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ABSTRACT

While machine learning approaches have shown remarkable
performance in biomedical image analysis, most of these
methods rely on high-quality and accurate imaging data.
However, collecting such data requires intensive and care-
ful manual effort. One of the major challenges in imaging
the Shoot Apical Meristem (SAM) of Arabidopsis thaliana,
is that the deeper slices in the z−stack suffer from different
perpetual quality related problems like poor contrast and blur-
ring. These quality related issues often lead to disposal of the
painstakingly collected data with little to no control on qual-
ity while collecting the data. Therefore, it becomes necessary
to employ and design techniques that can enhance the images
to make it more suitable for further analysis. In this paper, we
propose a data-driven Deep Quantized Latent Representation
(DQLR) methodology for high-quality image reconstruction
in the Shoot Apical Meristem (SAM) of Arabidopsis thaliana.
Our proposed framework utilizes multiple consecutive slices
in the z-stack to learn a low dimensional latent space, quan-
tize it and subsequently perform reconstruction using the
quantized representation to obtain sharper images. Experi-
ments on a publicly available dataset validate our method-
ology showing promising results. Our code is available at
github.com/agupt013/enhancedRec.git.

Index Terms— Cell reconstruction, quantized represen-
tation, shoot apical meristem, arabidopsis thaliana

1. INTRODUCTION

Automated analysis in biomedical research is critical to pro-
vide researchers with concrete evidence to prove any pro-
posed hypothesis without any bias. However, automated
image analysis requires high-quality imaging data. Image
quality related problems are often encountered while imaging
deeper layers of the Shoot Apical Meristem (SAM) of ara-
bidopsis thaliana [2]. These quality related problems hinder
automated analysis and often lead to disposal of painstak-
ingly collected data. To this end, we propose a data driven
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Fig. 1: Conceptual Overview of DQLR. The latent repre-
sentation of the collected image is quantized using k−means
over the entire dataset [1]. This quantized representation is
then used to reconstruct the enhanced image.

Deep Quantized Latent Representation (DQLR) framework
for high-quality imaging data reconstruction of the z−stack
of the SAM. In this work, we propose to project noisy stack
in a latent space, quantize the latent representations and uti-
lize the quantized latent representations for reconstruction of
enhanced z−stack (see Fig. 1 for conceptual overview).

Overview. An architectural overview of our approach is
illustrated in Fig. 2. During training, the encoder E com-
presses ith input slice image to a latent representation xi.
The consecutive slices in the z-stack are correlated which im-
plies that they must be correlated in the latent space as well.
We employ a recurrent neural network (RNN) R to learn this
correlated representation {yi, yi+1, · · · , yi+n} by passing the
latent vector {x1, x2, · · · , xn} through R. The compressed
representation xi is processed through Ri to learn the inter-
correlation between this latent representation of the consec-
utive slices {xi, xi+1, · · · , xi+n} during training. RNN gen-
erated latent codes {yi, yi+1, · · · , yi+n} are then used as in-
put to quantization module Qi. Qi learns a vector dictionary
for quantized representation of the network and generates a
quantized latent code {yqi , y

q
i+1, · · · , y

q
i+n}. In our proposed

method, the quantization of the latent code will remove the
noisy component of {yi} and the reconstructed/predicted im-
ages using the quantized latent codes by generator G should
be enhanced. During testing, we pass one slice at a time from
the z−stack, compress it using the encoder, predict the corre-
lated latent codes using the RNN, and finally quantize it using
the quantization dictionary learned during the training stage
using Q. This quantized code is then used to reconstruct and
predict enhanced consecutive slices from the given z−stack.
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2. RELATED WORK

In this section we describe prior works closely related to the
our proposed method. Our method closely relates to recon-
struction using auto-encoders [3] and enhancement in the
compressed domain [1, 4, 5].

Auto-Encoders. Variations of auto-encoders are extensively
used in reconstruction tasks by compressing the input to a
latent representation and using the latent representation to
retrieve the input as close as possible [1, 3, 6]. However,
often the reconstructed images are blurry due to inherent
nature of Mean Square Error (MSE) loss to produce blurry
results. In the proposed approach we also include Structural
Similarity Index (SSIM) [7] loss to enhance the visual results.

Compressed Domain Enhancement. Some works have tried
to enhance the images in the compressed domain. In [4] a
method based on a contrast measure defined within the dis-
crete cosine transform (DCT) domain is proposed to enhance
the image. Attention based video enhancement is proposed
in [8]. Authors in [1] propose a vector quantized variations
auto-encoder for reconstruction of various media input. We
adopt their approach of vector quantization in our framework.
However, we exploit the input data correlation using RNN for
enhancement task as opposed to reconstruction in [1] where
ground truth data was available.

