on the former. However, it does not deal with the inter-
relationships between activities, which we study in this
paper. In activity recognition, the current activity may
be strongly correlated with the previous activity sample,
and can be represented as Markovian. In this paper,
we assume that action samples produce a Markov chain
where the current sample only depends on the previous
sample, and demonstrate how to utilize typicality for this
scenario. We design an utility function which depends on
the length of a sequence (please see Sec. III for more
details). Moreover, we show that typicality based sample
selection approach is computationally faster than existing
graph-based approaches [6], [8], [5] that exploit the
correlation between the samples. From the experimental
results, we observe that proposed approach outperforms
other state-of-the-art methods by large margin to reduce
the manual labeling cost. The atypical score can also be
applied to detect abnormal activities in videos, which
will be discussed later in Sec. III-D2.

A. Framework Overview

Fig. 1 presents the overview of our proposed method.
We can divide the overall process into two phases: (a)
training phase, and (b) testing phase.
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Activities in a video are represented as a Markov chain
where the current activity depends on previous activity
only. During the training phase, we learn the recognition
model (M) and the temporal relationship model (Tr). Tr
could be a simple co-occurrence statistic that captures
the correlation between two consecutive activities. We
learn transition matrix and stationary probability using
this temporal co-occurrence. We compute entropy rate
required to define a typical set, details of which are
provided in Sec. III.

At test phase, a video clip is fed into the classifierM.
M provides predicted labels with a confidence score.
We form a sequence from the predicted labels obtained
from M and compute uncertainty (please see details in
Sec. III) of the sequence. We compare this uncertainty
with the entropy of source distribution obtained from
Tr in order to compute the atypical score. We can
also calculate entropy from the distribution of predicted
scores for each sample using M. With this uncertainty
score and atypical score, we formulate an optimization
function to choose the most informative set of samples
to be labeled manually by a human annotator. We also
used the atypical score to detect anomalies in videos.

We applied the proposed approach to two applications-
(a) informative sample selection, and (b) anomaly detec-
tion. For the first scenario, we present our approach from
the perspective of batch mode active learning, where
the goal is to select the most informative samples to
update the recognition model in an online setting where
unlabeled data are coming continuously in batches. By
solving the optimization function mentioned above, we
can find informative samples which will be considered
for manual labeling. With these newly labeled samples,
M and Tr are updated. In this process, we intend to
achieve similar performance with the model which is
trained on all the samples (100% manual labeling). In
anomaly detection, we consider whole training set to
understand the nature of normal activities. We learn
the typical model and recognition model. Given a test
sample, we set a threshold on atypical score to determine
whether an activity sample is abnormal or not.
Contributions: Our major contributions are as follows.
• In this paper, we show how the concept of typicality

in information theory can be applied to different com-
puter vision problems, namely (a) activity recognition,
and (b) anomaly detection in videos.
• Unlike [7], where the variables in a sequence are

independent, we show how the concept of ‘typical set’
can be applied to temporally dependent variables in
computer vision problems. We demonstrate our strategy
on videos instead of images as presented in [7].
• We perform rigorous experimentation on two

scenarios- (1) sample selection for activity classification,
(2) detection of abnormal activities. Our framework on
sample selection outperforms state-of-the-art methods
significantly in reducing the manual labeling cost while
achieving same recognition performance compared with
a model trained on all the samples. We also demonstrate
the usefulness of the method in finding anomalies in
videos.

II. RELATED WORK

In this section, we will briefly discuss the related work
on visual recognition task, sample selection, anomaly
detection, and typicality.

Visual Recognition Task. The proposed framework
applies to work in activity classification. Some promising
approaches in computer vision use context model [17],
[5] on top of recognition model in order to achieve
higher accuracy. In [5], spatio-temporal relationship and
co-occurrence statistics have been utilized in order to
recognize activities in video. Most of the context based
approaches exploit conditional random field (CRF) to
interrelate the samples, which become computationally
expensive as nodes in the graph increases. Recently,
various deep learning based models have been presented
in [18], [19], [20], [21], [22] for activity classification.
These frameworks show promising performance in rec-
ognizing activities.
Sample Selection Methods. Some of the state-of-the-
art sample selection approaches are expected change in
gradients [2], information gain [3], expected prediction
loss [4], and expected model change [23] to obtain the
samples for querying. Some of the common techniques
to measure uncertainty for selecting the informative
samples are presented in [24], [4]. Along with classifier
uncertainty, diversification in the chosen samples is in-
troduced by using k-means [25] or sparse representative
subset selection [26]. In [25], the authors incorporated
two strategies - best vs. second best and K-centroid
to select the informative subset. The aforementioned
approaches consider the individual samples to be inde-
pendent. Recent advances [6], [8], [5] in active learning
incorporate contextual relationships to reduce manual
labeling cost without compromising recognition perfor-
mance. Most of these approaches involve graph-based
models where the belief is propagated through nodes
using inference algorithm. These approaches might be
computationally expensive as the number of nodes in-
creases.

