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Figure 1:Conceptual Overview of ALANET. Given a poor-quality video consisting both blurry and sharp frames, the frames are
projected on a latent space. These latent representations are modulated and interpolated using the proposed Adaptive Latent
Attention module to generate optimized latent representations for deblurring and interpolation. These optimized representa-
tions are then used to generate a high frame-rate sharp video.

ABSTRACT
Existing works address the problem of generating high frame-rate
sharp videos by separately learning the frame deblurring and frame
interpolation modules. Most of these approaches have a strong
prior assumption that all the input frames are blurry whereas
in a real-world setting, the quality of frames varies. Moreover,
such approaches are trained to perform either of the two tasks
- deblurring or interpolation - in isolation, while many practical
situations call for both. Different from these works, we address
a more realistic problem of high frame-rate sharp video synthe-
sis with no prior assumption that input is always blurry. We in-
troduce a novel architecture, Adaptive Latent Attention Network
(ALANET), which synthesizes sharp high frame-rate videos with
no prior knowledge of input frames being blurry or not, thereby
performing the task of both deblurring and interpolation. We hy-
pothesize that information from the latent representation of the
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consecutive frames can be utilized to generate optimized represen-
tations for both frame deblurring and frame interpolation. Specifi-
cally, we employ combination of self-attention and cross-attention
module between consecutive frames in the latent space to gener-
ate optimized representation for each frame. The optimized repre-
sentation learnt using these attention modules help the model to
generate and interpolate sharp frames. Extensive experiments on
standard datasets demonstrate that our method performs favorably
against various state-of-the-art approaches, even though we tackle
a much more difficult problem. The project page is available at
https://agupt013.github.io/ALANET.html
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1 INTRODUCTION
Motion blur and low frame-rate are often commonplace in videos
captured by mobile devices, whether hand-held or on a moving
platform. The reasons vary, including low shutter frequency, long
exposure times, and the movement of the device itself [10, 28].
These factors limit the quality of videos captured. As vast majority
of video media is captured using mobile cameras these days, it
calls for improved quality of the video captured by these devices.
Enhancing video quality requires restoring the degradation caused
by motion blur along with increase in the frame-rate for temporal
smoothness.

Most existing approaches have addressed the problem of high
frame-rate sharp video generation by frame deblurring and frame
interpolation, separately. In [10], separate models are used to deblur
input frames and to interpolate between frames. The phenomenon
of motion blur and frame-rate at which video is captured are re-
lated. Thus, a joint formulation is needed when addressing the task
of high frame-rate sharp video generation from a low frame-rate
blurry video. Recently, [25] studied the problem of joint video de-
blurring and interpolation. Here, authors proposed to use pyramid
deep models to deblur and interpolate along with a pyramid of
convolutional Long-Short Term Memory (LSTM) to capture tempo-
ral smoothness. However, these methods assume that all the input
frames are blurry, which is often unrealistic because the quality of
a video usually varies non-uniformly over time.

In this paper, we introduce a novel architecture Adaptive Latent
Attention NETwork (ALANET) which aims to jointly deblur and
interpolate frames from a poor quality video input without an as-
sumption that all input frames are blurry. Specifically, we construct
a Adaptive Latent Attention module that leverages the latent space
with attention mechanisms to generate high frame-rate sharp video.
ALANET has a U-Net variant [24] as it’s backbone, combined with
the proposed attentionmodule. Similar to U-Net, we utilize contract-
ing path (encoder) of the network for latent space representation
and expanding path (generator) for video generation. However un-
like U-Net, we do not pass the bottleneck features extracted from
the encoder directly to the generator. We introduce our proposed
adaptive attention module to modulate and interpolate the latent
features for deblurring and interpolating frames from the input
video. Figure 1 illustrates the concept of proposed adaptive atten-
tion module. Given a set of input blurry and sharp frames, their
projection in latent space can be modulated and interpolated using
Adaptive Latent Attention module, to generate optimized represen-
tations for sharp frames. These modulated and interpolated latent
representations are then used by the generator to synthesize the
high frame-rate sharp video.

