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Abstract—Prior works on text-based video moment localization
focus on temporally grounding the textual query in an untrimmed
video. These works assume that the relevant video is already
known and attempt to localize the moment on that relevant
video only. Different from such works, we relax this assumption
and address the task of localizing moments in a corpus of
videos for a given sentence query. This task poses a unique
challenge as the system is required to perform: (i) retrieval of
the relevant video where only a segment of the video corresponds
with the queried sentence, and (ii) temporal localization of
moment in the relevant video based on sentence query. Towards
overcoming this challenge, we propose Hierarchical Moment
Alignment Network (HMAN) which learns an effective joint
embedding space for moments and sentences. In addition to
learning subtle differences between intra-video moments, HMAN
focuses on distinguishing inter-video global semantic concepts
based on sentence queries. Qualitative and quantitative results
on three benchmark text-based video moment retrieval datasets -
Charades-STA, DiDeMo, and ActivityNet Captions - demonstrate
that our method achieves promising performance on the proposed
task of temporal localization of moments in a corpus of videos.

Index Terms—Temporal Localization, Video Moment Re-
trieval, Video Corpus

I. INTRODUCTION

Localizing activity moments in long and untrimmed videos
is a prominent video analysis problem. Early works on moment
localization were mostly limited by the use of a predefined set
of labels to describe an activity [1], [2], [3], [4]. However,
due to the nature of the complexity of real-life activities,
natural language sentences would be the appropriate choice
to describe an activity rather than a predefined set of labels.
Recently, there are several works [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14] that utilize sentence queries to temporally
localize moments in untrimmed videos. All these approaches
build upon an underlying assumption that the correspondence
between sentences and videos is known. As a result, these
approaches attempt to localize moments only in the related
video. We argue that such an assumption of knowing relevant
videos a priori may not be plausible for most practical sce-
narios. It is more likely that a user would need to retrieve a
moment from a large corpus of videos given a sentence query.

In this work, we relax the assumption of specified video-
sentence correspondence of the prior works on temporal
moment localization and address the more challenging task
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Fig. 1. Example illustration of our proposed task. We consider localizing
moments in a corpus of videos given a text query. Here, for the queried
text: ‘Person puts clothes into a washing machine’, the system is required to
identify the relevant video-(b) from the illustrated corpus of videos (video-
(a), video-(b), and video-(c)) and temporally localize the pertinent moment
(ground truth moment marked by the green dashed box) in that relevant video.

of localizing moments in a corpus of videos. For example in
Figure 1, the moment marked by the green dashed box in
video-(b) corresponds to the text query: ‘Person puts clothes
into a washing machine’. Prior works on temporal moment
localization only attempt to detect the temporal endpoints in
the given video-(b) by learning to identify subtle changes in
dynamics of the activity. However, the task of localizing the
correct moment in the illustrated collection of videos (i.e., (a),
(b), and (c) in Figure 1) imposes the additional requirement
to distinguish moments from different videos and identify the
correct video (video-(b)) based on the differences of putting
and pulling activities as well as the presence of washing
machine and clothes.

To address this problem, a trivial approach would be to
use an off-the-shelf video-text retrieval module to retrieve the
relevant video and then localize the moment in that retrieved
video. Most of the video-text retrieval approaches [15], [16],
[17], [18], [19], [20], [21], [22] are designed for cases where
videos and text queries have a one-to-one correspondence, i.e.,
a query sentence reflects a trimmed and short video or a query
paragraph represents a long and untrimmed video. However,
in our addressed task, the query sentence reflects a segment
of a long and untrimmed video, and different segments of a
video can be associated with different language annotations,
resulting in one-to-many video-text correspondence. Hence,
the existing video-text retrieval approaches are likely to fall
short on our target task. Another trivial approach would be to
scale up the temporal localization of moments approaches, i.e.,
instead of searching over a given video, it searches over the
corpus of videos. However, these approaches are only designed
to discern intra-video moments based on sentence semantics
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and fail to distinguish moments from different videos and
identify the correct video.