Anomaly Detection. Several works [11], [27] have
exploited semantically meaningful activities in order to
detect anomalies. A comprehensive review of anomaly
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detection is provided in [9]. [10] presents a hierarchical
framework for identifying local and global anomalies
utilizing hierarchical feature representation and Gaus-
sian process. In [28], the authors present a method
that exploits Locality Sensitive Hashing Filters (LSHF),
which hashes normal activities into multiple feature
buckets. [29] proposes a space-time Markov Random
Field (MRF) model to identify abnormal activities in
videos. Some works [30], [11] exploit spatio-temporal
context in order to detect anomalous activities. In [31],
the authors present an approach that learns both dom-
inant and anomalous behaviors in videos of different
spatio-temporal complexity. In anomaly detection, deep
learning based approaches such as sparse auto-encoder
[32] and fully convolutional feed-forward network [15],
[33] are also utilized. The paper [34] exploits unmasking
in order to detect abnormal events in a video.

Typicality. The concept of ‘typical set’ [35] has
widely been used in various applications like data com-
pression, data transmission, data security, and data search
[36], [37], [38]. In [39], the authors define atypicality as
the deviation of the information from average. Then, it is
applied in universal source coding and a number of real
world datasets. In computer vision, the term ‘typicality’
is mentioned in some research papers for several tasks
such as category search [40], object recognition [41], and
scene classification [42]. However, they do not exploit
the notion of information-theoretic typical set. In [7], a
novel active learning method was proposed exploiting the
theory of typical set. In this paper, we extend the work
presented in [7] by demonstrating its generalizability
across a variety of computer vision problems with a
special focus on the dynamics of human activities.

III. TYPICALITY AND ITS APPLICATION IN VIDEOS

In information theory, a typical set represents a set of
sequences drawn from an i.i.d distribution, whose total
probability of occurrence is close to one. A sequence can
be categorized into either typical or atypical, depending
on whether it belongs to the typical set or not. There
are two kinds of typicality, namely, weak and strong. In
this problem, we focus on weak typicality to develop our
sample selection framework. Next, we will briefly show
the concept of weak typicality and then, demonstrate how
typicality can be used in different computer vision tasks.

A. Typicality in Information Theory

Let us consider xn to denote a sequence x1, . . . , xn
drawn from an i.i.d distribution PXn(.), whose empirical

a1(t=6s) a2(t=11s) a3(t=18s) a4(t=35s)

Time

X

Fig. 2: The figure presents how different activities appear
over time in a video. The appearance of current activity
depends on the previous activity as marked by right
arrow. However, this dependency (temporal context) is
determined by the time interval between two activities.
For instance, the temporal link between the activities -
a3 and a4, is discarded due to the long time interval. For
all other cases, the temporal connection between activity
samples is established as illustrated in the figure.

entropy can be expressed as,

− 1

n
log2 PXn(xn) = − 1

n
log2

n∏
i=1

PXi
(xi)

= − 1

n

n∑
i=1

log2 PXi
(xi) (1)

By the weak law of large numbers Eqn. 1 can be written
as

− 1

n

n∑
i=1

log2 PXi
(xi)→ E[− log2 PXn(xn)] = H(X) (2)

Definition. A set of sequences with probability distribu-
tion PXn(.) can be considered as weakly typical set if it
satisfies the following criteria:∣∣∣− 1

n
log2 PXn(xn)−H(X)

∣∣∣ ≤ ε (3)

Let us denote E = − 1
n log2 PXn(xn) − H(X), which

represents atypical score of a sequence. Next, we will
demonstrate how this typical set [16] concept can be
exploited to compute atypical score for Markov chain.

B. Asymptotic Equipartition Property for Markov Chain

In this section, we will show how to compute the
atypical score for a Markov chain, motivated by the
assumption that sequential activities exhibit Markovian
property. We aim to exploit the Asymptotic Equipar-
tition Property (AEP) for Markov Chain in computer
vision problem. This has been a well-established theorem
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[43], [44] applied to several other domains such as
data compression, and data transmission. Fig. 2 shows
an example of different activities in a video that are
connected via a temporal link. We can assume this
temporal ordering in terms of Markov chain, where
current activity only depends on previous activity. Let
us consider a stochastic process, where states can be
denoted as {X1, X2, . . . , Xn} and each state Xi ∈
X . If a source X1, X2, . . . Xn, produces a sequence,
we can characterize the distribution of a sequence as
P{(X1, . . . , Xn) = (x1, . . . , xn)} = P (x1, . . . xn).
Since we assume the temporal link as Markov chain,
we can write the conditional independence as follows.

P (xn+1|xn, . . . , x1) = P (xn+1|xn) (4)

In Markov chain, one state moves successively to next
state with a probability. Let us denote current state Xi

which moves to next state Xj with probability pij . The
probability pij is called transition probability. In activity
recognition, we assume that the transition probability
does not change over time. So, the Markov chain be-
comes time-invariant (stationary) where the conditional
probability P (xn+1|xn) does not rely on n. This can be
written as

PX1...Xn
(x1, . . . , xn) = PX1+t...Xn+t

(x1, . . . , xn). (5)

Here, t denotes time shift. For stationary Markov chain,
we can define a transition matrix Ts, where each entry
represents the probability of jump from one state to
another. The transitional matrix Ts can be written as

Ts =


p11 p12 p13 . p1n
p21 p22 p23 . p2n
. . . . . . . . . . . . . . . . . . . . . .
pn1 pn2 pn3 . pnn


where, each pij ≥ 0 and for all states Xi,

n∑
m=1

pim =

n∑
m=1

p(xm|xi)

= 1. (6)

Now, we can compute the probability of a sequence,
P (X1, X2, . . . , Xq) as

P (X1, X2, . . . , Xq) = P (X1)P (X2|X1) . . . P (Xq|Xq−1)
(7)