1.1 Approach Overview
An overview of our approach is illustrated in Figure 2. Given a
low frame-rate poor quality input, our objective is to generate a
high frame-rate sharp video. Our proposed architecture, ALANET,
consists of three modules: the frame encoding network E, the Adap-
tive Latent Attention networkM, and the high frame-rate sharp
video generator G. We modulate and interpolate the frame features
by applying self-attention and cross-attention on channels of

the latent features of consecutive frames using our proposed adap-
tive attention module. Self-attention on the feature space helps the
model to focus on important features of the same frame whereas
cross-attention helps the model to retrieve information from neigh-
bouring frames that can be useful for either deblurring or inter-
polation tasks. In turn, the Adaptive Latent Attention module will
give less importance to the neighbouring frame feature if the input
is a sharp frame, and utilize this information from the neighbours
if input frame is blurry. Hence, our proposed approach is able to
deblur and generate high quality interpolated frames using self-
attention and cross-attention on frame representations. To the best
of our knowledge, our approach is the first work to exploit the ability
of learning optimized latent representation for generation of high
frame-rate sharp video using self-attention and cross-attention.

1.2 Contributions
The key contributions of our proposed framework are summarized
as follows.

• We introduce a novel framework ALANET, Adaptive Latent
Attention Network, designed to jointly deblur and interpolate
for high frame-rate visually sharp video generation.

• This is the first work to generate high frame-rate sharp video
from low frame-rate poor quality video by applying attention in
the latent space without any assumption on the uniformity of
blurriness in different frames of the video.

• Our framework demonstrates consistently effective results on
two datasets, the benchmark Adobe240 and crawled YouTube240
with better or at par performance with state-of-the-art in both
deblurring and interpolation tasks.

2 RELATEDWORK
Our work relates to research in video deblurring, video interpola-
tion, attention model, and joint video deblurring and interpolation.
In this section, we discuss some representative methods closely
related to our work (see Table 1).

Video Deblurring. Inversion of motion blur is an ill-posed prob-
lem [21, 23]. Recent works have used deep learning based methods
to solve this restoration problem either using a single frame [26, 27]
or multiple frames [7, 10, 13, 18, 26]. [5] attempts to deblur a video
by exploring similarity between the frames of the video and ex-
ploiting sharp patches of neighbouring frames. DeBlurNet [26]
proposes to use consecutive frames stacked as input to generate
a single clean central frame. ESVR [30] tries to align the features
of multiple frames using a temporal and spatial fusion module for
feature fusion from different layer to deblur a video. [12] proposes
an integrated model to jointly predict the defocus blur, optical flow
and latent frames. [8] proposed a spatio-temporal recurrent neural
network that enforces temporal consistency between neighbouring
frames. [35] proposes a spatio-temporal recurrent architecture with
dynamic temporal blending mechanism. In contrast, we do not esti-
mate any extra information like optical flow (which can be noisy
and computationally heavy) in our approach and rely on proposed
attention model to generate high frame-rate sharp videos.



Figure 2:Architectural Overview of ALANET. Given a low frame-rate poor quality video V =
[
V1, V2, · · · , V𝐿

]
, we extract latent

representations XV =
[
x1, x2, · · · , x𝐿

]
using encoder network E. Adaptive Latent Attention module M utilizes combination

of self-attention and cross-attention on XV to generate optimized representations for deblurring (Z̃S) and interpolation (ẐS).
These optimized representations are used by the generative network G to synthesize deblurred frames (S1, S3, · · · , S𝑁−1) from
Z̃S and interpolated frames (S2, S4, · · · , S𝑁 ) from ẐS, thereby generating a high frame-rate video S =

[
S1, S2, · · · , S𝑁

]
.

