
Frugal Following: Power Thrifty Object Detection and Tracking
for Mobile Augmented Reality

Kittipat Apicharttrisorn

University of California, Riverside

kapic001@ucr.edu

Xukan Ran

University of California, Riverside

xran001@ucr.edu

Jiasi Chen

University of California, Riverside

jiasi@cs.ucr.edu

Srikanth V. Krishnamurthy

University of California, Riverside

krish@cs.ucr.edu

Amit K. Roy-Chowdhury

University of California, Riverside

amitrc@ece.ucr.edu

ABSTRACT
Accurate tracking of objects in the real world is highly desirable in

Augmented Reality (AR) to aid proper placement of virtual objects

in a user’s view. Deep neural networks (DNNs) yield high precision

in detecting and tracking objects, but they are energy-heavy and

can thus be prohibitive for deployment on mobile devices. Towards

reducing energy drain while maintaining good object tracking pre-

cision, we develop a novel software framework calledMARLIN.MAR-
LIN only uses a DNN as needed, to detect new objects or recapture

objects that significantly change in appearance. It employs light-

weight methods in between DNN executions to track the detected

objects with high fidelity.We experiment with several baseline DNN

models optimized for mobile devices, and via both offline and live

object tracking experiments on two different Android phones (one

utilizing a mobile GPU), we show that MARLIN compares favorably

in terms of accuracy while saving energy significantly. Specifically,

we show that MARLIN reduces the energy consumption by up to

73.3% (compared to an approach that executes the best baseline

DNN continuously), and improves accuracy by up to 19× (compared

to an approach that infrequently executes the same best baseline

DNN). Moreover, while in 75% or more cases, MARLIN incurs at

most a 7.36% reduction in location accuracy (using the common

IOU metric), in more than 46% of the cases, MARLIN even improves

the IOU compared to the continuous, best DNN approach.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

KEYWORDS
Mobile Augmented Reality, Energy Efficiency, Object Detection and

Tracking, Convolutional Neural Network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SenSys ’19, November 10–13, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00

https://doi.org/10.1145/3356250.3360044

ACM Reference Format:
Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V. Krishnamurthy,

and Amit K. Roy-Chowdhury. 2019. Frugal Following: Power Thrifty Object

Detection and Tracking for Mobile Augmented Reality. In The 17th ACM
Conference on Embedded Networked Sensor Systems (SenSys ’19), November
10–13, 2019, New York, NY, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3356250.3360044

1 INTRODUCTION
AR is popular in the market today [44] with potential applications

in many fields including training, education, tourism, navigation,

and entertainment, among others [12]. In AR, the user’s perception

of the world is “augmented” by overlaying virtual objects onto a

real-world view. These virtual objects provide relevant information

to the user and remain fixed with respect to the real world, creating

the illusion of seamless integration. Examples of AR apps used

today include Pokemon Go, Google Translate, and Snapchat filters.

An important task in the AR processing pipeline is the detection

and tracking of the positions of real objects so that virtual annota-

tions can be overlaid accurately on top [14, 35, 42]. For example, in

order to guide a firefighter wearing an AR headset, the AR device

needs to analyze the camera frame, detect regions of interest in

the scene (e.g., victims to be rescued), and place overlays at the

right locations on the user display [46]. Commercial AR platforms

such as ARCore and ARKit can understand the 3D geometry of the

scene and detect surfaces or specific instances of objects (e.g., a

specific person), but lack the ability to detect and track complex,

non-stationary objects [23, 42].

To track real objects, AR apps can use tracking by detection

techniques [57], wherein each camera frame is examined anew to

detect and recognize objects of interest; both object locations (e.g.,
bounding boxes) and class labels are output. Tracking by detection

is used, for example, by the open-source ARToolKit [1] to track

fiducial markers in the scene. To go beyond this to detect non-

fiducial objects in the scene being viewed, one can employ state-

of-the-art DNN-based object detectors which yield high object

recognition and detection precision (with regards to objects in

general). However, a naive plug and play of DNN-based object

detection and recognition into a tracking by detection framework

will exacerbate the already high battery drain of mobile devices,

which is of great concern to mobile users [27]. While the screen,

camera, and OS do consume a large portion of the user’s battery (3-4

W in our measurements), continuous repeated executions of DNNs

(even those models optimized for mobile devices, e.g., [28, 52]) will

also consume a major portion (1.7-3 W) of the battery.

https://doi.org/10.1145/3356250.3360044
https://doi.org/10.1145/3356250.3360044
https://doi.org/10.1145/3356250.3360044

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

Recent works have targeted improving the energy efficiency of

DNNs (e.g., by using specialized hardware [29] or via model com-

pression [25]); however, they focus on individual DNN executions

on individual input images [30], rather than understanding energy

consumption across time, as is needed in AR or other continuous

tracking applications. Invoking DNN executions on every captured

frame in an AR application will cause high energy expenditure even

with such mobile-optimized methods.

In this paper, we ask the question: How can AR apps achieve

good object detection and tracking performance and yet consume

low energy? To answer this, wemake the key observation that while

using a DNN is important for detecting new objects, or when sig-

nificant changes to a scene occur, lightweight incremental tracking

can be used to track objects otherwise, in between DNN execu-

tions. This saves precious computation and energy resources, but

requires initial knowledge of the object to be tracked (which must

be supplied by the DNN). To realize such an approach, however, a

key question that needs to be answered is “when should DNNs be

invoked and when is incremental tracking sufficient to maintain

similar accuracies as the DNN?” Although tracking by detection

and incremental tracking have been studied together to a limited

extent [36, 72], these prior approaches either trigger the DNN at a

very high frequency (e.g., every 10 frames), use heavyweight object

trackers, and/or assume complete offline knowledge of the video.

These limitations make such methods inappropriate for real-time

AR applications and/or mobile platforms with battery limitations.

As ourmain contribution, we design and implementMARLIN (Mo-

bile Augmented Reality using LIghtweight Neural network execu-

tions), a framework that addresses the critical problem of limiting

energy consumption due to object tracking for AR, while preserv-

ing high tracking accuracy. Specifically, MARLIN chooses between

DNN-based tracking by detection and incremental tracking tech-

niques to meet three goals: (a) good tracking performance, (b) very

low energy drain, and (c) real-time operations. Briefly,MARLIN first

performs DNN-based tracking by detection on an initial incom-

ing frame to determine the object locations. Once such objects are

detected,MARLIN performs incremental tracking on them to contin-

uously update the locations of the relevant AR overlays; the tracker

also checks every frame for significant changes to the object (e.g., a

car door opening) to determine if tracking by detection needs to be

re-applied. In addition, MARLIN employs a novel change detector

that looks for changes to the background (e.g., appearance of new

objects) that are likely in the AR scenarios of interest.

MARLIN addresses several challenges in the domain of energy-

efficient AR: (1) It provides highly accurate object classification

and dynamically tracks the changing locations of multiple different

objects in the scene, in order to place the virtual overlays correctly.

(2) It reduces CPU throttling in cases where object detection com-

putation demands exceed the compute capability, since built-in

CPU throttling can significantly worsen tracking performance; (3)

It preserves accuracy while reducing energy in challenging en-

vironments such as occlusions and/or zooming which are likely

when the AR camera is worn/held by a mobile user; specifically,

it does not over-trigger DNNs in response to camera motion; and

(4) MARLIN is software-based and does not need specialized hard-

ware. Thus, it is compatible with most modern mobile platforms.

MARLIN’s software (executables) can be downloaded via the project

website [4]. To the best of our knowledge, this is the first detailed

design, implementation and evaluation of an energy-thrifty object

detection and tracking software framework for mobile AR. Overall,

our contributions are as follows:

• We develop a framework, MARLIN, to manage the energy us-

age of AR, by mediating between two different object tracking

approaches: tracking by detection using DNNs and incremen-

tal tracking via lightweight methods. MARLIN balances between

achieving good tracking accuracy and energy efficiency by trig-

gering DNNs only when needed. The decreased computation

demands of MARLIN also reduce instances of automatic CPU

throttling and its negative consequences on system performance.

• Within MARLIN, we design a novel lightweight change detector

to determine when to trigger DNN detection, with very low false

positive rates (crucial for reducing energy usage). Our key idea

is to only examine portions of the frame outside of currently

tracked objects to determine if new objects are present, while

also ignoring effects from camera motion and occlusions.

• We implement and evaluate MARLIN on Android smartphones,

using both standard video datasets [37] and through live experi-

ments. Our results show that MARLIN can save energy by up to

73.3%, while losing at most 7.36% accuracy for 75% of the cases as

compared to Tiny YOLO, the best baseline periodic DNN-based

tracking by detection method we found in our experiments. Sur-

prisingly, we find that in 46.3% of the cases, MARLIN both saves

energy and improves accuracy, a win-win situation, compared to

this best baseline. This is becauseMARLIN uses temporal informa-

tion to avoid triggering tracking by detection, when the scene is

noisy and thus detection would likely yield wrong conclusions.

• MARLIN is designed as a general framework that can work with

a developer’s chosen DNN, with or without a mobile GPU, and

still save energy. To illustrate this, we incorporate multiple differ-

ent DNN models (Tiny YOLO [52], MobileNets [56], MobileNets

using mobile GPU [61], and quantized MobileNets [32]) into

MARLIN’s framework, and show that across these models, MAR-
LIN can save energy by 45.1% while losing 8.3% accuracy, on

average (compared to baselines of continuous DNN executions).

2 MOTIVATION
The need for DNNs in emerging AR applications: AR systems

are capable of understanding the 3D geometry of the scene (e.g.,

using simultaneous localization and mapping), but object detection

is needed in AR to determine the locations of the virtual annotations

in the first place [14, 35, 42]. Current AR systems used in practice are

only capable of identifying surfaces or detecting specific instances

of objects. For example, the open-source ARToolKit library [1] is

designed to track specific fiducial markers placed in the scene (e.g., a

QR code), while Google ARCore and Apple ARKit [5, 20] can detect

flat surfaces or specific instances of flat objects (e.g., a specific

magazine cover, but not the general class of magazines). These

object detection capabilities are insufficient for AR applications

such as public safety, where general classes of potentially moving,

non-flat objectsmust be detected and recognizedwith high accuracy

(e.g., moving victims needing rescue).

To demonstrate this, we experimented with a demo ARCore

app [21] to detect objects of interest (Fig. 1a). We supplied ARCore

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

(a) ARCore [20] object detection fails for
non-affine transformations.

Ba
tte

ry
 P

er
ce

nt
ag

e
(%

)

60

80

100

Time (Minutes)
0 20 40 60

(b) Frequent DNN exe-
cutions drain battery.