Here, q is the number of elements in a sequence. If
the Markov chain is stationary, then we can define a
stationary distribution µ over all Xi. The stationary
distribution can be computed as

µ = µTs (8)

where, each element of µ would be µi =
∑n

j=1 µjpji,
and

∑n
i=1 µi = 1. If we transpose Eqn. 8, we obtain

(µTs)
ᵀ = µᵀ

T ᵀ
s µ

ᵀ = µᵀ (9)

Thus, stationary distribution can be obtained from the
eigenvector of T ᵀ

s with eigenvalue 1 by utilizing eigen
value decomposition. If the transition matrix Ts is
known, we can compute stationary distribution. It could
be possible to have multiple eigenvectors associated to
an eigenvalue of 1 where each eigenvector gives rise
to an associated stationary distribution. In this case,
the Markov chain becomes reducible, i.e. has multiple
communicating classes [45].

Entropy Rate: The entropy rate of a stochastic pro-
cess {X1, X2, . . . , Xn} can be written as

H(X ) = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (10)

For stationary process, the entropy rate [46] becomes

H(X ) = lim
n→∞

1

n

n∑
i=1

H(Xi|Xi−1, . . . , X1). (11)

H(Xn|Xn−1, . . . , X1) is non-increasing as n
increases and the limit must exist [46]. For
Markov chain, the above equation 11 would
be H(X ) = limn→∞H(Xn|Xn−1, . . . , X1) =
limn→∞H(Xn|Xn−1). If Xi ∼ µ, then the entropy rate
is

H(X ) = −
∑
ij

µipij log pij (12)

Using Eqns. 9 and 12, we can compute stationary
distribution and entropy rate. From the Asymptotic
Equipartition Property (AEP) theorem, the probability of
a sequence (Eqn. 7) becomes

p(X1, . . . , Xq)→ 2−qH(X ). (13)

Now, we denote the atypical score of a sequence as
E = −1

q log p(X1, . . . , Xq) − H(X ). Next, we will
demonstrate how this atypical score can be utilized in
a couple of applications- (a) sample selection and (b)
anomaly detection.

C. Computation of Atypical Score in Video Applications

In activity classification, the next activity is related
to the last activity as well as the preceding activities.
So, the activity samples form a higher order of depen-
dency than the dependency in a Markov chain. Even
though a high-order stochastic process model is suitable
to represent the high-order dependency, a high-order
stochastic process model is undesirable due to its model
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complexity and computational cost. It becomes even
harder with a large dataset. Furthermore, determining the
accurate order of dependency to represent the temporal
relations is impractical. Thus, we have used a Markov
chain instead of a high-order stochastic process model
which approximately captures the temporal behavior
between the activity samples. There are some works [47],
[48], [49], [50] which exploit Markov model or hidden
Markov model for the activity recognition task.

An activity sample is a video snippet of multiple
frames and contains the category of an activity. A
video clip contains a number of activity samples where
the activities appear sequentially over time. An activity
might be strongly correlated with its previous activity,
and it is also possible that two consecutive activities
are uncorrelated. Thus, we consider that a temporal
link is established if the time interval between current
and previous activities is below a threshold δt, else
it is possible that two consecutive activities are not
temporally related. Fig. 2 shows an example of such
scenario. From the figure, we can see that temporal link
between last two activities is not established due to a
long time interval. In this paper, we assume that the
current activity only depends on previous activity, thus
p(an|an−1, . . . , a1) = p(an|an−1).

As the activities form a sequence and generate Markov
chain for a video clip, we can compute atypical score by
computing entropy rate and the probability distribution
of a sequence. For transition matrix, we simply count
the frequency of an activity occurring given the previous
activity. Consider, ith row vector ri of matrix Ts shown
in Eqn. 14, which can be written as

ri =
1∑Na

k=1 φ
i
k

[φi1, . . . , φ
i
n]. (14)

Here, Na represents the number of activity classes. φik
implies the number of times activity class ak occurs
given previous activity class ai Thus, each (i, k)-th
entry of ri represents the transitional probability from
ai to ak. After obtaining the transition matrix, we can
easily compute stationary probability µa using Eqn. 9
by utilizing eigen value decomposition. Let us define
ith state Ai ∈ A, which may have an outcome among
the activity labels a1, . . . , aNa

. So, we can compute the
entropy rate as follows.

H(A) = −
∑
ij

µair
i
j log rij (15)

Given a video, set of activity samples A1, . . . , Aq

form an activity sequence. q is the number of activ-
ities occurring in a video. The probability of an ac-
tivity sequence can be presented as P (A1, . . . , Aq) =

P (A1)P (A2|A1) . . . P (Aq|Aq−1) = P (Aq). It can be
calculated from µa and rij . We can compute the atypical
score of the sequence as follows.

E = −H(A)− 1

q
log2 P (Aq) (16)

Now, in order to compute the atypical score for each
of the samples, we remove a tuple from the sequence
associated with ith activity sample ai and observe the
deviation of atypical score as similar to Eqn. 16. An
activity sample at time t (at) might be excluded if it
appears very far from activities before and after it. In
an extreme case, we only compute the entropy of that
activity sample, which will be discussed in Sec. III-D.
If we remove ith sample from the sequence, then we
compute the probability of a new sequence as P (Aq′) =
P (A1)P (A2|A1)...P (Ai−1|Ai−2)P (Ai+2|Ai+1)...P (Aq).
Thus, P (Ai|Ai−1) and P (Ai+1|Ai) are eliminated from
the distribution function. The length of new sequence
would be q − 2. So, the atypical score of new sequence
would be Ei, which can be written as

Ei = −H(A)− 1

q − 2
log2 P (Aq−2) (17)

We can now measure the deviation between E and Ei.