Video Interpolation.Many of the existing approaches [3, 4, 9, 15,
17, 36] for frame interpolation use optical flow estimation between
input frames. Consequently, the quality of estimated optical flow
governs the quality of frame interpolation. Recent learning based
methods have demonstrated effectiveness in frame interpolation
tasks. A direct application of convolutional neural networks (CNNs)
for intermediate frame synthesis is presented in [16]. Some meth-
ods [19, 20] apply CNNs to estimate space-varying and separable
convolutional kernels for synthesis using neighbourhood pixels. [1]
proposes to generate videos by learning optimized representation
by a non-adversarial approach and then interpolating between the
optimized latent representation of two frames to synthesize central
frame. However, they average the latent representations of two
frames for frame interpolation which often generates a blurry im-
age. Unlike these methods, our approach utilizes adaptive attention
in the latent space for interpolation.

AttentionModel.Attentionmechanism has garnered a lot of inter-
est due to their learnable guidance ability. With pioneering work in
language translation [29], variations of attention mechanism have
shown promising results in object recognition [2], image genera-
tion [32] and image super-resolution [33]. Residual channel atten-
tion mechanism for super-resolution is introduced in [33]. Authors
in [31] used different length sequences to deblur the center frame
and attention is applied on different outputs to generate a single
central frame. Recently, variations of attention models are proposed
for video deblurring [31] and video interpolation [6]. In [6], atten-
tion is applied channel-wise on concatenated down-shuffled frames
for video interpolation. In contrast to our work, where we apply
attention in latent space, the existing methods employ attention
for video deblurring and interpolation tasks in pixel space.

Joint Video Deblurring and Interpolation. Joint video deblur-
ring and interpolation still remains a challenging problem. [10]
proposed DeBlurNet, to deblur, and InterpNet, for interpolating
input frames in a jointly optimized cascade scheme to generate
sharp slow motion videos using blurry input. Blurry Video Frame
Interpolation proposed in [25] uses pyramid structure to deblur and
interpolate along with a pyramid convolutional LSTM to capture
temporal information. However, both these methods strongly as-
sume that all the input frames are blurry. We relax this assumption
to address a more difficult problem where we do not know which
input frames are blurry and where to interpolate. Hence, the pro-
posed ALANET framework is self-sufficient to make decisions on
which frames to deblur using information from neighbouring frames.

Table 1: Categorization of prior works in video deblurring
and interpolation. Different from the state-of-the-art ap-
proaches, ALANET demonstrates adaptive attention in la-
tent space to perform joint deblurring and interpolation.

Methods
Settings

Interpolate? Deblur? Joint Deblur &
Interpolate?

Latent
Attention?

DAIN [3] ✓ ✗ ✗ ✗

Jin [10] ✓ ✓ ✗ ✗

BIN [25] ✓ ✓ ✓ ✗

ALANET
(Ours) ✓ ✓ ✓ ✓



3 PROBLEM FORMULATION
Given a low frame-rate poor quality video V =

[
V1, V2, · · · , V𝐿

]
,

with 𝐿 frames, we aim to generate a high frame-rate sharp video
S =

[
S1, S2, · · · , S𝑁

]
with 𝑁 frames, where 𝑁 > 𝐿. Our objective

is to deblur and increase the frame-rate of the given input video V.
Corresponding to each input frame V𝑖 ∀ 𝑖 = 1, 2, · · · , 𝐿, let there be
a feature representation x𝑖 in latent space X ∈ R𝐻1×𝑊1×𝐶1×𝐿 such
that XV =

[
x1, x2, · · · , x𝐿

]
where 𝐻1 ×𝑊1 ×𝐶1 is the dimension

of the latent representation.
We propose to generate a high frame-rate video by adaptive

attention modeling (see Section 4.2) of the feature representations
of input video frames in the latent space. Our hypothesis is that in
latent space, information from neighbouring frames can help learn
optimized representations for deblurring and interpolation. Thus,
the proposed Adaptive Latent Attentive model transforms input
blurry frame representation (XV) to the optimized representations
(ZS ∈ R𝐻1×𝑊1×𝐶1×𝑁 ) for deblurring and interpolation in the latent
space given by

ZS =
[
z1, ẑ2, z3, ẑ4, · · · , z𝑁

]
= Z̃S

⋃
ẐS (1)

where z2𝑖 is the representation for a deblurred frame S2𝑖 , and ẑ2𝑖+1
is the representation for an interpolated frame between S2𝑖 and
S2𝑖+2, i.e., S2𝑖+1. We denote all latent representations for deblurred
frames by Z̃S and for interpolated frames by ẐS. These optimized
representations ZS = Z̃S

⋃
ẐS are used to deblur and interpolate

sharp frames to generate a high frame-rate video.