Figure 1: Detection with ARCore; Energy drain with DNNs.

with an image of a magazine for its internal training. At test time,

ARCore was only able to detect the magazine under certain con-

ditions: if the magazine was flat and non-moving. Based on our

understanding of the code (full details are unknown because the

code is closed source), we hypothesize that this is because ARCore

only searches the camera frame for affine transformations training

set items (i.e., translation, scaling, shearing, or rotations), and only

when the scene is static - a bent object represents a non-affine

transformation from a training image, and thus, detection fails.

Such poor or inaccurate detection/classification could result in

missing or misplaced virtual overlays, potentially obscuring key

portions of the scene and/or confusing the user. Therefore, we argue

that the use of state-of-the-art DNNs, which consistently win the

ImageNet object detection competition [55], is apt in order to cor-

rectly locate and classify the objects in the scene. DNNs are capable

of detecting general categories of objects (e.g., human, animal, ve-

hicles) under a variety of conditions, even if that specific object has

never been seen before in the training set. For example, later in §5.3,

we show that our DNN-based prototype can successfully detect peo-

ple with high precision, even though we never used their specific

images to train the DNN. Compared to classical SIFT features and

other machine learning methods from the AR literature [33, 63, 69],

DNNs provide more than 2× accuracy improvements [71].

Unfortunately, a naive approach of plugging in DNN object detec-

tors into current AR systems is likely to lead to poor performance

due to the uninformed patterns of DNN executions. For example,

ARToolKit runs object detection as often as possible (i.e., tracking by

detection). Modifying its object detector to call a DNN would result

in high energy expenditure due to almost continuous executions.

This is true even when using relatively lightweight, compressed

DNNs (e.g., Tiny YOLO [52]) optimized for mobile devices (more

details later). On the other hand, ARCore and ARKit, to the best of

our understanding (the details are closed-source), only record the

initial pinned location of an object from when it is first detected,

and cannot incrementally track objects while they are moving [21].

Modifying ARCore/ARKit to call a DNN (which may not even be

possible due to their closed-source nature) may improve the initial

placement of the virtual overlay, but the overlay may not be able

to follow moving objects. In our evaluation (specifically Fig. 6 in

§ 5.2), we show that executing an object detector only once at the

beginning of tracking leads to low accuracy.

Energy costs due to frequent DNN executions: To ensure

high object detection and tracking accuracy, a naive method is

to execute DNNs as often as possible, as is done in several prior

works [29, 51, 52]. To showcase the energy drain of such an ap-

proach, we tested state-of-the-art object detection and tracking

Features
System Liu

et
al. [42]

Over
Lay
[33]

ARCore
[20]

Glim-
pse
[45]

Deep
Mon
[30]

Tiny
YOLO
(Default-
DNN)
[52]

MARLIN

Energy efficient ✓ ✓ ✓

No specialized hardware ✓ ✓ ✓ ✓ ✓

No offloading ✓ ✓ ✓ ✓

Real-time updates ✓ ✓ ✓ ✓

Copes with CPU throttling ✓

Uses DNN ✓ ✓ ✓ ✓

Localizes objects ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of MARLIN and related work

u

Frame Buffer

MARLIN
Manager (MM)

Object
Tracker

Overlay
Drawer

Change
Detector

Deep Neural
Network

Object Detector

Frame,
fj

Detected
object locations

Frame +
object locations

fj
Overlaid

frame

Tracked
object locations

change_status

track_status
Display

Camera

fj

fj

Figure 2: Overview of MARLIN’s architecture

on Google TensorFlow, one of the most popular machine learning

platforms. We use a popular object detector for mobile devices, Tiny

YOLO [52], which applies DNNs as often as possible to maximize

the tracking accuracy. This can be expected to result in a rapid deple-

tion of the smartphone battery. To showcase this effect, we perform

experiments on a Google Pixel 2, the results of which are shown in

Fig. 1b. The rapid energy drain is due to the nature of DNNs, which

can contain tens to hundreds of computationally-intensive layers.

Furthermore, executing the same model on another recent phone

(LG G6) caused the CPU to throttle its duty cycle after the first few

minutes of a video, resulting in a significant drop in tracking accu-

racy (details in §5). We also tested MobileNets on Tensorflow Lite,

MobileNets with mobile GPU and quantized MobileNets, and found

that this quick battery depletion due to frequent DNN invocations

holds true regardless of models or GPU offloading (discussed in §5).

Given the above discussion, we argue that a key gap in realizing

object detection and tracking on mobile devices is the lack of a

powerful, adaptive, and intelligent framework, designed with the

resource limitations on the phone (battery, CPU) in mind. Such a

framework should try to achieve a good trade-off between tracking

accuracy and energy efficiency. We design and implement such a

framework, MARLIN, which is described in the following section.

In Table 1, we compare the characteristics of MARLIN with that of

other recent AR systems (details in §7).

3 THE MARLIN FRAMEWORK
MARLIN’s design is predicated upon the following goals:

• Low energy: First, targeted for battery-constrained mobile de-

vices,MARLINmust achieve object tracking with low energy. This

not only prolongs battery life, but also saves energy for other

AR functions not addressed here (e.g., localization [57]).

• Real-time performance: Second, to enable very good AR ex-

perience, the detection and tracking of objects of interest must

be done in near-real time, i.e., the location of each object must

be updated frame to frame (within 33 ms for a 30 FPS camera).

• Multiple accurate annotations: Third, since we seek to over-

lay virtual objects atop the real world, the categories of (multiple)

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

DNN Object Detector

Change Detector

Frame (fj)
Object Tracker

Start Get new frame and
track objects DR?

Wait for a next frame to arrive

true

Object detection
thread

DR
 =
 f
al
se

DR = true

*DR = DNN is Ready

change_status ==
true ?

Detected objects

true

false

true

 track_status <
CORR_THRES?

false
false

true

Figure 3: MARLIN Manager (MM)’s decision flow

real world objects must be classified and their locations must be

determined with high precision.

3.1 System Overview
Fig. 2 provides an overview of MARLIN’s architecture, composed of

pipelined operations from a camera (left) to a display (right). The

input to this pipeline is a frame from the camera and the output

is a view with overlaid augmented objects (specifically, overlaid

bounding boxes in this work) on top of the physical objects (e.g., a

person). Each input frame from the camera is buffered before being

fetched by the “MARLIN Manager” module. From this point, we

abbreviate MARLIN Manager asMM . MM is a real-time scheduler

that assigns each incoming frame to one or more ofMARLIN’s three
modules viz., the object tracker, the change detector, and the DNN

object detector. These modules act as workers for MM, i.e., each

module only processes frames that are assigned to it by MM.

By default, MM assigns a new frame to the object tracker, which
updates the locations of the objects from one frame to the next. It

returns a “track status” which indicates the fidelity of tracking and

alerts MM of any changes to the current set of tracked objects, and

triggers a new DNN execution if needed.

In addition, to check for new objects in a scene (that require

tracking), MM assigns an input frame to the change detector mod-

ule. While many change detection methods exist in the literature

(e.g., [3, 73, 74]), we found experimentally that these approaches

are unsuitable because they detect changes on both existing and

new objects in the scene, resulting in high false positive rates and

many unnecessary DNN executions (the main causes being changes

due to camera movement or minor changes to the objects being

tracked). To tackle this, we designed a new change detector that

ignores objects that are already tracked with high accuracy by the

object tracker, and only analyzes the portions of the frame that are

“external” to the current set of tracked objects. The change detector

issues an alert to MM if there are significant changes in these parts.

MM only sends a frame to the DNN object detector if it needs
to detect/classify new objects in that frame, or when features of

the currently tracked objects change significantly and need to be

detected anew. This is because the DNN is MARLIN’s most energy-

draining module and should only be invoked on a need-to basis.

MM uses tracking information and the change detection in a prin-

cipled way to decide if the frame should be assigned to the DNN.

Finally, the object tracker conveys the object locations and the

class labels to the overlay drawer. The latter draws virtual overlays
(bounding boxes) on top of the actual objects in the frame and

forwards the augmented frame to the display.

3.2 MARLIN Manager (MM)
In this subsection, we describe MARLIN Manager or MM in greater

detail. At a high level, the logic embedded in MM employs the

lightweight change detector and object tracker modules as often as

possible, and triggers the DNN only if either of these modules indi-

cates that a significant change has occurred in a frame (compared

to a prior frame). It uses a “short-circuit OR” decision flow that

only runs the change detector if the object tracker did not trigger a

DNN, thus avoiding wasted computation/energy.

Functional description: Fig. 3 depicts the decision flow exe-

cuted by MM . MM obtains input frames from the camera in the

form of a byte array with dimensions specified by the three color

channels (red, green, blue), and 640×480 pixels (down-sampled

from the original resolution, and configurable by the user). Each

such frame is assigned to the object tracker. MM waits until the

object tracker updates the locations of the objects of interest and

returns the correlation between the tracked objects in the current

frame and in a previous frame (the returned correlation value is

referred to as track_status). This correlation captures the fidelity

of the tracking across frames (details in §3.3). If track_status is
less than a threshold (CORR_THRES), MM attempts to trigger the

DNN. Note here that CORR_THRES depends on the desired fidelity

of tracking. If higher fidelity tracking is needed, smaller changes

(a lower threshold) will need to trigger the DNN (causing these to

be more frequent at the cost of higher energy); a lower acceptable

fidelity translates to a higher threshold.

If the track_status is higher than CORR_THRES (meaning that

there were no significant changes in tracked objects), then the

second operand in the short-circuit OR needs to be evaluated, and

so MM starts a change detector thread. This checks if there are

changes in the background that could also require the invocation

of a DNN. Upon completion, the change detector returns a value

(called change_status) that indicates whether a significant change
in the current frame relative to the immediately preceding frame

was detected (details in §3.4). If a significant change is indicated,

MM initiates an invocation of the DNN.

In order to prevent repeated DNN invocations due to dynamic

changes (e.g., the correlation could be lower for several successive

frames), MM checks if or not a DNN invocation has already been

made in the immediate past by checking a flag variable, DR (for DNN
is Ready). If a DNN thread is already being executed, the flag DRwill
be false and MM will simply abort the DNN execution attempt.

Whenever a DNN is invoked, MM marks the flag DR as false in

order to block other frame assignments to the DNN. Essentially, the

DR flag ensures that there is only one running DNN thread at any

given time, in order to prevent repetitive invocations and thereby

ensure that the CPU does not get overloaded or throttled.

Exceptions: IfMM cannot finish all the above operations before

a new frame arrives, a frame in the buffer is overwritten by a new

one. If the change detector thread takes more than one frame to

finish (and thus does not return a value within a frame), MM will

trigger the DNN at that later time. These exceptions are very rarely

observed in our experiments, and even when observed, the delay

(2-3 frames) does not affect user experience (not noticeable). If

there are no objects being tracked by the object tracker, the tracker

returns a zero correlation value, causing a DNN invocation.