Ẽi = |E − Ei|

=

∣∣∣∣−1

q
log2 P (Aq) +

1

q − 2
log2 P (Aq−2)

∣∣∣∣
=

∣∣∣∣∣ 2

q(q − 2)

q∑
m=1

m 6={i−1,i}

log2 P (Am+1|Am)−

1

q
log2 P (Ai|Ai−1)− log2 P (Ai+1|Ai)

∣∣∣∣∣ (18)

In case of last activity sample in a video, we only
remove one element (p(Aq|Aq−1)). Finally, we compute
an atypical score for each activity sample as, ẼiNt

, where
Nt denotes the number of tuples removed from the
original sequence. Using the atypical scores, we can
formulate our optimization problem to select the infor-
mative samples for manual labeling as discussed next.

D. Informative Sample Selection for an Activity Se-
quence

In this section, we will formulate an objective function
from the atypical score of samples as discussed before.
This objective function will be optimized to select the
most informative samples. Let us consider that we have
a batch of N unlabeled instances and we need to select
the optimal instances for manual labeling. Let us define
a vector T j = [Ẽ1 Ẽ2 . . . ]T , containing the atypical
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Algorithm 1 Computation of Atypial Score and Uncer-
tainty for Sample Selection

INPUTS. 1. Learned models from training data L:
Classification Model M and Transition Matrix Ts

2. Unlabeled Video Clips: U
OUTPUTS. The vectors for atypical Score T and
entropy h for the unlabeled data U
Step 1: Compute Stationary Probability µ as shown
in Eqn. 9 using Ts.
Step 2: Compute Entropy Rate H(A) using µ and
Ts as in Eqn. 15.
Step 3: Obtain an activity sequence from the pre-
dicted labels provided by M for a video clip in U .
Step 4: Compute the probability of sequence p(AP )
using µ and Ts as in Eqn. 7
Step 5: Compute atypical score Ẽq using Eqn. 18 and
entropy hq associated with qth sample.
Step 6: Calculate vectors T and h as discussed in
Sec. III-D

score of each sample of the jth video depending on the
recognition task (e.g., activity recognition) as in Eqn 18.

Consider a vector T which represents the atypical
scores of the samples for all videos. We can write T
in terms of T j as follows.

T = [T 1 T 2 . . . ]T (19)

We also incorporate the uncertainty of current base-
line classifier on the unlabeled samples. We define a
vector that denotes the entropy of all samples as h =
[h1 h2 . . . ]T , where hj = E[− log2 pj ], and pj is the
probability mass function (p.m.f) which represents the
distribution of prediction scores over the set of activity
classes. This prediction score is generated by the current
baseline classifier on the jth unlabeled sample. We aim
to choose a subset of the samples which are informative
based on the two criterion, namely atypical score and
the entropy of each sample obtained from the classifier.
We can write the optimization function in vector form
as follows,

y∗ = arg max
y

yT (h + λT )

s.t. y ∈ {0, 1}N , yT1 ≤ η (20)

Here, λ is a weighting factor. The term yT1 represents
the number of samples will be chosen which is bounded
by η. Let us denote f = −(h + λT ). Maximization
of the objective function in Eqn. 20 is the same as
minimization of yTf . It is a binary linear integer pro-
gramming problem and can be solved by CPLEX [51].
Algorithm 1 shows the steps of our proposed method

Algorithm 2 Sample Selection for Active Learning with
Continuous Data

INPUTS. 1. Learned models at Batchk−1 : Classifica-
tion Model Mk−1 and Transition Matrix T k−1

s

2. Unlabeled Video Clips at BatchK : Uk
OUTPUTS. Learned Models after processing videos
in BatchK : Mk and T k

s

Initialize: L = {L0} (Initial Set of Data)
Step 1: Calculate vectors T and h using Algorithm 1
Step 2: Find optimal set of samples y∗k using Eqn. 20
for Batch k
Step 3: L = L ∪ y∗k
Step 4: Update models Mk−1 and T k−1

s with L.

for selecting informative samples. Next, we show how
the sample selection strategy can be used for active
learning and anomaly detection as two applications for
the experiments.

1) Active Learning: The sample selection strategy
discussed above can be used in an active learning
framework to update a classification model online. The
adaptability of recognition models to the continuous data
stream becomes important for long-term performance.
Given a set of data at particular time, the proposed
sample selection approach (discussed in Sec. III-D) can
be utilized to select the most informative samples in
order to update the model. After obtaining a set of
samples y∗ from Eqn. 20, we can ask a human to label
these samples. With newly generated labeled data, the
classification model M, and the temporal relationship
model need to be adjusted.
Update M. For classification task, we use softmax clas-
sifier to predict the labels. If the feature vector is Fk for
kth sample, then predicted probability for the jth class
can be written as, P (l = j|Fk) = eF

T
k

wj∑K
k=1 e

FT
k

wk
. Here,

K is the number of classes, wj represents the weights
corresponding to class j. We optimize the cross entropy
loss function to estimate the parameters as presented in
[52]. For the current batch, we update the parameters
with the newly labeled data samples.
Update Temporal Relationship Model. Let us consider
a matrix Φ that represents the temporal statistics between
activities. Φ will be updated based on the newly acquired
labels. The updated statistics can be written as, Φ′ ←
Φ+Φ̃, where Φ̃(.) represents the statistics with the newly
labeled samples and Φ′ is the updated statistics. With
updated Φ, transition matrix Ts is modified.