4 ALANET: ADAPTIVE LATENT ATTENTION
NETWORK

In this section, we describe the proposed framework, ALANET, in
detail. Our framework consists of three components: the encoder E,
the Adaptive Latent Attention moduleM and, the generator G. We
use the encoder module to extract latent representation for each
input frame. The Adaptive Latent Attention module generates opti-
mized representations for frames to reduce blur and to interpolate
frames, simultaneously. Finally, the optimized representations are
used by the generator to synthesize a high frame-rate sharp video.
Our overall framework is shown in Figure 2.

4.1 Latent Representation of Frames
The encoder E is a trainable convolutional neural network which
projects the input video into a latent representation for each frame.

E(V) = E
( [

V1, V2, · · · , V𝐿
] )

(2)

=
[
x1, x2, · · · , x𝐿

]
= XV

Here, x𝑖 ∈ R𝐻1×𝑊1×𝐶1 is the latent representation corresponding
to V𝑖 . The representations generated by the encoder E are used by
the Adaptive Latent Attention module M to generate optimized
representations for deblurring and interpolation.

4.2 Adaptive Latent Attention
The latent representation of a frame generated by the encoder may
not be optimized as all the channels of the input representation are
not equally important for generation task. Also, since frames of a
video are temporally correlated, their latent representation can be

(a) Attention Mechanism

(b) Channel Attention Computation Network

Figure 3: Proposed Attention Module. (a) Self-Attention (top)
on latent representation x𝑖 and Cross-Attention (bottom)
for representation x𝑗 conditioned on x𝑖 . Symbol ⊗ denotes
element-wise multiplication of each attention weight with
respective channel of the representation. (b) The channel
weight computation function F . It generates channel de-
scriptor by channel-wise global average pooling to learn at-
tention weights for each channel.

leveraged to extract information from neighbouring frames to gen-
erate an optimized representation for deblurring and interpolation.

To extract important information from the latent representation
of the given frame and utilize the information from the neighbour-
ing frames, we propose an Adaptive Latent Attention moduleM.
The proposed moduleM applies attention on the input latent repre-
sentations to generate the optimized representations for deblurring
and interpolation. This module takes two latent representations
(x𝑖 , x𝑗 ∈ R𝐻1×𝑊1×𝐶1 ) as input, where 𝐻1 ×𝑊1 is dimension of each
feature in 𝐶1 channels of the latent representation. A combination
of self-attention M𝑆 and cross-attention M𝐶 is then used to
generate latent representations to jointly deblur and interpolate
between two consecutive frames in an adaptive manner.

The basic building block of the attention mechanism is the chan-
nel attention function F . It computes attention weights of each
channel in the latent representation. As in [33], the channel-wise
global spatial information is extracted using global average pooling
to condense input features to a channel descriptor. Then, a gating
mechanism is applied to learn non-linear interactions and correla-
tion between multi-channel features such that F : R𝐻1×𝑊1×𝐶1 →
R1×1×𝐶1 , where 𝐻1 ×𝑊1 ×𝐶1 is the dimension of the latent repre-
sentation. Figure 3 shows the self-attentionM𝑆 and cross-attention
M𝐶 modules alongwith the basic building block F for computation
of the channel attention.

Self-Attention (M𝑆 ) correlates different channels of the latent
representation of a frame in order to generate an informative repre-
sentation. This is achieved by computing attention weights for each



of the channels of the input representation followed by element-
wise multiplication of the channels with their attention weights.
This self-attention on x𝑖 can then be expressed as in (3).

