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ABSTRACT
Video activity analysis systems are often trained on large
datasets. Activities and events in the real world do not oc-
cur in isolation, instead, they occur as interactions between
related objects. This work introduces a novel method that
jointly exploits relational information between pairs of ob-
jects and temporal dynamics of each object. The proposed
method effectively leverages a new simple architecture that
is flexible and easily trained to detect relational activities
and events using small datasets (hundreds of samples). The
solution is constructed and tested using synthetic videos of
car-collision events. The annotated datasets in this work will
be made available online to the research community. Ex-
perimental results demonstrate the efficacy of the network to
perform complex activity analysis.

Index Terms— activity recognition, pairwise activity, re-
lational reasoning, temporal reasoning

1. INTRODUCTION

Recognizing a complex activity that typically involves mul-
tiple objects, requires an understanding of the interaction
among the objects in space [1]. The dynamics of the rele-
vant objects over time give an important cue for inferring the
activity category [2]. The performance of a complex activ-
ity analysis system can be improved if the system is able to
reason about the relation of the interacting objects in space.
Also, the system can use the reasoning to capture the short
term and long term evolution of the dynamics of objects with
time. For example, in a video of car collision, the collision
is most likely to occur when two cars are approaching each
other at high velocity. Reasoning over the relative distance
and the direction of motion of the two cars in space will boost
the performance of a collision detection system. However,
if we consider a collision event and a near-miss event (safe
event), both of them share the same spatial entity: close prox-
imity of two interacting objects and high velocity. Hence,
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Fig. 1. Overview of the proposed architecture for the collision
activity detection system. It will first compute feature embed-
ding for each object appearance of each frame by concate-
nating the output of bidirectional GRU, two-layer MLP, and
temporal reasoning module. This embedding encodes tempo-
ral evolution information. Then we use the spatial reasoning
module to learn the pairwise interaction. Finally, we compute
the activity detection confidence for each pair of objects as
well as individual objects of a frame.

the system will confuse a near-miss event (safe event) as
collision unless it accounts for the change in dynamics of the
interacting objects with time. So, reasoning about the spatial
interaction as well as the dynamics of an instance over time
is critical for recognizing a complex activity.

Recent works in activity recognition try to model the long
term temporal relationship information using RNN [3, 4, 5, 6]
and 3D convolution [7, 8, 9, 10]. But these methods extract
features from the whole scene and fail to capture the region-
based relationships. As observed by [11], most of the ac-
tions are classified based on background information instead
of capturing key region information. There are works on ac-
tion recognition that model temporal dynamics and spatial
object-object interactions [1, 2, 12, 13]. However, these in-
vestigations address the problem of video representation for
activity recognition of the entire video, which differs from our
target task. Instead of doing activity recognition at the video
level, our goal is to detect the involvement and interaction
evolution of objects and object pairs in an activity.

In this work, we demonstrate how pairwise as well as



unary involvement of objects in a complex activity like col-
lision can be detected by enabling spatial and temporal rea-
soning of the object interactions over time. Detection of ob-
jects involved in a collision is important for an autonomous
driving system to safely react with proper driving assistance.
Regular traffic scenarios are mostly comprised of the natural
flow of safe events, whereas anomaly events like collision are
typically rare, resulting in a lack of event training data and im-
balance in data classes. Again, available collision event data
may not exhibit variation across a sufficiently wide range of
appearances. This inherent imbalance of data classes, lack
of collision event data and insufficient appearance variation
between safe events and collision events make the collision
detection problem extremely challenging. To account for the
wide range appearance invariance between activity classes
and lack of event data, we do not use deep feature representa-
tion of appearance and dense optical flow. Instead, we work
with a low dimensional, simpler and informative representa-
tion of interacting objects. Moreover, the chosen represen-
tation of the interacting objects is invariant across different
scenarios, e.g., background, illumination, viewpoint. Con-
sequently, the activity detection module is robust to a wide
range of scene conditions. The main contributions include:
• We propose a novel method that reasons about the relation

of the interacting objects and captures the temporal dynam-
ics of objects to boost activity recognition performance.

• We address a novel problem of activity recognition for pairs
of objects. We introduce a new dataset CarBump, contain-
ing synthetic videos of car collision events with pairwise
activity annotation.

• We empirically show the activity recognition performance
of the proposed method on the CarBump dataset.