3. METHODOLOGY

We propose a Deep Quantized Latent Representation (DQLR)
framework for enhancing z−stack imaging in SAM of Ara-
bidopsis thaliana. We apply quantization in the latent space
of the noisy z−stack for enhanced reconstruction. In this sec-
tion, we first formulate the problem statement and then ex-
plain our proposed approach in details.

3.1. Problem Formulation

Given a z−stack Z = {z1, z2, · · · , zn}, with zi being the ith

slice in the stack from the top, we aim to reconstruct ˆ︁Z =
{ˆ︁z1,ˆ︁z2, · · · ,ˆ︁zn} such that ˆ︁zi is the visually enhanced slice
compared to zi,∀i = 1, 2, · · · , n. Let there be a latent rep-
resentation of input noisy z−stack XZ = {x1, x2, · · · , xn}
where xi is the latent representation corresponding to the ith

slice zi. Since the slices in z−stack are correlated in the pixel
space, their latent representations should inherit the same
property in the latent space. Therefore, corresponding to each
latent representation XZ let there be a latent representation
YZ = {y1, y2, · · · , yn} such that all {yi} are correlated.

We propose to generate visually enhanced z−stack by
quantizing the latent representation of the noisy input stack.
Our hypothesis is that each correlated latent representation
yi of a slice in the z−stack consists of two components; the
quantized representation yqi and the noise representation ynoise

i

of yi, such that yi = yqi + ynoise
i . Hence, noise component

ynoise
i can be removed by applying quantization on the cor-

related latent codes leaving the representation yqi required to
generate the enhanced image ˆ︁zi ∀ i = 1, 2, · · · , n.

3.2. Proposed Approach

Our proposed framework is shown in Figure 2. It consists
of four components: the encoder network E, the recurrent
neural network R, the quantization module Q and the genera-
tor network G. The encoder network is used to extract latent
representation for each slice in the noisy input stack. The
recurrent neural network utilizes the latent representations to
generate correlated latent representations. These correlated
representations are quantized to reduce noise in the latent
space by the quantization module. Finally, the quantized rep-
resentations are used to generate an enhanced z−stack.

Input Latent Representation. We employ a convolutional
neural network as an encoder E which extracts the latent rep-
resentation for each slice in a given noisy z−stack such that

E(Z) = E({ z1, z2, · · · , zn}) = { x0, x1, · · · , xn} (1)

where xi is latent representation corresponding to slice zi. A
set of correlated representations is generated by the recurrent
neural network for the latent representations extracted from
the encoder E to incorporate the z-resolution dynamics of the
z−stack in the latent representations.

Recurrent Neural Network (RNN). The consecutive slices
in a z−stack capture 3D-structure of any cell in the plant.
Thus, there must be a correlation between the consecutive
slices. The latent representation XZ of the noisy input Z
should also be correlated in some space YZ. Thus, we em-
ploy a recurrent neural network Ri to transform the ith noisy
latent representation to the correlated latent representation as
RNN can capture dynamics of the sequence given by

yi+1 = Ri(yi, hi) (2)

where h0 is the hidden state sampled randomly from a Gaus-
sian distribution and hi = xi−1 ∀ i > 0. Here, we aim to
capture the z−resolution dynamics of the stack unlike tradi-
tional recurrent neural network where temporal dynamics of
the sequence is captured.

Deep Quantized Latent Representation. We propose that
a data driven quantization of the latent representation can
reduce the average noise in the stack and enhance it visually.
In order to quantize the latent representation, we employ vec-
tor quantization dictionary learning algorithm as proposed in
[1], represented as Qi in our framework.

Enhanced Stack Generation. We employ a generative
model G to transform the quantized representations into
an enhanced stack ˆ︁Z. The quantized representations Yq

Z



Fig. 2: Architectural Overview of DQLR (for one slice of the stack). Encoder E encodes input image to xi. Recurrent Neural
Network (RNN) module generates correlated codes for reconstruction (yi) and prediction ({yi, yi+1, · · · , yi+n}). Quantizer
module Qi quantizes the latent codes and Generator G reconstructs/predicts the images.

are used by the generator G to synthesize enhanced stackˆ︁Z = {ˆ︁z1,ˆ︁z2, · · · ,ˆ︁zn} such that ˆ︁zi is the visually enhanced
image of the slice zi in the noisy stack Z.