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

3.3 Real-time object tracker
MARLIN needs to continuously track objects of interest (detected by

theDNNmodule) across successive frames, as the objectmoves/morphs

in the scene. To conserve energy, MARLIN’s object tracker needs to
use (a) very lightweight feature extractors and (b) very lightweight

object tracking algorithms. To assess the tracker’s performance

as it runs, we need some metric that can be computed online; the

metric should be able to readily provide a means of determining

when the tracking quality has degraded and a new DNN execution

is needed (to fully refresh the object locations). We discuss these

design considerations and how they influence object tracker design.

Feature extraction: We examined popular feature extractors

in the literature. While SIFT features have been used in previous

AR systems [33, 34, 69], we chose to use ORB (Oriented FAST and

Rotated BRIEF) features in the tracker because they can be extracted

in near real-time even on smartphones. ORB has been shown to

be 14× and 341× faster than SURF and SIFT respectively with very

good tracking precision [54, 67], and we have experimentally veri-

fied that extracting SURF/SIFT features for even a single object in

a frame takes hundreds of milliseconds, while our object tracker,

including ORB feature extraction, takes less than 10 ms (see §5.2).

Object tracking: While heavyweight DNN-based object track-

ers can provide good tracking accuracy (e.g., [31]), these are un-

suitable for mobile devices due to their expensive computation of

multiple DNN layers. Our goal here is to estimate the optical flow
of features, which captures the pattern of motion of objects be-

tween successive frames. Instead of trying to design a method from

scratch, we use the well-known Lucas-Kanade method [6]. This

method estimates the local image flow (velocity) vector (Vx ,Vy)
using keypoints (features) in the window (in this case the object

position box to be tracked) and assumes that these keypoints should

move together with this velocity. It hasm equations (m keypoints)

to solve for two unknownsVx andVy , using a least-squares approx-
imation [43]. It makes three assumptions viz., brightness constancy

(the same keypoint appearing in both images should look similar),

limited motion (keypoints do move very far), and spatial coherence

(keypoints move within a small neighborhood) [43]. This method

has been shown to be well suited for object tracking [15], and our

experiments show that it is also energy-efficient (see Fig. 6 of §5.2).

One important parameter is the neighborhood size that the Lucas-

Kanade method searches to find matching features. If the neighbor-

hood size is too small, the object tracker cannot track fast-moving

objects accurately. If this neighborhood size is too large, the track-

ing latency becomes too large because of the larger sample space

that needs to be examined for feature matching. We empirically

tested this parameter on different videos, measuring the latency and

CPU resources utilized for tracking, and found a size of 7 to yield

both good accuracy and acceptable latency. A neighborhood size

of 7 means that for each feature, the Lucas-Kanade method scans

all the features in a 15 × 15 pixel area to find a matched feature (a

center pixel plus 7 pixels above, below, left, and right).

Metric for tracking accuracy: Unfortunately, tracking is not
always accurate with respect to changes in object locations. To have

a perfect metric to quantify accuracy, we would require the ground

truth information about object locations, but this is impossible to

have in a real-time, online system. Therefore, inMARLIN, we choose

(a) Frame 1 (b) Frame 2 (c) Frame 3
Figure 4: Cross-correlation decreases from 0.92 (frame 1→2)
to 0.69 (frame 2→3) due to occlusion.

to measure the accuracy of the tracker using the normalized cross-

correlation (NCC), which is a well-known technique for template

matching [68]. NCC provides a measure of the similarity between

two images and is given by: NCC (f ,д) = 1

|R |
∑
i, j ∈R f (i, j) · д(i, j)

where, f and д are the two images, R is their (bounding box) area,

and i, j are the pixel locations within the images.

Example: Fig. 4 depicts the car in frame 1 to be traced to find

its new location in frame 2. The object tracker calculates the NCC

between the two boxes by using the above equation, and finds

the correlation value is 0.92. Next, the car is tracked from frame

2 to frame 3; the correlation is 0.69 (frame 3 has occluding trees),

because of a moderate accuracy drop (i.e., the tracked object is 69%

similar to that in the previous frame).

We use a default correlation threshold of 0.3 to trigger the DNN;

we consider that if the similarity is less than 30%, the object must be

lost (the DNN helps detect objects and recovers accurate locations

again). Note that for AR, we need a reasonable level of correlation

with respect to the location of a classified object, and “perfect”

correlation is not needed. A more stringent threshold (e.g., 0.5) will

cause more frequent DNN invocations and thus higher energy. As

shown in §5, our default threshold yields good accuracy.

Runtime execution: Putting all of these components together,

the object tracker functions as follows. The input to the object

tracker is the current frame, and a list of tuples (objectID, class
Label, objectLocation, detectionConfidence) containing in-

formation about the detected objects. objectID is a unique number

associated with each detected object, classLabel is the class to

which the DNN attributes the object (e.g., tiger), objectLocation
is a 4-tuple vector (left, top, width, height) representing the location

of a detected object, and the confidence of the DNN in making the

classification decision is given by detectionConfidence∈ {0, 1}.
For each detected object, the object tracker executes the follow-

ing steps: (i) For the detected object location in frame j (where j
is the most recent frame number seen by object tracker or DNN

execution), extract the ORB features Fj (keypoints); (ii) For the
current frame j + i (i is the number of frames since the last DNN

or object tracker execution), extract the ORB features Fj+i in the

neighborhood of the detected object location from the previous

step. (iii) Use the Lucas-Kanade method to estimate the optical flow

from Fj to Fj+i and estimate a new rectangular box that covers

the matching features. This new box is the updated location of

the object. (iv) Compute the minimum NCC (across all objects)

between the updated and previous locations (track_status) and
pass this to MM, which triggers a DNN execution if this NCC is

below a threshold.

3.4 Lightweight Change Detector
While the object tracker tracks stable objects and triggers a DNN

only when significant changes occur relating to these (i.e., a per-

son’s posture changes by quite a bit), MARLIN must also be able to

handle new objects that appear in the scene (e.g., a person appears).

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

To this end, we design a change detector which detects changes

not pertaining to the objects already being tracked (i.e., new ob-

jects coming into view); such changes would also trigger the DNN.

The key challenge in designing such a change detector is avoiding

high false positives with respect to previously tracked objects (caus-

ing extraneous DNN executions). However, our experiments with

existing approaches [3, 73, 74] show high false positive rates of

approximately 20-100%, resulting in numerous unnecessary DNN

executions consuming high energy, even on a simple video with

one slowly moving object and a moving camera (detailed results

omitted due to space). Towards preventing such false positives, our

key idea is to “hide” existing objects from the change detector by

changing the corresponding pixels to a common value, whose value

does not change across frames.

Functional description: When the change detector receives a

frame (and the locations of currently tracked objects) from MM,

it converts the frame into a feature vector via the following steps:

(i) It first colors all rectangular boxes corresponding to the loca-

tions of the currently tracked objects white (maximum pixel in-

tensities for red, green and blue channels) to generate what is

called a colored_image (example in Fig. 11); (ii) It resizes this to
128 × 128 pixels to form a new image (resized_colored_image),

and also calculates the histograms of the red, green, and blue

channels of resized_colored_image; (iii) Finally, it recasts re-
sized_colored_image, which is a 2D array of pixels, into a single

row vector, and appends the three histograms to the end of the

row (resulting in another row vector). Thus, it converts an input

image of size 640x480x3 (width, height, channels) into a feature

vector of size 1x49920 of floating point numbers. This means that

we compress it by a factor of 18 (from 921,600 to 49,920 numbers)

because we want to quickly perform change detection and do not

need all information contained in the frame. Specifically, we fo-

cus on the color features and do not use other features such as

keypoints, which we experimentally found to be computationally

expensive (also shown in [16]).

We reiterate that any changes to tracked objects (now “whited

out” in step (i) above) are handled by the object tracker. To detect

changes external to these objects, MARLIN uses a random forest

classifier with the color features as the input vector. The forest con-

sists of 50 decision trees (total 55,796 nodes). Each (binary) tree has

a maximum depth of 20 and each node in the tree is a logical split

that takes a variable (an element in the feature vector) and checks

its value against a threshold that was learned during model training

(details in §5.1). These thresholds represent natural colors of back-

grounds (e.g., sky or grass or whited-out pixel) and foregrounds

(e.g., tiger or elephant) in order for each node to decide whether

or not this frame contains a significant change. The output of each

tree is obtained by reaching a leaf node (after moving through splits

down the tree) and the final detection result is by a majority vote

across all the trees. We also tried other lightweight classifiers such

as Support Vector Machines, but found experimentally that random

forest had the highest change detection accuracy.

Runtime execution:MM invokes the change detector after the

object tracker, which provides the updated objects’ locations in

the current frame. The change detector then uses the supervised

classifier to detect changes to the input feature vector. It inputs

Layer Filter Size Stride # Params Layer Filter Size Stride # Params
c1 16 3 × 3 1 448 c5 256 3 × 3 1 295,168
m1 2 × 2 2 m5 2 × 2 2
c2 32 3 × 3 1 4,640 c6 512 3 × 3 1 1,180,160
m2 2 × 2 2 m6 2 × 2 2
c3 64 3 × 3 1 18,496 c7 1024 3 × 3 1 4,719,616
m3 2 × 2 2 c8 1024 3 × 3 1 9,438,208
c4 128 3 × 3 1 73,856 c9 175 1 × 1 1 179,375
m4 2 × 2 2 r

Table 2: MARLIN’s DNN architecture (based on [52]).

the above feature vector to the classifier and outputs 1 (change

detected) or 0 (no change detected).

Exceptions: In most cases, the change detector reports a change

prior to the handling of the subsequent frame. If in the rare case,

the change detector finishes its checks after a subsequent frame

arrives, the change detection result will be used by MM to trigger

the DNN (if needed) as soon as the result is received.

3.5 DNN based Object Detector
Next, we briefly describe the DNN module within MARLIN.

Functional description: The input frame received by the DNN

module fromMM is passed through 16 layers (using the recognize
Image() method of Tensorflow) sequentially as shown in Table 2,

where ci , i ∈ {1, 9} represents a convolutional layer,mk ,k ∈ {1, 6}
is a maxpooling layer, and r is a region layer which outputs the

final prediction results containing object locations, class labels, and

confidence values. The output of c9 has a dimension of gridWidth
× gridHeight × boxes × (classes + 5), where gridWidth and

gridHeight are grid dimensions corresponding to the input frame,

boxes is the number of prediction candidate boxes for each grid cell

and classes is a list of class probabilities (a value for each class)

with respect to object classification. The additional 5 dimensions

represent the “objectness” of the predicted box (i.e., the probability

that the box contains an object) and the box location (x,y,w,h).
At layer r , a softmax function [7] outputs the confidence that an

object belongs to a class. The confidence is computed as confidence
= objectness × class_prob, where class_prob is the maximum

value from the list of probabilities of belonging to the various classes.

If for a given prediction candidate box, confidence is less than a

threshold, that prediction box is ignored. In our evaluations, we set

this threshold as 0.25 because this means that a box will be accepted

if objectness and class_prob are both greater than 0.5. We have

empirically found that this threshold yields a reasonable balance

between object plausibility and the number of objects detected.