Cross-Attention (M𝐶 ) provides attention weights for each chan-
nel of the latent representation x𝑗 conditioned on another latent
representation x𝑖 . Cross-attention leverages information from other
frames to generate a conditional representation. The conditional
representation provides insight on what information is useful from
other frames. This cross-attention on x𝑗 given the input x𝑖 can then
be computed as in (4).

M𝑆

(
x𝑖 |x𝑖

)
= x𝑖 ⊗ F (x𝑖 ) (3)

M𝐶

(
x𝑗 |x𝑖

)
= x𝑗 ⊗ F (x𝑖 ) (4)

Note that, ⊗ in (3) and (4) represents element-wise multiplication,
x𝑖 , x𝑗 ∈ R𝐻1×𝑊1×𝐶1 are the encoded feature representations of
frames and MS (x𝑖 |x𝑖 ), MC (x𝑗 |x𝑖 ) ∈ R𝐻1×𝑊1×𝐶1 .

Deblurred and Interpolated Representations. A combination
of self-attention and cross-attention modules is employed to obtain
optimized latent representations for deblurring and interpolation.
Given a window W, the optimized latent representations ZV =[
z1, ẑ2, z3, ẑ4, · · · , z𝑁

]
for a high frame-rate video S is computed

as follows:

z2𝑖 = M𝑆

(
x𝑖 |x𝑖

)
+
∑
𝑗 ∈Q

M𝐶

(
x𝑗 |x𝑖

)
(5)

ẑ2𝑖+1 = M𝑆

(
x𝑖 |x𝑖

)
+M𝐶

(
x𝑖 |x𝑖+1

)
+M𝑆

(
x𝑖+1 |x𝑖+1

)
+M𝐶

(
x𝑖+1 |x𝑖

)
(6)

where Q denotes integer values in [ 𝑖 − 0.5W, 𝑖 ) ⋃ ( 𝑖, 𝑖 + 0.5W ],
z2𝑖 is the optimized representation for deblurred frame S2𝑖 and ẑ2𝑖+1
is the optimized representation for the interpolated frame between
S2𝑖 and S2𝑖+2.

As defined by (5), an optimized representation z2𝑖 for sharp
output S2𝑖 is computed using self-attention on 𝑖𝑡ℎ input repre-
sentation x𝑖 and cross-attention of all the remaining input latent
representation x𝑗 in a neighbourhood ofW frames. Cross-attention
is computed in a temporal window of W frames as the significant
information for deblurring and interpolation is available in neigh-
bouring frames compared to temporally distant frames. Similarly, a
latent representation ẑ2𝑖+1 for interpolated frame S2𝑖+1 between S2𝑖
and S2𝑖+2 is given by (6), where we consider self-attention on each
latent representations x𝑖 and x𝑖+1, and cross-attention for each
representation conditioned on the other.

4.3 High Frame-Rate Video Generation
To generate a high frame-rate video from blurry inputs, we em-
ploy a generative neural network G that transforms the optimized
representations to a sequence of frames. The optimized representa-
tions generated by the adaptive attention moduleM are used by
generator G to synthesize deblurred frames as well as interpolate
between frames represented by S = G

( [
z1, ẑ2, z3, ẑ4, · · · , z𝑁

] )
where z2𝑖 and ẑ2𝑖+1 are optimized representation used to deblur
and interpolate frames S2𝑖 and S2𝑖+1, respectively.

4.4 Network Architecture
In this section, we describe the network architecture used for dif-
ferent modules in the proposed ALANET framework.

Encoder-Generator Network. A variation of U-Net [9] is em-
ployed to design the backbone network for the proposed framework.
The contracting path is used as the encoder network E and the
expansive path is used as the generator network G. The encoder-
decoder network also retains the skip-connections as in the original
U-Net architecture [24]. However unlike the U-Net architecture,
our proposed Adaptive Latent Attention module M is introduced
after the bottleneck to optimize the latent representations before
they are fed to the generator G.