2. METHODOLOGY

Consider a training set of nv videos {vi}nv
i=1, where a video

vi consists of frames {fi}
nf

i=1 and contains objects {oi}no
i=1

and the tracks of the objects are known. For a frame f , con-
taining objects {oi}ki=1 (k ≤ no), we have activity label set
{aij}k,ki=1,j=1. Here aij is the activity label of an object pair
(oi, oj) in frame f . During test time, given for a video v and
tracks for objects {oi}no

i=1, our task is to infer the activity label
aij for each object pair of each frame. Inspired by the recent
success of [14] for relational reasoning, we device a strategy
to encode spatial relation as well as temporal evolution in in-
stance level to accomplish the task of pairwise activity recog-
nition. The overview of our model is visualized in Figure 1.

Feature Extraction. Suppose, for an object instance o
in frame fi, we have the information {xi, yi, hi, wi,Mi, ρi}
where (xi, yi) is the centroid, hi, wi are height and width of
the bounding box containing the object,Mi is the mask and
ρi is the confidence score of the object class. For the same
instance o in frame fi−1, we have {xi−1, yi−1, hi−1, wi−1,
Mi−1, ρi−1}. We compute the change of position in x

Fig. 2. Motivational concept behind selecting particular fea-
tures. The scenarios indicated here are: (a) collision event and
(b) safe event. For each event, we show three frames from
a small segment of the corresponding video clips which are
approximately nine frames apart. In this example scenario,
during the collision event (a), there is a change of direction
of movement for object 4. Again, compared to the safe event
scenario, the change of second order moment is higher for
collision event scenario.

and y direction, ∆x = xi − xi−1 and ∆y = yi − yi−1,
change of bounding box length, ∆h = hi − hi−1 and ∆w =
wi − wi−1, second order moment of area µ20, µ02, µ21, µ12

from the mask Mi. Feature representation of object o in
frame fi consists of centroid (xi, yi), bounding box length
{hi, wi}, change of bounding box length {∆h,∆w}, change
of speed in eight direction {∆x,∆y,−∆x,−∆y, 1√

2
(∆x +

∆y), 1√
2
(∆x−∆y), 1√

2
(∆y−∆x),− 1√

2
(∆x+∆y)}, second

order moment of area {µ20, µ02, µ21, µ12}, and confidence
score ρi. So, the resultant feature embedding for an object
instance o in frame fi is xoi ∈ R19. Contrast of the feature
representation during collision event and safe event is evident
from Figure 2.

Bidirectional GRU. Bidirectional GRU is used to encode
information of previous and subsequent frames in the feature
embeddings. We sequentially input object feature xo from
each frame and obtain embedding xGRU ∈ R64.

Two-layer MLP. We also use two-layer MLP (Multilayer
Perceptron) to compute projection of xo of each object ap-
pearance from each frame to obtain new embedding xMLP ∈
R64. The two layers consist of 32 and 64 units consecutively.

Temporal Reasoning. In [15], to reason on different
frames, the pairwise temporal relation is defined as a com-
posite function,

TR(V) = hφ(
∑
i<j

gθ(x
f
i ,x

f
j )) (1)

Here, input to the temporal relational (TR) network is the
video V with nf selected ordered frames {f1, f2, . . . , fnf

}
and xfi is the representation of ith frame fi. Function hφ and
gθ are fused features of different ordered frames. Inspired
by their work, instead of using the frame descriptor to reason



on temporal relations for the entire video, we reason on the
temporal evolution of each object instance. We use a four-
frame temporal relation composite function to represent an
object from each frame by,

TR(O) = hφt
(
∑

i<j<k<l

gθt(x
o
i ,x

o
j ,x

o
k,x

o
l )). (2)

Here, the input is O; a set of appearances of object o in m
selected frames and {xoi }mi=1 is the feature representations of
m appearances of that object. Instead of considering all com-
binations of four-frame relationship, we strategically sample
five combinations of frames to obtain the reasoning. Con-
sider, we want to compute the temporal relation for an object
ot, which is present in the tth frame. To compute the temporal
relationship, we sample features of the same object from the
set of features Ot = {xo

t−9,x
o
t−6,x

o
t−3,x

o
t ,x

o
t+3,x

o
t+6,x

o
t+9}.