In this work, based on the text query, we focus on discerning
moments from different videos as well as understand the
nuances of activities simultaneously to localize the correct
moment in the relevant video. Our objective is to learn
a joint embedding space that will align representations of
corresponding video moments and sentences. For this, we
propose Hierarchical Moment Alignment Network (HMAN),
a novel neural network framework that effectively learns a
joint embedding space to align corresponding video moments
and sentences. Learning joint embedding space for retrieval or
localization tasks has been addressed by several other methods
[6], [23], [22], [24], [25], [26]. Among them, [6] and [23] are
closely related to our work as they try to align corresponding
moment and sentence representations in the joint embedding
space. However, our approach is significantly different from
these works. In contrast to these works, HMAN utilizes tempo-
ral convolutional layers in a hierarchical structure to represent
candidate video moments. It allows the model to generate all
candidate moment representations of a video in a single pass,
which is more efficient than sliding based approaches like
[6], [23]. Our learning objective is also different from [6],
[23], where they only try to distinguish between intra-video
moments and inter-video moments. In our proposed approach,
in addition to distinguishing intra-video moments, we propose
a novel learning objective that utilizes text-guided global
semantics to distinguish different videos. Global semantics of
a video refers to the semantics that is common across most
of the moments of that video. As the global semantics vary
across videos, by distinguishing videos, we learn to distinguish
inter-video moments. We demonstrate the advantage of our
proposed approach over other baseline approaches and con-
temporary works on three benchmark datasets.

A. Contributions
The main contributions of the proposed work are as follows:

• We explore an important, yet under-explored, problem of
text query-based localization of moments in a video corpus.

• We propose a novel framework, HMAN, that uses stacked
temporal convolutional layers in a hierarchical structure to
represent video moments and texts jointly in an embedding
space. Combined with the proposed learning objective, the
model is able to align moment and sentence represen-
tations by distinguishing both local subtle differences of
the moments as well as global semantics of the videos
simultaneously.

• Towards solving the problem, we propose a novel learning
objective that utilizes text-guided global semantics of the
videos to distinguish moments from different videos.

• We empirically show the efficacy of our proposed ap-
proach on DiDeMo, Charades-STA, and ActivityNet Cap-
tions dataset and study the significance of our proposed
learning objective.

II. RELATED WORKS

Video-Text Retrieval. Among the cross-modal retrieval tasks
[27], [28], [29], [30], [31], video-text retrieval has gained

much attention recently. Emergence of datasets like the Mi-
crosoft Research Video to Text (MSR-VTT) [32], the MPII
movie description dataset as part of the Large Scale Movie
Description Challenge (LSMDC) dataset [33], and Microsoft
Video Description Dataset (MSVD) [34] have boosted video-
text retrieval task. These datasets contain short video clips
with accompanying natural language. Initial approaches for the
video-text retrieval task were based on concept classification
[35], [36], [37]. Recent approaches focus on directly encoding
video and text in a common space and retrieving relevant
instances based on some similarity measure in the common
space [30], [31], [38], [39], [40], [41]. These works used
Convolutional Neural Network (CNN) [39] or Long Short-
Term Memory Network (LSTM) [42] for video encoding.
To encode text representations, Recurrent Neural Network
(RNN) [38], bidirectional LSTM [39] and GRU [16] were
commonly used. Mithun et al. [16] employed multimodal
cues such as image, motion, and audio for video encoding.
In [19], multi-level encodings for video and text were used
and both videos and sentences were encoded in a similar
manner. Liu et al. [43] proposed collaborative experts model
to aggregate information effectively from different pre-trained
experts. Yu et al. [39] proposed a Joint Sequence Fusion model
for sequential interaction of videos and texts. Song et al.
[44] introduced Polysemous Instance Embedding Networks
that compute multiple and diverse representations of an in-
stance. Among the recent works, Wray et al. [18] enriched
the embedding learning by disentangling parts-of-speech of
captions. Chen et al. [45] used Hierarchical Graph Reasoning
to improve fine-grained video-text retrieval. Another line of
work considers video-paragraph retrieval. For example, Zhang
et al. [15] proposed hierarchical modeling of videos, and
paragraphs and Shao et al. [17] utilized top-level and part-level
association for the task of video-paragraph retrieval. However,
all of these approaches have an underlying assumption that
videos and text queries have one-to-one correspondence. As
a result, they are not adaptable for our addressed task, where
the video-text pairs have one-to-many correspondence.