Adaptive Latent Attention Network. In order to make the gen-
erator model, G, focus more on informative features, we exploit
the inter-dependencies within frame feature (self-attention) and
across frame features (cross-attention). The basic building block of
self-attention and cross-attention is the attention weight computa-
tion module, F . We adopt the channel attention module as in [33]
for F . This channel attention module first extracts the channel-
wise global spatial information into a channel descriptor using
global average pooling. Then, a gating mechanism is applied to
learn non-linear interactions and non-mutually-exclusive relation-
ship between multi-channel features [33]. Unlike self-attention for
super-resolution in [33], we also employ cross-attention between
consecutive features to learn interactions between these features
for deblurring and interpolation.

5 EXPERIMENTS
In this section, we first introduce the benchmark datasets, and
evaluation metrics. Next, the model used for generation of blurry
training data is described. Finally, extensive experiments are shown
to demonstrate the effectiveness of our proposed approach in gen-
erating high frame-rate sharp videos.

5.1 Datasets and Metrics
We evaluate the performance of our approach using publicly avail-
able Adobe240 [26] dataset which has been used in many prior
works and a dataset crawled from YouTube as in [25].

Adobe240 Dataset. This dataset contains 118 videos captured at
240 frames per second (fps) with the resolution of 1280 × 720 .
We choose 110 videos for training and remaining 8 for evaluation
following the split provided in [9] for fair comparison.

YouTube240 Dataset. We download 60 random video videos cap-
tured at 240fps from the YouTube website to construct an evaluation
dataset similar to that used in [25]. The resolution of the down-
loaded video is 1280 × 720. For this dataset, we train the model in
Adobe240 but test on YouTube240 without any fine-tuning.

Dataset Preparation. For Adobe240 [26] and crawled YouTube240
dataset, low frame-rate poor quality videos of 30fps are generated
using process described in section 5.2. All the frames are resized to
640 × 352 for training and evaluation purposes.
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(a)Representative result fromAdobe240 dataset. Observe zoomed-in patch of the car. Themotion of car introducesmotion blur. ALANET
is able to significantly reduce the motion blur in all the frames and also generate superior quality interpolated frames.
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(b) Representative result from Adobe240 dataset. The last frame in blurry input (top row) is of poor quality. ALANET is able to deblur
and interpolate clear frame (last two frame in the bottom row) as compared to the state-of-the-art (last two frame in the middle row).

Figure 4: Qualitative result comparison with the state-of-the-art. Top row consists of the input blurry frames and the missing
frames faded. We show two high frame-rate videos generated by our proposed method (bottom row) and compare it with the
state-of-the-art BIN4 (middle row). ALANET is able to generate superior quality high frame-rate video.

5.2 Implementation Details
Our framework is implemented in PyTorch [22]. All the experiments
are trained for 200 epochs with a batch size of 2. We use ADAM [14]
optimizer with initial learning rate of 0.0001 and weight decay
5× 10−4. The learning rate is reduced by a factor of 10 after 100 and
150 epochs. The proposed framework takes a 30fps blurry video as
an input and generates a 60fps sharp video.

BlurryVideo Formation.Camera shutter frequency affects degra-
dation due to motion blur in each frame of a captured video. A low
shutter frequency may not be able to capture temporal smoothness
and hence generate blurry frames. To simulate the motion blur,
we approximate the blurry frame as a discrete averaging of sharp

frames within an overlapping window as defined in [9, 10, 26]. Let
2𝜏 + 1 be the number of sharp frames between two blurry frames
and 𝛽 be the rate at which frames are captured. Then, a blurry
frame V𝑖 is approximated as:

V𝑖 =
1

2𝜏 + 1

𝑖𝛽+𝜏∑
𝑘=𝑖𝛽−𝜏

S𝑘 (7)

where, S𝑘 ’s are the sharp frames in the given video. Since we
do not assume that all the input frames are blurry, we average 11
consecutive frames randomly using (7) on a sharp video to generate
a poor quality video with low frame-rate.



Table 2: Quantitative results comparison on Adobe240 and YouTube240. We obtained better average PSNR and SSIM index on
Adobe240 dataset. Our proposed approach performs at-par on YouTube240 dataset when evaluated using the model trained
on Adobe240. Best scores have been highlighted in bold. † indicates results reported from [25].