In summary, for each prediction box, the DNN predicts a center

point, width, and height of an object, and how likely it is that the

box contains an object (objectness). It finally outputs the class to

which the object in the box most likely belongs (class_prob). Tiny
YOLO computes these via a single pass through the network (from

the image to the prediction), making it one of fastest DNNs for

object detection on mobile platforms (latencies of state-of-the-art

DNNs are compared in [53]). We also evaluate other possible DNN

model choices in §5.2.1. Note that MARLIN executes pre-trained

DNNs for real-time inference, with training being performed offline

without power constraints (training details provided in §5.1).

Exceptions: If the DNN takes too long to complete, the object

tracker has to track incrementally. It is possible that between the

time that the DNN receives an input frame i and returns a result in

frame i + j , there is a significant temporal distance, resulting in the

object tracker failing to find the objects in frame i+ j detected by the

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

DNN in frame i . If this happens, MM will invoke the DNN module

again until tracking by detection succeeds in finding objects.

4 IMPLEMENTATION
We next briefly describe MARLIN’s implementation, which realizes

seamless interactions between multiple Android classes/threads.

Platform:We implement MARLIN on Android phones (LG G6

and Google Pixel 2 running Android 7.0 and 8.0, respectively). We

use the TensorFlow [58] and OpenCV libraries [8] to implement

the DNN and image manipulation functionalities, respectively.

Module implementation:MM runs within a CameraActivity

class that extends Activity, the main UI class in Android. It starts

when the MARLIN app is invoked by the user. A new frame is

buffered in a byte-array in shared memory and MM fetches it once

the memory has been written (subsequently the frame is dispensed

to the other modules). Object Tracker is an instance of the class

MultiBoxTracker, and provides methods for other components

that want to exchange shared information. It runs in themain thread

because it is fast (6-10 ms per frame with multiple objects) and does

not block the UI. Change Detector is a background thread that

copies a new frame from MM and calls getTrackedBoxes() of the

object tracker to get the set of currently tracked objects; it also runs

the algorithm in §3.4 to detect changes. DNN is also implemented

as a background thread. A DNN thread can be interrupted and can

save its intermediate results for further processing when it resumes.

This allows the main UI thread to have access to the CPU even

when a DNN thread is being run (so that the app is responsive to

the user at all times). Overlay Drawer is a callback thread of the

OverlayView Android class and fetches a list of tracked objects

from the object tracker and draws them on the frame.

Information sharing: We use methods to pass parameters

to/from the object tracker and use shared memory to communicate

for real time operations. MM copies a frame to the working threads

(change detector or DNN) only if it decides to call one of them.

Frame Synchronization:We use frame sequence numbers to

ensure that the different components are synchronized with respect

to frames. MM increases the frame sequence number by 1 for each

new frame and is the only entity that can update this number.

Logging: MARLIN is instrumented to log CPU frequency, CPU

temperature, locations of tracked objects in the scene, and the la-

tency of each component ofMARLIN. Object location: In the object

tracker code, we log frame identifiers, object locations, and class la-

bels into storage, and use these logs to compute the accuracy offline.

Energy: Since the phones do not provide direct physical access to

the battery, we use software tools to measure energy consumption.

On the LG G6, we use Qualcomm’s Trepn Power Profiler app [49],

and on the Google Pixel 2, we use Android system logs (due to

Trepn’s lack of support for the Google Pixel 2). Specifically, we

read the Android virtual files current_now and voltage_now from
the /sys/class/power_supply/battery/ directory to obtain cur-

rent and voltage (used to compute power). The battery level values

are read from the ACTION_BATTERY_CHANGED Android system vari-

able. CPU: We read the CPU frequency and temperature from the

virtual files scaling_cur_freq and thermal_zone10/temp every

200 ms. The CPU load is then estimated as
cpu_f r eq

maximum_f r eq × 100.

We estimate these metrics because recent Android versions since

Marshmallow adjust CPU frequencies in response to load (here

mainly DNN executions) in real-time [19].

5 EVALUATIONS
In this section, we describe the experimental evaluations ofMARLIN.
We first provide brief discussions on details such as our training

and test sets and the metrics for evaluations.

5.1 Prerequisites and Metrics
Baselines, Model Training and Inference:We first describe the

baselines used for comparisons and the training and test datasets

that we use.

Baselines: We consider five different DNN models and perform

continuous invocations of these as our baseline cases; we also con-

sider a subset of these models as appropriate as the DNN object

detector in MARLIN. The five models are abbreviated as follows: (a)

YOLO [52], which is a 30-layer DNN detector that provides high

accuracy on servers but is typically not used in mobile systems

because of its high power consumption and latency; we consider it

for completeness but do not use it as an object detector in MARLIN.
(b) Tiny YOLO or TYL, which is a compressed 16-layer version

of YOLO. (c) MobileNets [56] or MNet, which is trained and run

on the Tensorflow Lite [60] framework. Tensorflow Lite is Tensor-

Flow’s lightweight platform for mobile and embedded devices; this

provides us with insights with regards to MARLIN’s energy sav-

ings capabilities on an already optimized mobile software platform.

(d) MobileNets using mobile GPU orMNet-GPU, which offloads

expensive computations to a GPU for low power [30, 39]. (e) Mo-

bileNets quantized model or MNet-Q, which quantizes the DNN

weights in order to reduce execution latencies, and possibly also

the DNN execution energy [25, 32].

In terms of notation, when we consider the continuous invoca-

tions of one of these DNN models, we include the prefix “Baseline”

(e.g. Baseline-TYL). When we use a DNN model as the object de-

tector in MARLIN, we apply the prefix “MARLIN" (e.g. MARLIN-TYL).
Because we experimentally find that Tiny YOLO has the best accu-

racy compared to the other models, we later consider it both as the

baseline and as the object detector inMARLIN; thus, we subsequently
refer to “Baseline-TYL” as “Default-DNN” and to “MARLIN-TYL” as
“MARLIN”. Further details are provided in §5.2.

We also compare MARLIN with handcrafted approaches that in-

voke the Tiny YOLO DNN after skipping a fixed (K) number of

frames; the extreme case is when K = ∞; i.e., when incremental

tracking is used continuously after the initial detection, which we

call Inc. Track. Our baselines are inspired by similar approaches

from the literature (e.g., continuous DNN invocations [30, 51], in-

cremental tracking [57], periodic DNN executions [72]).

Model Training and Inference: In this section, we describe our
machine learning model training and testing methodologies.

DNN model training: We train these models with the ImageNet

video dataset [55], consisting of 3,862 video clips (1.1 million frames)

containing 30 categories of objects, with ground truth labels pro-

vided. We split the dataset and use 95% for training and 5% for

validation. We calculate model accuracy on the validation set every

ten training epochs to check if the model was overfit (accuracy

starts to fall). For YOLO models, we adjust learning rates relative

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

to training epochs as specified in [52], and for MobileNets models

we use learning rates specified in the default training scripts [59].

Change detector model training: The change detector is imple-

mented as a random forest classifier trained with 100,000 video

frames from the ImageNet dataset. Because the video clips were

of different lengths, to avoid biasing the change detector towards

longer videos, we randomly chose 30 frames from each video for

training. The training set is divided into four subsets: (1) unmodi-

fied frames with at least one new object (change_status is true);
(2) frames with existing tracked objects colored white but with at

least one new object in the background (change_status is true);
(3) frames where all objects in the scene were already tracked and

colored white (change_status is false); (4) unmodified background

frames with nothing else (change_status is false). This labeling re-
sulted in 50% of the training set being labelled with change_status
is true and the other 50% labeled as change_status is false.

We experimented with various classifiers (random forest, sup-

port vector machines, shallow neural network), and with other

input features (e.g. edges, colors, histogram of gradients). On the

10,000-frame validation set, the random forest classifier using color

histogram and pixel input features (details in §3.4) achieved the

best performance across all tested models, with 88.0% precision and

81.7% recall on the binary classification task. In comparison, e.g.,

SVM using HOG features has 64.9% precision and 61.4% recall.

Model inference: After training the models offline on a server, we

load them on Android phones with the appropriate TensorFlow and

OpenCV libraries. While we evaluate the system performance using

accuracy and energy metrics (details upcoming), DNN inferences

are called by MM. Note that neither the DNN models nor change

detector models see the test videos during training time.

Metrics: We evaluate MARLIN ’s accuracy in classification and

tracking and its energy consumption.

Accuracy metrics: To quantify the accuracy of classification

and tracking we use the following metrics [11, 66]:

• Average Classification Precision (ACP): Given frame i , we compare

the predicted class labels with ground truth labels and count all

the matches as true positives (TP). We count unmatched labels as

false positives (FP). Then, the ACP of frame i is ACP i =
T P

T P+F P .

The ACP of a video is computed as the average ACP of its frames.

• Average Intersection Over Union (IOU): If the predicted class label

of an object matches a ground truth label, we calculate the IOU as

the overlap between the predicted and ground truth regions. We

perform dataset experiments where we use the provided ground

truth data; we also do live experiments where we use a powerful

object detectionmethod, viz., YOLO (details in §5.3) as the ground

truth. The IOU of object j in frame i is IOU i
j =

RGj ∩R
P
j

RGj ∪R
P
j
, where

RGj is the ground truth region of object j , and RPj is the predicted

region of object j . We average the IOU for all the predictions per

frame, and finally average the IOU across all frames in the video.

We point out that even the state-of-the-art object trackers achieve

at best a 65% location accuracy [11] using the IOU metric (for

example, a 65% IOU corresponds to 79% of the predicted region

overlapping with the ground truth region, if both regions have the

same area, using the equation above). These accuracies suffice for

the applications we have in mind; the relatively low accuracy only

IO
U

 (%
)

0
20
40
60
80

MARLIN
-M

Net-
Q

MARLIN
-M

Net-
GPU

MARLIN
-M

Net

Base
lin

e-M
Net-

GPU

Base
lin

e-M
Net-

Q

Base
lin

e-M
Net

Base
lin

e-Y
OLO

MARLIN
-TYL

Base
lin

e-T
YL

Po
w

er
 (W

)

0

2

4

Base
lin

e-Y
OLO

Base
lin

e-T
YL

Base
lin

e-M
Net

Base
lin

e-M
Net-

Q

Base
lin

e-M
Net-

GPU

MARLIN
-TYL

MARLIN
-M

Net

MARLIN
-M

Net-
GPU

MARLIN
-M

Net-
Q

Figure 5: With four different DNN models, MARLIN saves
45.1% power while losing 8.3% IOU, on average.

causes small displacements of the real-world objects, and thus does

not majorly affect the placement of augmented objects.