2) Anomaly Detection: In anomaly detection, we con-
sider an activity as abnormal if it is an outlier with
respect to the learned model. Thus, any prior information
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Algorithm 3 Algorithm of Proposed Method for
Anomaly Detection

INPUTS. 1. Learned models with normal activities :
Classification Model M and Transition Matrix Ts

2. Test Video Clip Vt.
OUTPUTS. Set of binary labels C for anomaly and
normal activities for Vt.
Step 1: Compute atypical score Ẽj using Eqn. 18
and entropy hj associated with jth sample using
Algorithm 1.
Step 2: Calculate irregularity score Dj using Eqn. 21.
Step 3: Assign class labels C for all the activities in
Vt based on threshold τ as discussed in III-D2.

on anomalous activity at training time is unknown.
We learn the recognition model M from the regular
activities. The temporal relationship between the activity
samples is also exploited during the learning process.
We compute transition matrix Ts from this temporal
relations. We calculate stationary distribution µ followed
by entropy rate H(X ) using Eqns. 9 and 12.

Given a test video,M predicts the activity labels, from
which a sequence is formed. We can compute atypical
score Ẽj associated with jth sample as discussed in
Sec. III-C using Eqn. 18. We also compute the entropy
hj = E[− log2 pj ] from the distribution of confidence
score provided by M. We can now define irregularity
score Dj which can be written as

Dj = Ẽj + βhj . (21)

β represents weighting factor. We also consider entropy
along with the atypical score in order find an anomaly.
Given an anomaly class, entropy should be high as it
exhibits high uncertainty. All the steps are demonstrated
in Algorithm 3. If Dj is larger than a threshold τ then it
is considered as an abnormal class, or normal otherwise.
The class of a sample Cj can be determined as follows.

Cj =

{
1, if Dj > τ

0, otherwise
(22)

Here, 1 represents abnormal activity and 0 denotes
normal class. Next, we will demonstrate the experimental
analysis of our proposed approach to sample selection
and anomaly detection.

IV. EXPERIMENTS

In this section, we evaluate our proposed method
on two distinct applications such as informative sample
selection for recognition model, and anomaly detection,

for activity recognition task. We also compare our meth-
ods with state-of-the-art approaches on two challenging
datasets.

Datasets. We demonstrate the performance of our
proposed method on two video datasets. We evaluate
our results on VIRAT [54] and MPII-Cooking [53]
datasets for activity classification task. VIRAT is a video
dataset which provides temporal relations between dif-
ferent activity samples. This dataset has 329 video clips
consisting of 11 different activities [54]. MPII-Cooking
dataset presents 65 cooking activities, e.g., cut slices,
pour, or spice [53]. It has 44 videos in total. Since videos
are usually long, we follow sliding window approach for
cropping short video clips in order to create more video
instances. We choose the video clip based on the number
of activities. In this work, each video clip contains 8
activities with a stride of one activity for MPII-Cooking
dataset.

Feature Extraction. For activity recognition model,
we adopt the classification model described in [55]. We
utilize the final layer of 3d convolutional neural network
to extract features. Finally, we have 4096 dimensional
c3d [55] feature for an activity sample (small clip of a
video). These features are used to train softmax classifier
for activity recognition.
Evaluation Criterion. In order to evaluate active learn-
ing (AL) methods, we generate a plot of recognition
accuracy vs percentage of manual labeling. We aim to
achieve the same performance with less manual labeling
effort. We utilize percentile (%) accuracy for activity
recognition. For anomaly detection, we use ROC curve
which measures the performance of binary classification
task with varying threshold on prediction score. Finally,
we calculate the area under the curve (AUC) to assess
the performance. The value of AUC generally lies in
between 0 and 1. We aim to achieve higher AUC value.
Experimental Setup. Our goal is to demonstrate two
applications- (a) informative sample selection, and (b)
anomaly detection, using proposed method discussed in
Sec. III. In order to choose the most informative samples,
we consider two scenarios- (1) sample selection from
fixed data, (2) batch-mode active (online) learning. In
first scenario, we fix the percentage of manual labeling
from the whole training set and measure the performance
on test set. In this setting, proposed framework inspects
all the samples while selecting the informative samples.
We learn the initial model from very few samples which
are excluded from the training set. In batch-mode active
learning, we consider same experimental setting as [7],
where data samples (videos) are continuously coming
in batches. We first divide the dataset into training and
testing set. We create 5/6 batches from the training
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Fig. 3: This figure illustrates the recognition performance of the proposed method for the tasks of informative
sample selection and active learning, on (a) MPII-Cooking, and (b) VIRAT datasets.
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Fig. 4: The figure presents the performance of proposed active learning method for activity recognition task on two
datasets - MPII-Cooking [53] (first row) and VIRAT [54] (second row) datasets. Plots (a,b) present the comparison
against other state-of-the-art sample selection methods. Plots (c,d) demonstrate comparison with BM-All method.
Plots (e,f) demonstrate the sensitivity analysis of our framework. Best viewable in color.