3.3. Optimization

Our optimization function consists of the Mean Squared Er-
ror (MSE) pixel reconstruction loss, the Structural Similarity
(SSIM) loss [7] and quantization loss as defined in [1]. Please
note that we do not have de-noised image as ground truth. We
assume that the quantized latent codes should reduce noise
when it is used by generator G to reconstruct the stack. Re-
sults in section 4 demonstrate the validity of this assumption.

Ltotal = Lmse + λsLssim + λqLquant (3)

We briefly describe the loss functions below. Define P as
the total number of non-overlapping patches in a given image,
N as total number of pixels in P , and α and β as the generated
and ground truth image, respectively.

Lmse(P ) =
1

N

∑︂
p∈P

∥α(p)− β(p)∥2

Lssim(P ) =
1

N

∑︂
p∈P

1− SSIM(p),

with, SSIM(p) =

(︄
2µαµβ + C1

µ2
α + µ2

β + C1

)︄(︄
2σασβ + C2

σ2
α + σ2

β + C2

)︄

where, µ(·) and σ(·) are computed with a Gaussian filter with
standard deviation σG, C1 < 1 and C2 < 1 are constants

introduced to handle division by zero issue, λs and λq weights
for SSIM and quantization loss, respectively. For Lquant, we
use the loss function as proposed in [1] on the correlated latent
space YZ and dictionary D = {d1, d2, · · · , dk}, where k =
128 is length of dictionary to learn for quantization.

4. EXPERIMENTATION AND RESULTS

Datasets. We used the publicly available Confocal Mem-
brane dataset [9] consisting of six plants. We train our model
using four plant stacks, and use one plant stack each for vali-
dation and testing.

Qualitative Results. Fig. 3 shows few examples of the recon-
structed slices from the z−stack using the our approach along
with the input slice. It can be observed that our proposed
method is able to generate sharper cell boundaries. Since we
learn the quantization dictionary using all the slices in various
z−stacks, our method is able to generate cleaner images. De-
convolution is a standard technique used by many researchers
to enhance microscopy images. We compare our proposed
approach with deconvolution operation used to denoise mi-
croscopy images using ImageJ [10]. It is performed on 2D
slices using Gaussian Point Spread Function (PSF) with stan-
dard values. It can be seen from Fig. 5 that our proposed ap-
proach reconstructs visually enhanced slices compared to de-
convolution operation in ImageJ. A key reason that deconvo-
lution doesn’t work well is due to the selection of PSF which
highly depends on the capturing instrument. This demon-
strates the advantage of our approach with respect to existing
algorithms. Note that in Fig. 3, Fig. 4, and Fig. 5, input slice



is shown inside and the reconstructed slice using the pro-
posed approach is shown inside . Results are best viewed
when zoomed-in.
Qualitative Ablation. To evaluate the impact of quantization
in the latent space, we perform an experiment without ap-
plying quantization keeping all other parameters same in the
proposed method. Fig. 4 qualitatively shows the contribution
on quantization in latent space. The image generated without
quantization is less sharp than with quantization. This is due
to inherent property of mean square loss to produce blurry re-
sults which dominates the reconstruction in absence of latent
representation quantization loss.

Fig. 3: Qualitative Results of Proposed Method. Origi-
nal image (left) and Reconstructed image (right) with cor-
responding zoomed parts are presented here. The proposed
method is able to generate sharper images from the given
blurry image slices.

Fig. 4: Reconstruction Results without Quantization. Re-
constructed image without quantization (left) and Recon-
structed image (right) with quantization with corresponding
zoomed parts are presented here. This demonstrates that the
quantization module in our proposed approach is effective in
deblurring the data.

Fig. 5: Comparison of Reconstructed Results with Im-
ageJ [10].(a) Original Image, (b) Reconstructed using DQLR
(ours) and (c) Reconstructed using deconvolution by ImageJ.

5. CONCLUSION

Micro-imaging data collected for various bio-medical re-
search suffers from inherent blurriness and using this data for
further analysis is a challenging task. We present an approach
for enhanced reconstruction of microscopic sequential data by
leveraging the information from consecutive image slices and
using quantization of their latent representation to alleviate
blurriness. Our data driven approach demonstrates visually
superior results on a publicly available benchmark. The pro-
posed approach would be useful for bio-medical researchers
to enhance images where data is scarce and consequently,
avoid unwanted laborious efforts for re-imaging the data.
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