By using five combinations of four-frame features, the re-
sulted composite function is,

TR(Ot) = hφt(
∑

i<j<k<l

gθt(x
o
i ,x

o
j ,x

o
k,x

o
l ))

≈ hφt

[
gθt(x

o
t−9,x

o
t−3,x

o
t+3,x

o
t+9)

+ gθt(x
o
t−9,x

o
t−6,x

o
t−3,x

o
t ) + gθt(x

o
t−6,x

o
t−3,x

o
t ,x

o
t+3)

+ gθt(x
o
t−3,x

o
t ,x

o
t+3,x

o
t+6) + gθt(x

o
t ,x

o
t+3,x

o
t+6,x

o
t+9)

]
.

Here, the function gθt represents a three-layer MLP, parame-
terized by θt and the function hφt represents a two-layer MLP,
parameterized by φt. Each layer of gθt and hφt has 128 units.
The temporal relational network results in a feature embed-
ding xTR ∈ R128 for an object instance of a frame.

Spatial Reasoning. We concatenate xGRU , xMLP , and
xTR to obtain new representation xT ∈ R256 for an object
appearance in a frame, (� is concatenation operator)

xT = xGRU � xMLP � xTR. (3)

The spatial relational reasoning for each object in a frame is
obtained by,

SR(F) = hφs
(
∑
i,j

gθs(xTi ,x
T
j )) (4)

Here, the input to the spatial relational (SR) network is F ;
set of feature representations {xTi }

no
i=1 for no objects {oi}no

i=1

in a frame. The function gθs represents a two-layer MLP, pa-
rameterized by θs and the function hφs represents a two-layer
MLP, parameterized by φs. The two-layer MLP of function
gθs consists of 512 and 256 units consecutively. Each layer
of hφs

has 256 units. The SR network results in a feature
embedding xSR ∈ R256 for an object instance of a frame.

Pairwise and Unary Activity. To detect the pairwise as
well as unary activity, we compute,

yij = gθa(xSRi ,xSRj ). (5)

We concatenate each pair of object feature embeddings
(xSRi ,xSRj ) of a frame and train the two-layer MLP gθa , pa-
rameterized by θa. It generates the logit corresponding to
pairwise collision activity. The two layers of gθa consists of
128 and 2 units sequentially. We perform softmax classifi-
cation on the logit yij to obtain the confidence score aij for
activity classification. Here to be noted that the activity score
aij , where i = j, represents the unary activity.

Loss Function. We use the weighted cross entropy loss
over each frame. For each batch during training, we calculate
the number of positive samples (p) containing collision events
and negative samples (n) without collision events and assign
weights n/(p+n) and p/(p+n) on the positive and negative
samples respectively to account for the class imbalance.

3. DATASET

The CarBump dataset (χ) includes synthetic video game
recordings of car collision from oblique traffic-CCTV views.
The clips are processed by automated detector (Mask-RCNN
[16]) and tracker modules (modified Deep-Sort [17]) to pro-
duce tubelets (mask tracks over time). The collision events
are manually inspected and annotated with specific frames
containing the collision (time) and the instances of the ob-
jects involved in the activity of interest (tubelet ID numbers).
Collision Videos. The dataset contains 141 videos contain-
ing a total, at least, one collision each (141 collisions). Each
video file is, at least, 150 frames (i.e., 5 seconds at 30 fps).
Collision Annotations. The annotations include detections,
tubelets and, activity information for each frame. These were
manually inspected and edited to only contain traffic object
classes that include: bus, car, motorcycle, person, stop sign,
traffic light, and truck object labels. The class IDs are con-
sistent with COCO-2014. The annotations are provided as
pickles (“.pkl”), where each file contains the following data:
• obj ids: object identification number as int([N,])
• obj classes: int([N, 80]) (for COCO), if one-hot; else float
• indexed, shape [N,1] or [N,]
• obj bboxes: float ([N, 4 or 5]); if 5 then 5-th element is
confidence (else assumed 1). The first 4 are (col 0, row 0,
col 1, row 1)
• obj events: can be None or [] if no events; otherwise for
a collision it contains a list of length N, where each element
is an object’s list of activities (for that frame; an object may
be involved in multiple simultaneous events). Each event (in
the list) is a dictionary with {event id: int, event type: int,
other objs: list of ints} items.
• frame img shape: (height, width) or (height, width, L)
• frame num: int, frame number

4. EXPERIMENTS AND RESULTS

We experimentally evaluate the performance of the proposed
activity detection module and discuss the implementation de-
tails and the performance metrics used in the evaluation.