set. We evaluate the recognition performance on the
test set after processing of each batch. Initial models
(classification and temporal relations) are learned from
the first batch of data. Typically, the first batch is smaller
than other batches. Next, we apply sample selection
strategy on next batches to choose the most informative
samples. From the newly learned samples, models are
updated. We also incorporate incremental learning to
update the model as new classes can come in new
batches. For anomaly detection, we learn the recognition
and temporal relations from the normal activities. Now,

given a test video, we compute irregularity score as
discussed in Sec. III-D2, on which we determine whether
an activity is anomalous or not.
State-of-the-art and Baseline Methods: In the experi-
ment, we compare against different existing approaches
and some baseline methods. These methods are as fol-
lows.
� Typicality-SS: Proposed approach applied to informa-
tive subset selection.
� Typicality-AL: Typicality based sample selection
strategy for active (or online) learning task.
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� Bv2B: Best vs Second Best active learning strategy
[25].
� IL: Incremental learning approach presented in [56].
� Full-set: Entire training is used to obtain the accuracy
from baseline classifiers.
� BM-All: All the samples in current batch are consid-
ered.
The baseline methods mentioned above are implemented
on our training and testing set for fair comparison.

A. Informative Subset Selection from Fixed Data

In order to evaluate the performance of our sample
selection strategy discussed in Sec. III-D, we vary the
percentage of manual labeling from the training set, and
measure the performance on test set. We keep the initial
set fixed which is learned from very few samples. In
this experimental setup, whole training set is observed
in sample selection process. On the contrary, data are
coming into batches for active learning. In our experi-
ment, we choose 10% to 60% with 10% increment as the
percentage of manual labeling, and compute the recog-
nition accuracy for activity recognition. Fig. 3 illustrates
the performance of our proposed method on sample se-
lection. In this figure, we plot the classification accuracy
of our proposed method with varying the percentage of
manual labeling on two applications- sample selection
and active learning. Typicality-SS and Typicality-AL
represent the proposed approach for sample selection
and active learning respectively. From this figure, we
observe that the recognition performance of typicality-
SS outperforms typicality-AL as the percentage of man-
ual labeling decreases. The underlying reason is that
typicality-SS considers the whole training set during
the sample selection process unlike typicality-AL where
active learner only utilize small portion of full dataset.

B. Performance of Batch-Mode Active Learning

We perform a various set of experiments to evaluate
our proposed framework for online learning. We analyze
the following experiments: 1. Comparison with existing
active learning approaches, 2. Comparison against base-
line methods, 3. Sensitivity analysis of the parameters,
and 4. Time complexity of the proposed method, and 5.
Performance with varying sequence length.

1) Comparison With Other Active Learning Methods:
We compare our active learning (AL) approach with
other state-of-the-art methods and baseline approaches
as mentioned above. Figs. 4(a,b) show the recognition
performance with respect to the percentage of manual
labeling. We observe the performance on test set with
updated recognition model after processing each batch

Dataset Method Accuracy Manual
(%) Labeling

MPII GRP-Grassmann [21] 53.8% 100%
C3D [55] 52.6% 100%

Cooking C3D + SS (Ours) 51.49% 53.61%

VIRAT

Sparse AE [58] 54.2% 100%
Joint Prediction [20] 71.8% 100%

C3D [55] 73.03% 100%
C3D + SS (Ours) 73.72% 40.36%

TABLE I: Comparison with other State-of-the-art meth-
ods on MPII-Cooking [53] and VIRAT [54] datasets.
Here, the proposed model achieves similar or better
performance as other methods with a fraction of manual
labeling.

of data. The straight line presented in the figures implies
recognition accuracy of the model with 100% manual
labeling (whole training set). We compare with some of
the existing AL approaches such as Bv2B [25], random
sample selection, Entropy [57] and IL [56]. For compar-
ison, we first run our AL method to obtain the number
of samples, which will be manually labeled. Then, we
fix the number of samples for each batch and obtain the
accuracy for other AL methods. In other words, different
AL methods select the different subset of samples from
each batch, where the size of subsets would be same. The
performance will vary due to the selection of different
subsets. For a fair comparison, we also keep same
features and baseline classifiers for all the methods. From
Figs. 4(a,b), we can see that the proposed framework
outperforms other AL methods to reduce the manual
labeling cost by a large margin in activity classification.
Our method requires only 54%, and 40% of manual
labeling to achieve the optimal recognition performance
on VIRAT [54] and MPII-Cooking [53] datasets respec-
tively as shown in Figs. 4(a,b). From Figs. 4(a,b), we
can also see the performance gap between our method
and other approaches. In MPII-Cooking [53] dataset, our
approach outperforms Bv2B [25], random sample selec-
tion, Entropy [57] and IL [56] by 0.89%, 0.67%, 0.97%
and 2.00% respectively with 54% manual labeling.
Similarly, for VIRAT [54] dataset, proposed method
surpasses Bv2B [25], random sample selection, Entropy
[57] and IL [56] by 5.12%, 3.07%, 5.80% and 4.78%
respectively with 40% annotation effort.