Temporal Localization of Moments. The task of localizing
a moment/activity in a given long and untrimmed video via
text query was introduced in [5], [6]. After that, there have
been a lot of works [7], [8], [9], [10], [11], [12], [13], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58] that addressed this task. All of these works on temporal
localization of moments can be divided into two categories: i)
two stage approaches that sample segments of videos in the
first step and then try to find a semantic alignment between
sentences and those segments of videos in the second step
[5], [6], [7], [8], [9], [10], [11], and ii) single stage approaches
that predict the association of sentences with multi-scale visual
representation units as well as predict temporal boundary for
each visual representation unit in a single pass [12], [13].
Among all the approaches, Gao et al. [5] developed Cross-
modal Temporal Regression Localizer that jointly models text
queries and video clips. A common embedding space for
video temporal context features and language features was
learnt in [6]. Some of the works focused on vision-language
fusion techniques to improve localization performance. For
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Fig. 2. A brief illustration of the proposed Hierarchical Moment Alignment Network for the moment localization task in a video corpus. The framework uses the
feature extraction unit to extract clip and sentence features. Hierarchical moment encoder module and sentence encoder module projects moment representations
and sentence representations in the joint embedding space respectively. The network learns to align moment-sentence pairs in the joint embedding space by
explicitly focusing on distinguishing intra-video moments and inter-video global semantic differences. (Details of the learning procedure in section III-F)

example, Multimodal Circulant Fusion was incorporated in
[7]. Liu et al. [8] incorporated a memory attention mechanism
to emphasize the visual features mentioned in the query and
simultaneously use their context. Ge et al. [10] mined activity
concepts from both video and language modalities to improve
the regression performance. Chen et al. [9] proposed Tempo-
ral GroundNet which captures evolving fine-grained frame-
by-word interactions. Xu et al. [11] used early integration
of vision and language for proposal generation and query
sentence modulation using visual features. Among the single
shot approaches, candidate moment encoding and temporal
structural reasoning were unified in a single shot framework
in [12]. Semantic Conditioned Dynamic Modulation (SCDM)
was proposed in [13] for correlating sentence and related video
contents. These approaches on moment localization in a given
video show promise, but fall short on realizing the requirement
of identifying the correct video to address the task of moment
localization in a corpus of videos.

There has been one concurrent work [23] that addressed the
task of temporal localization of moments in a video corpus.
They adopted the approach of Moment Context Network
[6]. However, instead of directly learning moment-sentence
alignment as in [6], they tried to learn clip-sentence alignment
for scalability issues where a moment consists of multiple
clips. Even so, a referring event is likely to consist of multiple
clips, and a single clip can not reflect the complete dynamics
of an event. Hence, consecutive clips with different contents
need to be aligned with the same sentence which results in
suboptimal representation for both the clips and the sentence.
We later empirically show that our approach is significantly
more effective than [23] in the addressed task.

III. METHODOLOGY

In this section, we present our framework for the task
of text-based temporal localization of moments in a corpus
of untrimmed and unsegmented videos. First, we define the

problem and provide an overview of the HMAN framework.
Then, we present how clip-level video representations and
word-level sentence representations are extracted. Then, we
describe the framework in detail along with the hierarchical
temporal convolutional network to generate moment embed-
dings and sentence embeddings. Finally, we describe how we
learn to encode moment and sentence representations in the
joint embedding space for effective retrieval of the moment
based on a text query.