Energy metrics: We use power and battery life to evaluate the

energy consumption of MARLIN. We log energy samples every 200

ms (as detailed in §4) and compute the average over the period of an

experiment to compute power. To measure the energy of MARLIN’s
individual components, we successively enable each component and

estimate the additional energy consumption as that component’s

power. For example, if we measure the OS plus screen as consuming

1000 mW, and then enable the camera and measure a total power of

2800 mW, we esimate the camera’s power as 1800 mW. To compute

battery life, we record the starting battery level (bs) and the final

battery level (bf) in each experiment (according to §4). We then

perform linear regression to estimate the total battery life as BL =
p×100

(bf −bs)×60
, where p is the duration (minutes) of each experiment.

5.2 Offline Dataset Experiments
First, we evaluate MARLIN’s performance offline on a standard

video dataset with known ground truth, across a diverse set of

environments. Our complete dataset includes 80 test videos [37]

with a variety of objects (e.g., trains, animals, cars), single and multi-

object scenes, and fast and slow-moving scenes, meant to emulate

a variety of settings under which AR could be used. In each video,

the number of objects varies between 1 and 15, and the average

object motion between consecutive frames (the Euclidean distance

between an object’s center in frames i and i + 1) ranges from 0.5

to 10.7 pixels. Since the videos are relatively short (hundreds of

frames), and wewant to capture the effect of a longer AR experience

within the same environment, we loop the videos to have a total

duration of 10,000 frames per video. We allow a 5-minute cooldown

period between each video to reset the phone’s state.

To begin with, to keep the time duration of experiments within

reason (given the limited number of phones at our disposal), we

consider 15 videos and compare the performance ofMARLINwith all

the baselines and DNN models described earlier, as well as several

handcrafted frame skip approaches. Each set of experiments with

a given DNN takes three hours (running 15 videos, cool down,

phone recharging). These experiments represent different types of

object classes and various levels of motion. From § 5.2.3 we present

experimental results with the entire set of 80 videos and compare

the performance of MARLIN with the best found DNN (Tiny YOLO).

5.2.1 Comparison with the baseline approaches. Compared to
continuous executions of compressed DNNs that are opti-
mized for mobile devices, MARLIN reduces power by 45.1%
while losing 8.3% IOU, on average. We plot the average power

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

IO
U

 (%
)

0

20

40

60

Inc. T
rac

k

K=Vari
ed

K=160 K=80
K=40

MARLIN

Defa
ult-D

NN

Po
w

er
 (W

)

0

2

4

Defa
ult-D

NN
K=40

MARLIN

K=Vari
ed

K=80
K=160

Inc. T
rac

k

Figure 6: Compared to only tracking or periodic DNN execu-
tions, MARLIN has higher accuracy and/or lower energy.

and accuracy of the various approaches considered in terms of IOU

in Fig. 5. First, we note that uncompressed YOLO consumes themost

power due to its model complexity, but its average IOU over time

is lower than Tiny YOLO (its compressed counterpart) due to its

high detection latency (4500 ms vs. 1200 ms). This is because when

detection latency is high, YOLO fails to detect fast-moving objects

(e.g., a landing airplane) in time. Therefore, we focus on compressed

and optimized models such as Tiny YOLO and MobileNets.

Second, we note that continuous execution ofMobileNets (Baseline-

MNet) achieves lower IOU and consumes similar energy to continu-

ous execution of Tiny YOLO (Baseline-TYL)
1
. Third, MARLIN with

MobileNets (MARLIN-MNet) saves 42.8% power consumption with

a 10.6% reduction in IOU, compared to a continuous execution of

MobileNets (Baseline-MNet-GPU). Similar energy savings hold for

MARLIN with Tiny YOLO (MARLIN-TYL vs. Baseline-TYL), and for

MARLIN with quantized MobileNets (MARLIN-MNet-Q vs. Baseline-

MNet-Q). Fourth, with regards to the MobileNets variants, (regu-

lar) MobileNets, quantized MobileNets, and MobileNets with GPU

achieve similar accuracy; in terms of power, mobile GPU and model

quantization save 29.3% and 21.3%, respectively (Baseline-MNet-

GPU, Baseline-MNet-Q vs. Baseline-MNet). The key observation is

that even though the use of the mobile GPU already saves 29.3%

of power, MARLIN can further save an additional 37.1% (on top),

with a hit of just 9.9% in terms of IOU (MARLIN-MNet-GPU vs.

Baseline-MNet-GPU). Overall, these results suggest that MARLIN is

a general framework that is useful across a variety of compressed

DNN models, even with a mobile GPU. Because it exhibits the

highest accuracy (and similar power consumption to other DNN

models), we use Tiny YOLO as the default baseline (default-DNN)

and as MARLIN’s object detector in all subsequent experiments.

5.2.2 Comparison with other hand-crafted approaches. MARLIN
achieves 19× higher accuracy than the incremental track-
ing approach, and lower energy for the same accuracy com-
pared to the best constant skip approach. We compare MAR-
LIN against a constant skip approach (with different skip periodicity

K = 40, 80, 160) and an incremental tracker baseline (“Inc. Track”)

in Fig. 6 for 15 different videos, where the average number of frames

between DNN invocations by MARLIN ranged from 38 to 833. First,

we see that “Inc. Track” suffers from very low accuracy compared

to all other approaches (19× lower than MARLIN); this is because
when the tracker loses track of objects, there is no recovery from ob-

ject (re)detection available; thus, we do not consider this approach

further. MARLIN achieves comparable IOU with the best constant

1
The standard deviation of the IOU for MobileNets tends to be higher than that of

Tiny YOLO because MobileNets sometimes misclassifies objects when they are small

or blend in with the background, leading to low IOU. See §6 for further discussion.

OS + Screen Camera Object Tracker Change Detector DNN
Power 0.9 - 1.1 1.9 - 2 0.2 - 0.3 <0.1 1.7 - 1.9
Latency - - 8 ± 2 4 ± 1 1100 ± 100

Table 3: Power (W) and latency (ms) ofMARLIN’s components.

skip approach (K = 40) but consumes 26% less power because it

intelligently chooses to trigger fewer DNNs. Moreover, even if we

“cheat” by hard-coding the value ofK to the average value as chosen

by MARLIN for each video (K = Varied), the accuracy of MARLIN is

still higher on average because MARLIN chooses when to invoke

the DNN, as opposed to fixed periodic executions that ignore the

scene content. Finally, default-DNN has the same high accuracy as

MARLIN but consumes significantly more energy because it invokes

additional unnecessary DNNs.

5.2.3 A closer look at energy and accuracy. MARLIN extends the
battery life by 1.85× on averagewith a small accuracy loss.To
see whether MARLIN can achieve good performance across a range

of videos, we next evaluate the energy savings withMARLIN across a

larger test set of 80 videos, and also examine the associated accuracy

penalty compared to the default approach, which runs Tiny YOLO

as often as possible. In Fig. 7a, we plot the mean and standard

deviation of the ACP and IOU across all frames of all videos. For

the same experimental runs, we plot the power and battery life in

Fig. 7b. These results show that MARLIN reduces power by up to

73.3% (34.5% on average), and extends battery life by 1.85×, with

a small loss in accuracy (< 10%). This is because MARLIN triggers

tracking by detection significantly less often.

Beyond averages, we also compute the relative power per video

as

pd−pp
pd

, where pd is default-DNN’s power consumption and pp is

MARLIN’s power consumption. Fig. 8 shows the CDF across videos,

and we see that for 75% of the videos, MARLIN reduces power by at

least 19% and extends battery life by at least 13%. Also, in 25% of the

cases, MARLIN extends the battery life or reduces power by at least

50%. There are only 10% of cases wherein we do not see energy

savings; a closer look reveals that these videos have very complex,

high motion scenes; thus, DNN-based detection is necessary almost

continuously, and MARLIN behaves similarly to default-DNN.

Finally, Table 3 shows a zoomed out view of the power and

latency of each component of MARLIN. The results confirm that

MARLIN’s non-DNN components are lightweight, and focusing on

the DNN executions which comprise a large portion of the total

energy is key to reducing the overall power consumption.

For 75% of the videos, MARLIN results in at most a 7.3% hit
in ACP and a 18% hit in IOU. To understand the performance of

MARLIN further, we calculate the relative accuracy of object detec-

tion and tracking across videos when using MARLIN and default-

DNN (calculation similar to relative energy). The CDFs of relative

accuracy in terms of ACP and IOU, across the videos in the test set,

are shown in Fig. 7c and 7d. For 75% of the videos, MARLIN results

in a hit of ≤ 7.3% (ACP) and ≤ 18.0% (IOU). These modest drops

show that MARLIN performs well while ensuring low power in

tracking object locations and labels between frames. We note that

approximately half of the tested videos are challenging due to fast

motion or multiple objects, thus making this result very promising.

Surprisingly, for 46.3% of the videos,MARLIN both achieves
better ACP and consumes less energy.We see from Fig. 7c and

7d that for a significant fraction of the test videos,MARLIN improves

accuracy compared to default-DNN. A closer look indicates that

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

Default-DNN MARLIN

A
cc

ur
ac

y
(%

)

20

40

60

80

100

ACP IOU

(a) Absolute accuracy

Default-DNN MARLIN

Po
w

er
 (W

)

2

3

4

Battery Life (H
our)1

2

3

4

5

PW BL

(b) Absolute energy

CD
F

0

0.5

1.0

Relative ACP (%)
−200 −100 0 100

(c) Relative ACP

CD
F

0

0.5

1.0

Relative IOU (%)
−50 0 50

(d) Relative IOU

Figure 7: MARLIN saves energy with mimimal ac-
curacy degradation.

CD
F

0

0.5

1.0

Relative Power (%)
0 50

CD
F

0

0.5

1.0

Battery LIfe Extension (%)
0 100

Figure 8: Per video, MARLIN uses less power (left) and extends
battery life (right), relative to the “default-DNN”.

Default-DNN MARLIN

CP
U

 L
oa

d
(%

)

80

90

100

CPU
 Tem

p (Celcius)

35

40

45

Load Temp.

CD
F

0

0.5

1.0

CPU Load (% Decrease)
0 10 20

CD
F

0

0.5

1.0

CPU Temp. (% Decrease)
0 50

Figure 9: MARLIN reduces CPU load and temperature (left), rel-
ative to the “default-DNN” (center, right).

for 46.3% of the videos, MARLIN both reduced energy and resulted

in higher ACP compared to default-DNN. We find that these cases

typically related to videos with a zooming or shaky camera. We

will further discuss these special cases next in §5.2.4.

5.2.4 Sample Case Studies. We next present two sample case stud-

ies to provide an understanding of why MARLIN sometimes im-

proves accuracy in addition to saving energy; other such cases

typically relate to zoomed in frames, occlusions, or cluttered scenes

where by using tracking or change detector features, MARLIN re-

duces DNN invocations that cause false positives/wrong detection.