Method

Deblurring Interpolation Joint Deblurring and Interpolation

Adobe240 YouTube240 Adobe240 YouTube240 Adobe240 YouTube240

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Blurry Inputs† 28.68 0.8584 31.96 0.9119 - - - - - - - -

Super SloMo† [9] - - - - 27.52 0.8593 30.84 0.9107 - - - -

MEMC-Net† [4] - - - - 30.83 0.9128 34.91 0.9596 - - - -

DAIN† [3] - - - - 31.03 0.9172 35.09 0.9615 - - - -

Jin† [10] 29.40 0.8734 32.06 0.9119 29.24 0.8754 32.24 0.9140 29.32 0.8744 32.15 0.9130

BIN4† [25] 32.67 0.9236 35.10 0.9417 32.51 0.9280 35.10 0.9468 32.59 0.9258 35.10 0.9443

ALANET (Ours) 33.71 0.9429 35.94 0.9496 32.98 0.9362 35.85 0.9513 33.34 0.9355 35.89 0.9504

Training and Testing Protocol. During training, random blurry
frames are generated on-the-fly by averaging 11 frames as defined
in (7). The 5𝑡ℎ and 9𝑡ℎ sharp frames are considered as the ground-
truth for deblurring and interpolation, respectively. The framework
is jointly optimized for deblurring and interpolation using Adaptive
Latent Attention Network. During testing, a low frame-rate (30fps)
poor quality video is used as an input to the trained model and a
high frame-rate (60fps) sharp video is generated.

Objective Function. Our objective function consists of a ℓ1 pixel
reconstruction loss1 and the perceptual loss [11] defined as follows.

L = L𝑟 + 𝜆L𝑝 (8)

Here, L𝑟 =
∑
𝑖
|G𝑖 − S𝑖 |1 denotes ℓ1 reconstruction loss with G𝑖

being the ground-truth frame corresponding to the generated frame
S𝑖 . L𝑝 denotes the perceptual loss computed using a pre-trained
VGG16 network [11], and 𝜆 is a hyper-parameter. We use 𝜆 = 0.2
for all our experiments.

5.3 Qualitative Results
Figure 4 shows some examples of high frame-rate videos generated
using the proposed method and state-of-the-art BIN4 [25] given a
low frame-rate video (top row). From Figure 4a, it can be seen that
our approach is able to tackle the motion blur introduced due to
the object motion (car in the bottom left corner for this particular
example) along with the blur produced by averaging of consecutive
sharp frames. As our approach is extracting information by apply-
ing attention on latent representation of input frame, our method
is able to deblur and interpolate visually more appealing videos.
In Figure 4b, the last two frames of middle and bottom row show
that the proposed method is able to deblur and interpolate visually
good quality frames whereas BIN4 generates a blurry interpolated
frame. As the BIN4 utilizes the deblurred frame to interpolate, the
1For pixel reconstruction loss, we choose ℓ1-loss instead of Mean-Squared Error (MSE)
ℓ2 loss as latter has inherent property of generating blurry output as shown in the
literature [34].

error from deblurred frame may propagate during interpolation and
hence produce a blurry interpolated frame as shown in Fig 4b (mid-
dle row, last frame). Our approach overcomes this by generating
optimized representation using attention mechanisms, which ex-
tracts relevant information from neighbouring frames in the latent
space for both deblurring and interpolation.

5.4 Quantitative Results
Our proposed method performs joint deblurring and interpolation.
There are several methods that only solve the tasks of either de-
blurring or interpolation. We compare our proposed approach with
these state-of-the-art methods that either perform deblurring or
interpolation [3, 4, 9] given an input blurry video. We also com-
pare ALANET with two recent approaches where deblurring and
interpolation is performed jointly [10, 25]. Quantitative result com-
parison with these baselines are shown in Table 2.