2) Comparison Against Other Baseline Methods: To
evaluate proposed approach, we compare against BM-
All method for activity classification. BM-All represents
all the samples in a current batch, thus for Nb batches
we have Nb accuracy values. Figs. 4(c,d) show the plots
of our proposed model and BM-All method. BM-All
helps us to understand the effectiveness of proposed



11

method in selecting the most informative samples. We
aim to achieve similar performance with BM-All with
less manual labeling effort. From the comparison of BM-
All and proposed method, we can observe that a good
recognition model can be learned from a small set of
informative samples. Figs. 4(c,d) demonstrate that the
proposed framework achieves similar or better perfor-
mance with fewer informative samples when compared
to BM-All method. In Fig. 4(d), we can also see that
the proposed method outperforms the model with 100%
labeling (red straight line). This also attests that informa-
tive (quality) data is often more useful than simply more
data (quantity). Furthermore, we also compare against
our method against other baseline methods with 100%
manual labeling as shown in Table. I. From this table,
we can see that the proposed sample selection method
achieves better or similar performance with less manual
labeling on MPII-Cooking [53] and VIRAT [54] datasets.

3) Sensitivity Analysis of the Parameters: In the pro-
posed framework, we use the parameter λ as discussed
in Sec. III-D. In order to understand the efficacy of
typicality, we show different plots with varying λ in
Figs. 4(e,f). We set the values of λ ranging from 0.7
to 2.0. We empirically choose these values to observe
the change in plots. Figs. 4(e,f) illustrate the variation of
performance due to change in hyperparameter λ. From
the figures, we can see that the accuracy curve is stable
with a little change in λ. The accuracy curve degrades
with the smaller value of λ. If the value of λ equals
to zero, the performance has been significantly dropped
as presented as Entropy in figures Figs. 4(a,b) on two
datasets.

4) Time Complexity. : The proposed method also re-
duces computation time to adapt the recognition model.
Table. II shows the computational time on MPII-Cooking
[53] and VIRAT [54] datasets. We compute the time to
query the samples, and time to train recognition models
for a dataset. We also compute the time to train a
recognition model with all the samples in a batch (BM-
All method). As we can see that total time to train
activity model with all the samples is 3281.08s for MPII-
Cooking [53], and 69.84s for VIRAT [54] dataset. On
the other hand, the total time for querying and training
with samples selected by our approach is 2498.32s, and
62.75s for MPII-Cooking [53] and VIRAT [54] datasets
respectively. In Table. II, we have also computed the
execution time to query the samples by using Eqn. 20.
The total query time for VIRAT and MPII-Cooking
datasets is 0.1074s and 0.6113s respectively as provided
in Table. II. We empirically observe that the query
time at initial batches is longer than the query time at
later batches. For instance, the query time in processing

Method Cooking [53] VIRAT [54]
Time (s) Time (s)

Query Time 0.6113s 0.1074s
Proposed Method 62.75s 69.84s
BM-All Method 2498.32s 3281.08s

TABLE II: Analysis of computation time on MPII-
Cooking [53] and VIRAT [54] datasets. We can see
from the table that our approach reduces computation
time during training of recognition model. Query time
represents the time to find a subset by using Eqn. 20.

first batch is 0.048s and 0.563s for VIRAT and MPII-
Cooking datasets respectively. From the Table. II, we
can see that the proposed AL method helps to save a
significant amount of computational time, especially in
a big dataset.

5) Performance with Varying Sequence Length : We
also set up an experiment in order to observe the effect
of varying sequence length on recognition performance
for active learning. We consider both MPII-Cooking
and VIRAT datasets to run this experiment. Sequence
length represents the number of activities in a video
clip. In order to prepare the data, we extract video
clip with varying sequence length from the original
video by following sliding window. For MPII-Cooking
dataset, we vary the sequence length to 10, 8 and 5. We
consider the whole video (length=VL) and two different
lengths (4 and 5) for VIRAT dataset. The performance
of proposed method with varying sequence length on
MPII-Cooking and VIRAT datasets is demonstrated in
Fig. 5(a) and 5(b) respectively. From the figures, higher
performance is observed for the moderate sequence
length (VL) (e.g., VL = 8 and VL = 5 for MPII-Cooking
and VIRAT datasets respectively), when compared to the
small sequence length (VL = 5 for MPII-Cooking and
VL = 4 for VIRAT). However, we do not observe the
best performance for a longer sequence. The underlying
reason is that the rate of misclassified activity samples is
higher in a long sequence which restricts the typicality
model to capture good temporal relationship between the
samples. In order to obtain similar performance as the
moderate sequence, the amount of manual labeling will
be higher for a long sequence.

C. Anomaly Detection

In this section, we will show how atypical score
(discussed in Sec. III-C) can be utilized to detect
anomaly activities. In this paper, we perform Na-fold
cross validation in order to evaluate the performance
of anomaly detection task. Here, Na is the number of
activity categories. In each fold, one class is chosen
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Fig. 5: This figure illustrates the recognition performance with varying sequence length on (a) MPII-Cooking, and
(b) VIRAT datasets.
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Fig. 6: The figure shows ROC plots for anomaly detec-
tion on VIRAT [54] dataset. Different colors represent
baseline methods. Best viewable in color.

as abnormal and rest are utilized as normal activities.
The process of choosing abnormal class iterates over all
the classes, which gives us a larger evaluation set. We
learn the temporal relations from normal activity classes.
To train the recognition model, we train multi-class
softmax classifier with normal activities. We exclude
the abnormal class during the learning process. Given
a test video, recognition model provides a probability
distribution over the classes. We compute entropy from
this distribution. If the activity class belongs to normal
activities, recognition model shows low uncertainty. For
abnormal class, the uncertainty goes high. We also
calculate the atypical score for the activity samples in
test video. After computing the uncertainty and atypical
score, we calculate the irregularity score using Eqn. 21.
Based on this irregularity score, we determine whether
an activity is abnormal or not.