In the case study of a zoomed-in video, MARLIN has a 55%
gain in ACP and saves 2,500 mW in power. In this video, the

camera is zoomed in on a hamster. In the top two rows in Fig. 10, we

plot the IOU over time for default-DNN and MARLIN. We see that

default-DNN maintains a reasonable IOU by executing tracking

by detection frequently (the dense vertical purple lines), while

MARLIN actually improves IOU over time. This is becauseMARLIN ’s

incremental tracking and change detection use themanually-chosen

ORB and color features that are stable over time. Thus, DNNs are

hardly invoked. The stability of these features is seen in the bottom

two plots in Fig. 10; we show the Euclidean distances between color

feature vectors across frames (used by the change detector) and

the Hamming distances between ORB feature descriptors between

consecutive frames (used by the object tracker).

In contrast, default-DNN chooses features automatically and

frequently (with hidden convolutional layers), ignoring temporal

correlation and causing the IOU to suffer
2
. More importantly, it

yields false positives with respect to detected objects on many

invocations. To illustrate this, consider Fig. 11. At frame 1253, both

default-DNN andMARLIN detect the hamster correctly in the middle

of the frame. The former then triggers the DNN again, which returns

two objects in frame 1272: a hamster (true positive) and a dog (false

positive) at the right bottom corner. MARLIN, however, continues
to track the hamster found in frame 1253 and does not cause an

erroneous DNN result in frame 1272. In frame 1272, MARLIN’s
precision is 100% while default-DNN’s precision drops to 50%. We

2
DNNs that use temporal structure of videos have only been recently studied, e.g., for

activity recognition [10] or object tracking [31], and are more complex/high energy [9].

find that this effect repeats for this video and thus, while default-

DNN only achieves an overall average ACP of 57% and an IOU of

54% with 400 DNN executions, MARLIN achieves an overall ACP of

87% and IOU of 69%, with only 12 DNN executions. This saves 2500

mW of power and extends the battery life by 3.5 hours.

In the case of a shaky video, MARLIN improves the IOU by
52%. An elephant is the focal point of this video, but it is sometimes

occluded and suffers from the shaky motion of the camera. We find

that only about half of the frames serve as good inputs to the DNN

module. Both default-DNN andMARLIN have lower IOUs due to the

challenging scene, but MARLIN achieves a 35% IOU while default-

DNN only achieves 23%. This is because MARLIN’s incremental

tracking ignores moderate noises in the scene (e.g., blurry/partially

occluded frames), while default-DNN often performs DNN-based

detection on such frames and captures poor object features for

tracking. For example in Fig. 11, at frame 1729 with both methods,

the DNN detects the elephant and outputs a box centered on the

elephant and covering most of the body. However, at frame 1748,

default-DNN triggers the DNN again but now the center of the

elephant is falsely identified to be near the tail. This causes the

prediction box to shrink, and the IOU is thus only 40%. MARLIN,
on the other hand, does not trigger the DNN since its incremental

tracking outputs a more accurate box with an 83% IOU, and the

whiting out of the elephant also does not trigger the change detector.

5.2.5 Impacts on Mobile CPU. For 60% of the videos,MARLIN re-
duces the load and temperature by 10% and 26% or more, re-
spectively. We measure the CPU load and temperature with MAR-
LIN and compare these to those with default-DNN. Lower CPU

load leaves more computational resources for other AR tasks (e.g.,

pose estimation, lighting estimation), and a lower CPU temperature

means a more comfortable user experience when holding/wearing

the AR device. Fig. 9 (center and right) shows that in 60% of the

cases, the CPU load and temperature are reduced by at least 10% and

26%, respectively (averaged across all 8 cores of the Google Pixel

2 phone). Despite the CPU’s cooling technology and operation

in a temperature-controlled 20
◦
C room, MARLIN reduces the CPU

temperature by 4.88
◦
on average (Fig. 9 left).

MARLIN significantly helps in coping with CPU frequency
throttling. Automatic CPU throttling lowers the CPU frequency

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

Object tracker's input (ORB) features

Change detector's input (color) features

Default-DNN

MARLIN

DNN triggered by object tracker

Almost continuous DNN triggers

H
am

m
in

g
(%

)

0

50

100

Eu
cl

id
ea

n
(%

)

0

50

100

IO
U

 (%
)

0
50

100

IO
U

 (%
)

0

50

100

Frame Index
0 5,000 10,000

Figure 10: Case study. MARLIN achieves higher IOU
using incremental tracking, rarely invoking DNNs
due to the color/ORB features’ stability.

hamster

ha
m

st
er

hamster

dog

Default-DNN

MARLIN

Frame 1253 Frame 1272

elephant

elephant

Frame 1748

Frame 1729

Defa
ult-

DNN
MARLIN

Frame 1748

ha
m

st
er

Frame 1272

elephant

elephant

Figure 11: Sample frames of 2 case studies. MARLIN (solid green) is ro-
bust to small variations of currently tracked objects, while default-
DNN (dashed yellow) re-triggers the DNN resulting in poor detection.

based on the load to help conserve energy and reduce the tempera-

ture of the chip, and is enabled by default on recent smartphones.

While we did not observe CPU throttling on the Google Pixel 2

phone (due to several optimizations [2, 38]), we investigate how

MARLIN performs when compared with default-DNN on older pro-

cessors. Our goal is not to reduce throttling on mobile devices in

general, for which methods exist (e.g., [47]), but rather to reduce

throttling in the context of object detection and tracking, especially

on less powerful mobile devices. Towards this, we next perform

experiments on the LG G6, which has a slightly older processor

(Qualcomm Snapdragon 821). On this phone, we see that all 4 CPUs

work at full speed when executing the DNN, and are automatically

throttled after a few minutes of execution. The CPU frequency

drops from 1.6 to 1.06 GHz on the two little cores and from 2.35

to 1.06 GHz on the two big cores [41]. Because of this, the power

consumption is reduced for default-DNN as shown in Fig. 12b, but

MARLIN further improves energy efficiency on the CPU-throttled

phone (more power reduction).

Interestingly, we find that CPU throttling causes a 2× increase

in the DNN execution latency (taking 1221-2553 ms to execute)

and a 80% increase in the object tracker’s execution latency (taking

24 ms-43 ms). Thus, DNN-based detection fails more frequently

because the scene has already changed by the time the result is

returned, especially in moderate to fast motion videos. Figs. 12a

and 12b depict the significant decrease in accuracies as compared to

a non-CPU-throttled phone; specifically, default-DNN takes a hit of

49.2% in ACP and 54.0% in IOU when throttled.MARLIN triggers the

DNN less often, reducing the frequency of CPU throttling, and this

improves the accuracies on average. We see this when we compare

the relative accuracies of default-DNN and MARLIN on the CPU-

throttled phone: for 80% of the videos, MARLIN has a higher ACP

and IOU, by an average of 44.0% and 38.7%, respectively (Fig. 12c).

5.3 Live Experiments
To showcase MARLIN’s proof-of-concept prototype and evaluate its

real-time performance, we perform live experiments in our lab. We

train the object detector to detect and overlay virtual objects on peo-

ple, using VOC2007, VOC2012 [17], and Penn-Fudan Pedestrian [64]

datasets for training. We load the trained DNN onto two identical

phones (Google Pixel 2), configuring one to run default-DNN and

the other, MARLIN. One person holds the two cameras side-by-side,

and we request a few student volunteers (2-3) to appear in front of

the cameras and act as specified in the scripts shown in Table 5 and

a screenshot is shown in Fig. 13. Each trial lasts 30 minutes and the

process was approved by our institution’s IRB.

Since we do not have ground truth for these live experiments, we

use a more powerful DNN-based tracking by detection algorithm

(YOLO [52]) to analyze the video offline on a 12-core Intel Xeon

server with 32 GB of memory, and generate annotations considered

as ground truth. We also visually inspect a subset of the results to

confirm that this is in fact the ground truth.

In live experiments, MARLIN uses only 18% of power con-
sumed by default-DNNwith negligible loss in accuracy, run-
ning at 29-30 frames per second. 30 frames per second is consid-

ered good real-time performance for object tracking [14]. Table 4

comparesMARLIN’s performance with that of default-DNN. In both

trials,MARLIN achieves comparable accuracy to that of default-DNN

while significantly saving energy. Note here that when measuring

the energy, we are careful to remove the consumption caused by

auxiliary factors (e.g., the screen and the camera), which are com-

mon to both default-DNN andMARLIN. In the first trial,MARLIN uses

only 18% of the power compared to default-DNN, and in the second

trial, MARLIN uses 51% of the power. The second trial consumes

more energy because the human subjects in that trial were slightly

more active (more motion). Both MARLIN and default-DNN achieve

comparable accuracy in terms of ACP and IOU.

Downloadable software: Our software is downloadable from
the project website [4] and tested on smartphones. BothMARLIN and

default-DNN methods are provided to enable a relative comparison

between the two approaches. Note that when testing with much

older phones, theymay heat up and cause CPU throttling, impacting

both schemes.

6 DISCUSSIONS
Classification accuracy: If the DNN is not trained sufficiently

and does not achieve high classification accuracy, this may result

in mis-labeling of objects in the scene, and cause the object tracker

to either (a) track the wrong objects, or (b) track the right objects

but with the wrong label (e.g., track a sheep which is mis-labeled

as a horse). Quantitatively, this will manifest itself as low average

IOU, since having the correct object label is necessary for a non-

zero IOU (see the IOU definition in §5.1). We have observed such

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

Default-DNN MARLIN

Non-throttle-CPU

Ac
cu

ra
cy

 (%
)

0

50

100 Pow
er (W

)

1
2
3
4

ACP IOU Power

(a) Google Pixel 2

Default-DNN MARLIN

Throttle-CPU
Ac

cu
ra

cy
 (%

)

0

50

100 Pow
er (W

)

1
2
3
4

ACP IOU Power

(b) LG G6

IOU
ACP

C
D

F

0

0.5

1.0

Relative Accuracy (%)
−200 0

(c) Relative accuracy
Figure 12: On a phone with automatic CPU throttling, MAR-
LIN improves accuracy compared to default-DNN.

Method
Accuracy Energy Consumption

ACP (%) IOU (%) Battery drop (%) Power (mW)

Li
ve

1 Default-DNN 90 61 11 1724.55
MARLIN 92 61 3 319.54

Li
ve

2 Default-DNN 80 56 11 1710.49
MARLIN 87 51 5 880.65

Table 4: In live experiments, MARLIN saves significant en-
ergy with similar accuracy to default-DNN.