Fig. 3. An example illustration of the performance of the activity detection module. During collision, the pairwise activity
detection is marked by green line. Thick bounding box around the object represents the unary activity detection.

Implementation Details We randomly select 70% of the
annotated video clips as the training set (98 video clips), 20%
of the video clips as the validation set (28 video clips) and the
rest of the video clips (15 video clips) as the testing set. The
networks are implemented using PyTorch. We use a stratified
sampling scheme to sample w length segments of temporally
consistent frames. For a video with nf frames, there can be
nf −w+ 1 samplable windows and each window is assigned
with weight 1/(nf − w + 1). Normalized weights of win-
dows over all the videos are considered as the probability of
sampling that window. During training, we use minibatch of
four segments, each containing consecutive 100 frames. The
initial learning rate is set to .01/128 and we drop the learn-
ing rate depending on the number of iterations and learning
rate scale factor. We use a TITAN X GPU for training the
network. The model is trained using ADAM optimizer [18].

Performance Metrics. Mean average precision (mAP) is
widely used in activity recognition tasks to quantify the per-
formance. Consider, for a video v with nf frames and no
objects throughout the video, there can be nf × no possible
detected regions and nf × no × no possible pairs, which can
be involved in a collision. The activity recognition module
perform classification on all of the nf × no × no pairs.

Quantitative Results. Before presenting and analysing
the results, we define all the short notations denoting different
experimental setups that we use hereafter.
� SPATIAL+TEMPORAL: Represents the proposed ap-

proach described in Section 2.
� SPATIAL: In this approach, temporal reasoning unit is ex-

cluded from the setup of SPATIAL+TEMPORAL.
� RGB+FLOW: Adopted approach proposed by [19]. In

their proposed model, RPN (Region Proposal Network) is
used to generate region proposals and activity classification
is done on the proposed regions. Instead of classifying on
the proposed regions using RPN, we utilize the available
track informations and classify on the known regions.

� RGB: Same architecture as the RGB+FLOW. Instead of
using both RGB and Flow information, we only utilize the
RGB information.

We compare the performance of our proposed method
with three baseline methods. To analyze the performance of
the proposed method, we divide the activity recognition task
into unary activity recognition task and pairwise+unary ac-
tivity recognition task. In the unary activity recognition task,

Table 1. Activity detection performance comparison, where
the † symbol indicates baseline implemented by author.

Approach Unary (mAP) Pairwise+Unary (mAP)

RGB † 0.30 0.007
RGB+FLOW † [19] 0.18 0.058

SPATIAL 0.092 0.099
SPATIAL+TEMPORAL 0.45 0.42

the model predicts the activity score for individual instances.
In pairwise+unary activity recognition task, the model pre-
dicts the activity score for both object pairs and individual
objects. We present the result in Table 4. As can be observed
from Table 4, our proposed model outperforms other base-
lines both in unary and pairwise+unary classification tasks
with mAP score 0.45 and 0.42 consecutively. From Table 4,
it is evident that the performance of baseline methods RGB
and RGB+FLOW drops significantly for pairwise activity
classification, proving the inadequacy of the methods to cap-
ture relational information. Again, the poor performance
of SPATIAL demonstrates the importance of incorporating
temporal information. Here to be noted that, in the RGB
and RGB+FLOW approach, we perform classification on 16
frame segments of each instance considering IoU = 0.375.

Qualitative Results. In Figure 3, we present an example
illustration of collision activity detection. In the second and
the third frame, the yellow and the blue car colliding with
each other are detected by the system. The system was able
to detect individual involvement (marked by thick bounding
box) as well as pairwise involvement of the two cars in the
same accident event (marked by green line).

5. CONCLUSION
In this work, we present a novel approach to encode instance-
level spatial and temporal reasoning to boost activity recog-
nition performance. The experimental result suggests that the
proposed method is able to distinguish between insufficient
appearance variance to detect collision events. Furthermore,
the introduced CarBump dataset will promote complex ac-
tivity analysis using relational reasoning. Future Work in-
cludes applications to natural videos and extensions to multi-
ple activities (car-person collisions, near-misses, running stop
signs and red lights, etc.). In addition, potential directions in-
clude developing a network that is more reflective of scene
context to optimize spatio-temporal search space and perfor-
mance.
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