A. Problem Statement

Consider that we have a set of N long and untrimmed
videos V = {vi}Ni=1, where a video v is associated with mv

temporal sentence annotations T = {(sj , τsj , τej )}
mv
j=1. Here, sj

is the sentence annotation and τsj , τ
e
j are the starting time and

ending time of the moment in the video that corresponds with
the sentence annotation sj . The set of all temporal sentence
annotations is S = {Ti}Ni=1. Given a natural language query
s, our task is to predict a set sdet = {v, τs, τe} where, v is
the video that contains the relevant moment and τs, τe are the
temporal information of that moment.
B. Framework Overview

Our goal is to learn representations for candidate moments
and sentences in such a way that the related moment-sentence
pairs are aligned in the joint embedding space. Towards this
goal, we propose HMAN, which is illustrated in Figure 2.
First, we employ a feature extraction unit to extract clip level
features {ci}li=1 from a video and sentence features ŝ from a
sentence. Clip representations and sentence representations are
used to learn the semantic alignment between sentences and
candidate moments. To project the moment representations and
sentence representations in the joint embedding space, we use
a hierarchical moment encoder module and a sentence encoder
module respectively. The moment encoder module is inspired
by single shot temporal action detection approach [4] where
temporal convolutional layers are stacked in a hierarchical
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Fig. 3. A conceptual representation of our proposed learning objective. For a text query s with relevant moment m11 in a set of videos {v1, v2} with set
of moments {m11,m12,m21,m22}, we learn the joint embedding space using- (a) intra-video moments: increasing similarity for relevant pair (m11, s)
and decreasing similarity for non-relevant pair (m12, s) from the same video, (b) global semantics of video: increasing video-sentence relevance for relevant
pair (v1, s) and decreasing for non-relevant pair (v2, s), where the video-sentence relevance is computed in terms of moment-sentence similarity. This is also
illustrated in (c), where the arrows indicate which pairs are learning to increase their similarity (moving close in the embedding space) and which pairs are
learning to decrease their similarity (moving further away in the embedding space). Details can be found in section III-F

structure to obtain multi-scale moment features representing
video segments of different duration. For the sentence encoder
module, we use a two-layer feedforward neural network. Based
on text queries, we derive the learning objective to explicitly
focus on distinguishing intra-video moments and inter-video
global semantics. We adopted sum-margin based triplet loss
[59] and max-margin based triplet loss [59] separately in
two different settings to train the model in an end-to-end
fashion and gained performance improvement over baseline
approaches in both setups. In the inference stage, for a
query sentence, the candidate moment with the most similar
representation is retrieved from the corpus of videos.

C. Feature Extraction Unit

To work with data from different modalities, we extract fea-
ture representations using modality specific pretrained models.

Video Feature Extraction. We extract high level video fea-
tures using a deep convolutional neural network. Each video v
is divided into a set of l non-overlapping clips and we extract
features for each clip. As a result, the video is represented by
a set of features {ci}li=1, where ci is the feature representation
of the ith clip. To generate representations for all the candidate
moments of a video in a single shot approach [4], we keep
the input video length, i.e., number of clips, l, fixed. A video
longer than the fixed length is truncated and a video shorter
than the fixed length is padded with zeros.

Sentence Feature Extraction. To represent sentences, we use
GloVe word embedding [60] for each word in a sentence.
Then these word embedding sequences are encoded using

a Bi-directional Gated Recurrent Unit (GRU) [61] with 512
hidden states. Here, words in a sentence are represented by
a 512-dimensional vector, corresponding to their GRU hidden
states. So, we can have a set of word-by-word representations
of a sentence S = {hi}ni=1, where n is the number of
words present in the sentence. The average of the word
representations is used as the sentence representation ŝ.