Live

Figure 13: Screenshot

Minute Live 1 Live 2

0-5 P1 stands with minor
movements

P1 sits and P2 stands

5-10 P2 enters and stands
casually

P3 enters and walks in
random directions

10-15 P1 and P2 walk criss-
cross

P1,P2,P3 walk in and
out of the camera’s
field of view

15-20 P1 leaves; P2 walks in
random directions

Camera moves to-
wards and away from
P1,P2,P3

20-25 P2 returns; P1,P2 walk
in random directions

P1,P2,P3 walk in ran-
dom directions within
the camera’s field of
view

25-30 P2 leaves; P1 walks in
random directions

P1 leaves; P2,P3 walk
in random directions
as the camera moves

Table 5: Live experiment action
scripts. P1, P2, P3 are volunteers.

scenarios in initial experiments (later corrected) when Tiny YOLO

was not trained for a sufficient number of epochs, resulting in

low classification accuracy, and causing MARLIN’s object tracker
to track the wrong objects. In future work, we plan to further

investigate the relationship between classification accuracy and

MARLIN’s performance, and distinguish between cases where IOU

is low due to poor classification or object localization.

Latency of detecting new objects in the scene: When new

objects enter the scene (e.g., a person enters the room), MARLIN’s
change detector (Sec. 3.4) is responsible for detecting that change

and triggering a new DNN execution. Since MARLIN uses Tiny

YOLO (or other compressed DNNs) as a key component of the sys-

tem, its performance cannot exceed that of the compressed DNNs

in use today; in other words, it cannot detect objects that its con-

stituent DNNs cannot, or even for detected objects, the detection

latency cannot be less than that of Tiny YOLO. Qualitatively in

our live experiments, we have observed this limitation with both

MARLIN and with the baseline Tiny YOLO with continuous exe-

cution. However, as researchers develop new DNN models with

reduced latencies, MARLIN will automatically be able to leverage

these advances by swapping in new, improved DNN models into

MARLIN’s framework.

7 RELATEDWORK
Mobile deep learning: MCDNN [26] chooses which DNN to run

given accuracy, latency, and energy requirements of the mobile

application. Other efforts speed up DNN inference (e.g., quantized

models [25], IDK cascades [65], DeepMon [30]), but only focus on

detection and not the use of tracking to reduce DNN invocations.

Recent works in computer vision [36, 72] combine detection and

tracking, but use expensive DNN-based tracking, frequent fixed

interval DNN executions, or offline knowledge of entire video clips.

In contrast, MARLIN runs in real-time and adapts DNN executions

based on the scene content.

Mobile AR: Liu et al. [42], Gabriel [24], and Glimpse [14] have

proposed cloud/edge-based AR, among others [24, 34, 51, 69, 70].

In contrast, MARLIN focuses on energy efficiency when AR process-

ing is run locally on the device without offloading. Further, Liu et

al. [42] focus on partitioned DNN executions on an edge server, by

modifying the video encoding parameters, whereasMARLIN consid-

ers local execution without video encoding. MARVEL [13] studies

energy-efficient AR, assuming the location of the objects in the

environment are pre-annotated, while MARLIN studies how to de-

tect and track these objects in the first place. ARCore, ARKit, and

ARToolKit [1, 5, 20] provide less sophisticated object detection for

planar, non-moving objects, while Vuforia [62] can detect and track

up to 20 specific instances of 3D objects. Wagner et al. [63] combine

object detection and incremental tracking, but can only detect a

single object in the frame.

Change detection: Using the sum of absolute differences is a

naivemethod of change detection, and is susceptible to noise from il-

lumination or background changes [3, 50]. Background/foreground

subtraction methods using GMM [73] and KNN [74] are more ro-

bust, but assume static cameras, which is not true for AR. Alterna-

tively one could use object detection to check if there are changes

over time (e.g. [18]); however, the feature extraction step of such

methods are heavy-weight and unsuitable for mobile devices.

Hardware acceleration: There are methods that use special-

ized hardware sensors to either perform change detection [45] or to

tune the energy usage [40]. Qualcomm and Google are developing

proprietary chips for computer vision [22, 48]. Such advances are

complementary to MARLIN.

8 CONCLUSIONS
Energy consumption is a major concern for AR. We designMARLIN,
a framework to reduce the energy consumption of object detection

and tracking, which are important in the AR computational pipeline.

MARLIN intelligently alternates between DNN object detection and

lightweight incremental tracking to achieve high accuracy while

saving energy. Our Android prototype shows that MARLIN drasti-

cally reduces energy consumption (up to 73% savings) with a minor

accuracy penalty (at most 7% for 75% of the test videos), and sur-

prisingly, in 46.3% of the cases, improves both accuracy and energy

compared to a default system using DNNs continuously. Future

work includes incorporating inertial odometry to further reduce

energy consumption.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and shepherd for their valuable

comments, from which this paper greatly benefited. We also thank

the volunteers who participated in our user study. This work has

been supported in part by NSF grants 1544969, 1320148, & 1817216.

Frugal Following: Power Thrifty Object Detection and Tracking for Mobile AR SenSys ’19, November 10–13, 2019, New York, NY, USA

REFERENCES
[1] [n.d.]. ARToolKit. http://www.hitl.washington.edu/artoolkit/.
[2] Fuad Abazovic. 2017. Qualcomm Snapdragon 835 does not throt-

tle. https://www.fudzilla.com/reviews/43194-qualcomm-snapdragon-835-does-

not-throttle.

[3] D Stalin Alex and Amitabh Wahi. 2014. BSFD: Background Subtraction Frame

Difference Algorithm for Moving Object Detection and Extraction. Journal of
Theoretical & Applied Information Technology 60, 3 (2014).

[4] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K. Roy-

Chowdhury. 2019. MARLIN Demo Site. https://sites.google.com/view/marlin-

ar/home.

[5] Apple. 2019. ARKit - Apple Developer. https://developer.apple.com/arkit/.

[6] John L Barron, David J Fleet, and Steven S Beauchemin. 1994. Performance of

optical flow techniques. International journal of computer vision 12, 1 (1994),

43–77.

[7] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

[8] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

[9] Qingqing Cao, Niranjan Balasubramanian, and Aruna Balasubramanian. 2017.

MobiRNN: Efficient recurrent neural network execution on mobile GPU. In

Proceedings of the 1st International Workshop on Deep Learning for Mobile Systems
and Applications. ACM.

[10] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a

new model and the kinetics dataset. In Computer Vision and Pattern Recognition
(CVPR). IEEE, 4724–4733.

[11] L. Cehovin, A. Leonardis, and M. Kristan. 2016. Visual Object Tracking Perfor-

mance Measures Revisited. IEEE Transactions on Image Processing 25, 3 (March

2016), 1261–1274. https://doi.org/10.1109/TIP.2016.2520370
[12] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. 2017.

Mobile augmented reality survey: From where we are to where we go. IEEE
Access 5 (2017), 6917–6950.

[13] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.

MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-

tency. In Conference on Embedded Networked Sensor Systems (SenSys). ACM,

292–304.

[14] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari

Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile

devices. ACM SenSys (2015).
[15] L. Dan, J. Dai-Hong, B. Rong, S. Jin-Ping, Z. Wen-Jing, andW. Chao. 2017. Moving

object tracking method based on improved lucas-kanade sparse optical flow

algorithm. In 2017 International Smart Cities Conference (ISC2). 1–5. https:

//doi.org/10.1109/ISC2.2017.8090850
[16] Tuan Dao, Amit K Roy-Chowdhury, Harsha V Madhyastha, Srikanth V Krish-

namurthy, and Tom La Porta. 2017. Managing redundant content in bandwidth

constrained wireless networks. IEEE/ACM Transactions on Networking (TON) 25,
2 (2017), 988–1003.

[17] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and

Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge.

International Journal of Computer Vision 88, 2 (01 Jun 2010), 303–338. https:

//doi.org/10.1007/s11263-009-0275-4
[18] G. Gan and J. Cheng. 2011. Pedestrian Detection Based on HOG-LBP Feature. In

International Conference on Computational Intelligence and Security. 1184–1187.
https://doi.org/10.1109/CIS.2011.262

[19] Google. 2015. Android Marshmallow 3.10 Scheduler. https:

//android.googlesource.com/kernel/msm/+/android-msm-bullhead-3.10-
marshmallow-dr/Documentation/scheduler/sched-hmp.txt.

[20] Google. 2019. ARCore Overview. https://developers.google.com/ar/discover/.

[21] Google. 2019. AugmentedImageActivity.java. https://github.com/google-

ar/arcore-android-sdk/blob/master/samples/augmented_image_java/

app/src/main/java/com/google/ar/core/examples/java/augmentedimage/

AugmentedImageActivity.java.
[22] Google. 2019. Google Cloud TPU. https://cloud.google.com/tpu/.

[23] Google. 2019. Recognize and augment images. https://developers.google.com/

ar/develop/unity/augmented-images/.

[24] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and

Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. ACM
MobiSys (2014).

[25] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[26] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,

and Arvind Krishnamurthy. 2016. MCDNN: An Approximation-Based Execution

Framework for Deep Stream Processing Under Resource Constraints. ACM
Mobisys (2016).

[27] Sean Hollister and Rebecca Fleenor. 2016. How Pokemon Go affects your phone’s

battery life and data. https://www.cnet.com/how-to/pokemon-go-battery-test-

data-usage/.

[28] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets:

Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR
abs/1704.04861 (2017). arXiv:1704.04861 http://arxiv.org/abs/1704.04861

[29] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mo-

bile gpu-based deep learning framework for continuous vision applications. In

Proceedings of the 15th Annual International Conference on Mobile Systems, Appli-
cations, and Services. ACM, 82–95.

[30] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon: Mobile

GPU-based Deep Learning Framework for Continuous Vision Applications. ACM
MobiSys (2017).

[31] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,

and Thomas Brox. 2017. Flownet 2.0: Evolution of optical flow estimation with

deep networks. In IEEE conference on computer vision and pattern recognition
(CVPR), Vol. 2. 6.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and

Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[33] Puneet Jain, JustinManweiler, and Romit Roy Choudhury. 2015. Overlay: Practical

mobile augmented reality. ACM MobiSys (2015).
[34] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth

Offload for Mobile AR. ACM CoNEXT (2016).

[35] Amit Jindal, Andrew Tulloch, Ben Sharma, Bram Wasti, Fei Yang, Georgia

Gkioxari, Jaeyoun Kim, Jason Harrison, Jerry Zhang, Kaiming He, Orion Reblitz-

Richardson, Peizhao Zhang, Peter Vajda, Piotr Dollar, Pradheep Elango, Priyam

Chatterjee, Rahul Nallamothu, Ross Girshick, Sam Tsai, Su Xue, Vincent Cheung,

Yanghan Wang, Yangqing Jia, and Zijian He. 2018. Enabling full body AR with

Mask R-CNN2Go. https://research.fb.com/enabling-full-body-ar-with-mask-r-

cnn2go/.

[36] Kai Kang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang. 2016. Object detec-

tion from video tubelets with convolutional neural networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 817–825.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[38] Kashish Kumawat. 2017. Snapdragon 835 Review and Benchmark Test. https:

//www.techcenturion.com/snapdragon-835.