In order to evaluate our framework, we plot ROC

curve by varying the threshold on irregularity. Fig. 6
shows ROC plots for different methods on VIRAT [54]
dataset. VIRAT dataset provides the ground-truth label
(the category of an activity) for each sample. Our pro-
posed method relies on the activity category for modeling
a sequence of activities and hence we choose this dataset.
We consider One-class SVM [59] as the baseline method
to detect anomalous activity. For convenience, we refer
our proposed method as ‘typ-AD’ (i.e, typicality for
Anomaly Detection) in Fig. 6. In typ-AD, we change the
value of β as discussed in Sec. III-D2 ranging from 0 to
1.0 to observe the effect on uncertainty score. From the
figure, we can see that the proposed method with only
atypical score (β = 0) outperforms all other methods. As
the value of β increases, we put more weights on entropy
hj as shown in Eqn. 21. We can see from the Fig. 6 that
the performance of anomaly detection is improved as the
value of β decreases.

We also provide area under the curve (AUC), which
is computed from ROC curves as shown in Fig. 6 to
measure the performance of anomaly detection. Table III
illustrates the value of AUC for different methods. As we
change the value of β, we observe different performance.
With values of β = 0.5 and β = 1.0, we obtain
AUC of 0.75 and 0.70 respectively. We observe the best
performance with β = 0, which achieves 0.76 in AUC
value. In the anomaly detection problem, the behavior
of anomaly samples is absolutely unknown to the recog-
nition model as the anomaly samples are chosen from
a new category that is excluded from the training set.
In ideal condition, the entropy explained in Sec. III-D2
should be high for an anomalous sample given a good
recognition model. However, we empirically observe that
the recognition model provides a wrong label with a high
confidence score for a test sample in many cases. As
a result, entropy goes down, and the entropy has less
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Method AUC Score
typ-AD with β = 1.0 0.70
typ-AD with β = 0.5 0.75
One-Class SVM [59] 0.57
Context-Aware Model [11] 0.685
typ-AD with β = 0 0.76

TABLE III: The table illustrates the performance of
anomaly detection in terms of AUC score on VIRAT
[54] dataset.

impact on determining the irregularity value as presented
in Eqn. 21. In contrast, an anomalous activity violates
the properties of typical set by impairing the temporal
behavior pattern of the activity samples. So, the model
with β = 0 shows superior performance in anomaly
detection. We also compare against other methods such
as one-class SVM [59] and Context-Aware Model [11].
The AUC values for One-class SVM [59] and Context-
Aware Model [11] are 0.57 and 0.685 respectively.

1) Limitations of the Proposed Approach in Anomaly
Detection: In this paper, we exploit the notion of typ-
icality for the task of active learning and show the
preliminary work in detecting contextual anomalies. The
typicality model as presented in Sec. III-D2 exploits the
temporal link between two consecutive activities. Thus,
the proposed approach mainly focuses on detecting the
anomalous samples which are temporally inconsistent.
In order to learn these temporal relations, an activity
category or label is explicitly utilized. However, most of
the conventional anomaly datasets, e.g., UCSD Pedes-
trian [60], CUHK Avenue [13], Subway [61], do not
provide the category of an activity for a sample. Instead,
these datasets provide a binary label for the normal and
abnormal class. Since they do not have the labels of
the activities, we cannot evaluate our anomaly detection
results on these datasets without extensively labeling all
the activities first. Thus, we demonstrate our results on
VIRAT dataset which provides the ground-truth labels
for each activity sample thus allowing us to evaluate the
performance of our method.

An activity sample is identified as anomaly based on
the irregularity score presented in Eqn. 21. We learn the
transition matrix from the temporal interactions between
the activity samples as shown in Eqn. 14. In Eqn. 14,
φik represents the number of appearing activity class ak
with previous activity ai. Please note that an anomalous
sample belongs to a new class which is unknown to the
recognition model. In most of the cases, the recognition
model predicts a wrong label with which the previous
activity and next activity do not show strong temporal
correlation for an anomalous sample (φik is low). As a

result, the irregularity score in Eqn. 21 becomes high and
the sample is detected as an anomaly. However, in very
few cases, the recognition model provides a label which
might show high temporal correlation with last activity
even though the classifier is not confident enough (φik
is high). In such cases, our proposed typicality based
model fails to detect an anomaly. In the future, we intend
to present an anomaly detection model for identifying
collective anomalies and taking into account spatial inter-
relationships in addition to temporal ones.

V. CONCLUSIONS

In this paper, we presented a subset selection method
by exploiting information-theoretic ‘typical set’ to
adaptively learn the recognition models. We show
that typicality is a powerful tool which has been
successfully used in data processing and can also be
utilized in informative subset selection problem for
visual recognition tasks. Our method is applied to
various applications including sample selection and
anomaly detection. The notion of typicality is used for
a sequence of activities that can be represented as a
Markov chain. Our approach significantly reduces the
human load in labeling samples for visual recognition
tasks. We demonstrate that our method achieves better
or similar performance with only a small subset of
the full training set compared with a model using full
training set. Our model also shows good performance
in anomaly detection in a video. As a future direction,
we will study how typicality can be utilized to transfer
knowledge from one domain where data is available to
another where there is limited labeled data.
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