Results on Adobe240 Dataset. For deblurring task on Adobe240
dataset, we report a relative improvement of 1.04dB in the average
PSNR value and 2.09% improvement in SSIMmetric when compared
to [25]. Our method achieves 32.98dB average PSNR in interpola-
tion task as opposed 32.51dB reported by state-of-the-art method
BIN4 [25]. Overall, for the joint task of deblurring and interpola-
tion the proposed method achieves relative improvement of 2.3%
in average PSNR and 1.04% in SSIM index against BIN4. It can be
observed that BIN4 and ALANET both jointly formulate the de-
blurring and interpolation tasks which helps to outperform [10].
We again highlight that our method does not know which frames
are blurry or where to interpolate, unlike BIN4 [25].

Results on YouTube240 Dataset.We evaluate the performance
of our model trained on Adobe240 dataset for deblurring and inter-
polation on YouTube240 dataset. For this experiment we crawled
60 videos from YouTube to create this dataset following authors
in [25]. However, we do not have the same set of videos as in [25]
as the list of videos is not publicly available. From Table 2, it can be



Figure 5: Ablation study on different attention modules. Frame generated using different attention mechanisms (top) and the
residue image (bottom) computed by taking its difference with the ground-truth frame. Scale for the error range [0. 255] is
given on the bottom left. Our proposed ALANET which combines self-attention and cross-attention produces superior results
compared to using only one of the attention mechanisms. Results best viewed when zoomed-in.

observed that network trained on Adobe240 performs at-par when
evaluated on YouTube240 dataset with average PSNR of 35.89dB
and SSIM index of 0.9504 for joint deblurring and interpolation.

5.5 Ablation Study
In this section, we investigate the contribution of self-attention
and cross-attention in the proposed approach. First, we study the
impact of self-attention on video deblurring and interpolation. We
remove the cross-attention M𝐶 terms from (5) and (6) and train
the network using only self-attention in the latent space. Secondly,
we study the impact of cross-attention in absence of self-attention
by removingM𝑆 terms from (5) and (6) for training the network.

Figure 5 presents the qualitative results of the ablation study. It
can be observed that the network trained using only self-attention
produces inferior results as compared to that of using only cross-
attention. The network trained with only self-attention module
assumes that all the information to deblur and interpolate resides
in a single frame and discards the temporal information available
in consecutive frames. This loss in information results in poor
quality frame when using only self-attention. On the other hand,
using only cross-attention produces better results than using only
self-attention module as it exploits the available temporal infor-
mation by applying cross-attention on latent representation of the
consecutive frames.

The quantitative results of impact of different attention mecha-
nisms are shown in Table 3. Network trained on only cross-attention
achieves improvement of 0.38dB PSNR as compared to using only
self-attention for deblurring. However, for interpolation there is
improvement of 1.90dB when using only cross-attention as, unlike
self-attention, it exploits the temporal information available from
neighbouring frames. From Table 3, we can observe that ALANET
performs best as it extracts quality information from the latent rep-
resentation by exploiting combination of self-attention and cross-
attention for deblurring and interpolation.

Table 3:Ablation study on attentionmechanism.Weevaluate
contribution of self-attention and cross-attention for high
frame-rate video generation on Adobe240 dataset.

Attention
Deblurring Interpolation

PSNR SSIM PSNR SSIM

only Self-Attention 31.98 0.9373 30.87 0.9233

only Cross-Attention 32.36 0.9385 32.77 0.9340

ALANET 33.71 0.9429 32.98 0.9362

6 CONCLUSION
We present an Adaptive Latent Attention Network (ALANET) for
generating high frame-rate sharp videos with no knowledge that
either an input frame is blurry or not. The proposed approach em-
ploys self-attention and cross-attention mechanism in the latent
representations of input video frames for deblurring and interpo-
lation. Specifically, the self-attention module extracts information
local to the input frame and the cross-attention module exploits
the temporal relationship from latent representations of neighbour-
ing frame. Using combination of self-attention and cross-attention
our approach is able to generate high frame-rate sharp video. Ex-
periments on standard datasets show the efficacy of our proposed
attention module in task of joint deblurring and interpolation over
state-of-the-art methods.
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