[39] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao,

Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A Software Accelerator for Low-

power Deep Learning Inference on Mobile Devices. In International Conference
on Information Processing in Sensor Networks (IPSN). IEEE Press, Piscataway, NJ,

USA, Article 23, 12 pages. http://dl.acm.org/citation.cfm?id=2959355.2959378
[40] Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin Zhong, and Paramvir

Bahl. 2013. Energy characterization and optimization of image sensing toward

continuous mobile vision. In International conference on Mobile systems, applica-
tions, and services (MobiSys). ACM, 69–82.

[41] I. Lin, B. Jeff, and I. Rickard. 2016. ARM platform for performance and power

efficiency - Hardware and software perspectives. In International Symposium on
VLSI Design, Automation and Test (VLSI-DAT). 1–5. https://doi.org/10.1109/VLSI-
DAT.2016.7482541

[42] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time

Object Detection for Mobile Augmented Reality. ACM MobiCom (2019).

[43] Bruce D Lucas and Takeo Kanade. 1981. An iterative image registration technique

with an application to stereo vision. IJCAI (1981).
[44] Tim Merel. 2017. The reality of VR/AR growth. https://techcrunch.com/2017/01/

11/the-reality-of-vrar-growth/.

[45] Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyantha, Jie Liu,

and Deepak Ganesan. 2017. Glimpse: A Programmable Early-Discard Camera

Architecture for Continuous Mobile Vision. ACM MobiSys (2017).
[46] Greg Nichols. 2018. https://www.zdnet.com/article/california-firefighters-use-

augmented-reality-in-battle-against-record-breaking-infernos/.

[47] Qualcomm. 2019. Snapdragon Power Optimization SDK. https://

developer.qualcomm.com/software/snapdragon-power-optimization-sdk.

[48] Qualcomm. 2019. Snapdragon XR1 platform. https://www.qualcomm.com/

products/snapdragon-xr1-platform.

[49] Qualcomm. 2019. Trepn Power Profiler. https://developer.qualcomm.com/

software/trepn-power-profiler.

[50] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. 2005. Image Change Detection

Algorithms: A Systematic Survey. Trans. Img. Proc. 14, 3 (March 2005), 294–307.

https://doi.org/10.1109/TIP.2004.838698
[51] Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen. 2018. DeepDecision:

A Mobile Deep Learning Framework for Edge Video Analytics. IEEE INFOCOM
(2018).

[52] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. IEEE
CVPR (2017).

http://www.hitl.washington.edu/artoolkit/
https://www.fudzilla.com/reviews/43194-qualcomm-snapdragon-835-does -not-throttle
https://www.fudzilla.com/reviews/43194-qualcomm-snapdragon-835-does -not-throttle
https://sites.google.com/view/marlin-ar/home
https://sites.google.com/view/marlin-ar/home
https://developer.apple.com/arkit/
https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/ISC2.2017.8090850
https://doi.org/10.1109/ISC2.2017.8090850
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1109/CIS.2011.262
https://android.googlesource.com/kernel/msm/+/android-msm-bullhead-3.10-marshmallow-dr/Documentation/scheduler/sched-hmp.txt
https://android.googlesource.com/kernel/msm/+/android-msm-bullhead-3.10-marshmallow-dr/Documentation/scheduler/sched-hmp.txt
https://android.googlesource.com/kernel/msm/+/android-msm-bullhead-3.10-marshmallow-dr/Documentation/scheduler/sched-hmp.txt
https://developers.google.com/ar/discover/
https://github.com/google-ar/arcore-android-sdk/blob/master/samples/augmented_image_java/app/src/main/java/com/google/ar/core/examples/java/augmentedimage/AugmentedImageActivity.java
https://github.com/google-ar/arcore-android-sdk/blob/master/samples/augmented_image_java/app/src/main/java/com/google/ar/core/examples/java/augmentedimage/AugmentedImageActivity.java
https://github.com/google-ar/arcore-android-sdk/blob/master/samples/augmented_image_java/app/src/main/java/com/google/ar/core/examples/java/augmentedimage/AugmentedImageActivity.java
https://github.com/google-ar/arcore-android-sdk/blob/master/samples/augmented_image_java/app/src/main/java/com/google/ar/core/examples/java/augmentedimage/AugmentedImageActivity.java
https://cloud.google.com/tpu/
https://developers.google.com/ar/develop/unity/augmented-images/
https://developers.google.com/ar/develop/unity/augmented-images/
https://www.cnet.com/how-to/pokemon-go-battery-test-data-usage/
https://www.cnet.com/how-to/pokemon-go-battery-test-data-usage/
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://research.fb.com/enabling-full-body-ar-with-mask-r-cnn2go/
https://research.fb.com/enabling-full-body-ar-with-mask-r-cnn2go/
https://www.techcenturion.com/snapdragon-835
https://www.techcenturion.com/snapdragon-835
http://dl.acm.org/citation.cfm?id=2959355.2959378
https://doi.org/10.1109/VLSI-DAT.2016.7482541
https://doi.org/10.1109/VLSI-DAT.2016.7482541
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/
https://www.zdnet.com/article/california-firefighters-use-augmented-reality-in-battle-against-record-breaking-infernos/
https://www.zdnet.com/article/california-firefighters-use-augmented-reality-in-battle-against-record-breaking-infernos/
https://developer.qualcomm.com/software/snapdragon-power-optimization-sdk
https://developer.qualcomm.com/software/snapdragon-power-optimization-sdk
https://www.qualcomm.com/products/snapdragon-xr1-platform
https://www.qualcomm.com/products/snapdragon-xr1-platform
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://doi.org/10.1109/TIP.2004.838698

SenSys ’19, November 10–13, 2019, New York, NY, USA K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, A. K. Roy-Chowdhury

[53] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767 (2018).

[54] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An

Efficient Alternative to SIFT or SURF. In International Conference on Computer
Vision (ICCV). IEEE, 2564–2571. https://doi.org/10.1109/ICCV.2011.6126544

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,

ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.

Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:

//doi.org/10.1007/s11263-015-0816-y
[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[57] Dieter Schmalstieg and Tobias Hollerer. 2016. Augmented reality: principles and

practice. Addison-Wesley Professional.

[58] TensorFlow.org. [n.d.]. TensorFlow Android Camera Demo. https://github.com/

tensorflow/tensorflow/tree/master/tensorflow/examples/android.

[59] TensorFlow.org. 2018. SSDLite MobileNets V2 Config File. https:

//github.com/tensorflow/models/blob/master/research/object_detection/

samples/configs/ssdlite_mobilenet_v2_coco.config.
[60] TensorFlow.org. 2019. TensorFlow Lite. https://www.tensorflow.org/lite.
[61] TensorFlow.org. 2019. TensorFlow Lite GPU delegate. https:

//www.tensorflow.org/lite/performance/gpu.

[62] Vuforia. 2019. Augmented Reality for the Industrial Enterprise. https://

www.vuforia.com/.

[63] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom Drummond, and

Dieter Schmalstieg. 2010. Real-time detection and tracking for augmented reality

on mobile phones. IEEE transactions on visualization and computer graphics 16, 3
(2010), 355–368.

[64] Liming Wang, Jianbo Shi, Gang Song, and I-Fan Shen. 2007. Object Detection

Combining Recognition and Segmentation. In Asian Conference on Computer
Vision (ACCV). Springer-Verlag, Berlin, Heidelberg, 189–199. http://dl.acm.org/

citation.cfm?id=1775614.1775636
[65] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph E. Gonza-

lez. 2017. IDK Cascades: Fast Deep Learning by Learning not to Overthink. CoRR
abs/1706.00885 (2017). arXiv:1706.00885 http://arxiv.org/abs/1706.00885

[66] X. Wang, M. Yang, S. Zhu, and Y. Lin. 2013. Regionlets for Generic Object

Detection. In IEEE International Conference on Computer Vision (ICCV). 17–24.
https://doi.org/10.1109/ICCV.2013.10

[67] S. Wu, Y. Fan, S. Zheng, and H. Yang. 2012. Object tracking based on ORB

and temporal-spacial constraint. In 2012 IEEE Fifth International Conference on
Advanced Computational Intelligence (ICACI). 597–600. https://doi.org/10.1109/
ICACI.2012.6463235

[68] Z. Yang. 2010. Fast Template Matching Based on Normalized Cross Correla-

tion with Centroid Bounding. In International Conference on Measuring Tech-
nology and Mechatronics Automation, Vol. 2. 224–227. https://doi.org/10.1109/
ICMTMA.2010.419

[69] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile Aug-

mented Reality with Flexible Tracking. In International Conference on Multimedia.
ACM, 355–363.

[70] Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky, and Feng

Qian. 2018. CARS: Collaborative Augmented Reality for Socialization. ACM
HotMobile (2018).

[71] Liang Zheng, Yi Yang, and Qi Tian. 2018. SIFT meets CNN: A decade survey of

instance retrieval. IEEE transactions on pattern analysis and machine intelligence
40, 5 (2018), 1224–1244.

[72] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Deep

feature flow for video recognition. In CVPR, Vol. 1. 3.
[73] Zoran Zivkovic. 2004. Improved Adaptive Gaussian Mixture Model for Back-

ground Subtraction. In International Conference Pattern Recognition (ICPR). IEEE,
28–31. https://doi.org/10.1109/ICPR.2004.479

[74] Zoran Zivkovic and Ferdinand van der Heijden. 2006. Efficient adaptive density

estimation per image pixel for the task of background subtraction. Pattern Recogni-
tion Letters 27, 7 (2006), 773 – 780. https://doi.org/10.1016/j.patrec.2005.11.005

https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssdlite_mobilenet_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssdlite_mobilenet_v2_coco.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssdlite_mobilenet_v2_coco.config
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/performance/gpu
https://www.tensorflow.org/lite/performance/gpu
https://www.vuforia.com/
https://www.vuforia.com/
http://dl.acm.org/citation.cfm?id=1775614.1775636
http://dl.acm.org/citation.cfm?id=1775614.1775636
http://arxiv.org/abs/1706.00885
http://arxiv.org/abs/1706.00885
https://doi.org/10.1109/ICCV.2013.10
https://doi.org/10.1109/ICACI.2012.6463235
https://doi.org/10.1109/ICACI.2012.6463235
https://doi.org/10.1109/ICMTMA.2010.419
https://doi.org/10.1109/ICMTMA.2010.419
https://doi.org/10.1109/ICPR.2004.479
https://doi.org/10.1016/j.patrec.2005.11.005

	Abstract
	1 Introduction
	2 Motivation
	3 The MARLIN Framework
	3.1 System Overview
	3.2 MARLIN Manager (MM)
	3.3 Real-time object tracker
	3.4 Lightweight Change Detector
	3.5 DNN based Object Detector

	4 Implementation
	5 Evaluations
	5.1 Prerequisites and Metrics
	5.2 Offline Dataset Experiments
	5.3 Live Experiments

	6 Discussions
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