D. Moment Encoder Module

Existing approaches for moment localization based on
learning joint visual-semantic embedding space either use a
temporal sliding window with multiple scales [6] or optimize
over a predefined set of consecutive clips based on clip-
sentence similarity [23] to generate candidate segments. How-
ever, sliding over a video with different scales or optimizing
for all possible combinations of clips is computationally
heavy. Again, in both cases, extracted candidate moments or
predefined clips are projected in the joint embedding space
independent of neighboring or overlapping moments/clips of
the same video. Consequently, while learning the moment-
sentence or clip-sentence semantic alignment, representations
for neighboring or overlapping moments are not constrained
to be well clustered to preserve the semantic similarity.
Therefore, instead of projecting representations for candidate
moments independently and inefficiently in the joint embed-
ding space, inspired by the single shot activity detection [4],
we use temporal convolutional layers [62] in a hierarchical
setup to project representations for all candidate moments of
a video simultaneously. We use a stack of 1D convolutional
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Algorithm 1 Learning optimized HMAN (max-margin case)
Input: Untrimmed video set V , Temporal sentence annota-
tion set S, Initialized HMAN weights θ
for t = 1 to maxIter do

step 1: Construct minibatch of video-sentence pairs
step 2: Extract video and sentence feature
step 3: Project candidate moment and sentence
representations in the joint embedding space
step 4: Construct triplets
step 5: Compute Lintramax and Lvideomax using Eqn. 5 & 10
step 6: Optimize θ by minimizing total loss

end for
Output: Optimized HMAN weights θ

layers where the convolution operation can be denoted as
Conv(σk, σs, d). Here, σk, σs, and d indicate the kernel size,
stride size, and filter numbers, respectively. The set of moment
representations generated for K layers of hierarchical structure
is {{mk

i }
Tk
i=1}Kk=1. Here, Tk is the temporal dimension of the

kth layer, which decreases in the following layers. mk
i ∈ Rd

is the ith moment representation of the kth layer and kth layer
generates Tk moment representations. Feature representations
in the top layers of the hierarchy correspond to moments with
shorter temporal duration, while the feature representations in
the bottom layers correspond to moments with longer duration
in a video. We keep the feature dimension of each moment
representation fixed to d for all the layers of the temporal
convolutional network.

E. Sentence Encoder Module

We learn to project the textual representations in the joint
embedding space keeping the inputs from different modalities
with similar semantics close to each other. We use two layers
of feedforward neural network with learnable parameters W s

1,
W s

2, bs1, and bs2 to project the sentence representation ŝ in the
joint embedding space, which can be defined as,

s = W s
2

(
BN

(
ReLU(W s

1ŝ+ bs1)
))

+ bs2 (1)

Here, the dimension of the projected sentence representation
s is kept consistent with the projected moment representation
m (m, s ∈ Rd).

F. Learning Joint Embedding Space

Projected representations in the joint embedding space from
different modalities need to be close to each other if they are
semantically related. Training procedures to learn projecting
representations in the joint embedding space mostly adopts
two common loss functions: sum-margin based triplet ranking
loss [59] and max-margin based triplet ranking loss [63]. We
consider both of these loss functions separately. As illustrated
in Figure 3, we focus on distinguishing intra-video moments
and inter-video global semantic concepts. In this section,
we discuss our approach to learn projecting representations
from different modalities in the joint embedding space for
multimodal data.

Similarity Measure. We use the cosine similarity of pro-
jected representations from two modalities in the joint embed-
ding space to infer their semantic relatedness. So, the similarity
between a candidate moment m and a sentence s is,

S(m, s) =
mTs

‖m‖‖s‖
(2)

where m and s are the projected moment representation and
sentence representation in the joint embedding space.

Learning for Intra-video Moments. To localize a sentence
query in a video, the model needs to identify the subtle
differences of the candidate moments from the same video
and distinguish them. Among the candidate segments of a
video, one or few of the moments can be considered related
to the query sentence based on some IoU threshold. While
training the network, we consider related moments with the
queried sentence as the positive pairs and non-corresponding
moments with the queried sentence as the negative pairs.
Suppose, for a pair of video-sentence (v, s), we consider the
set of positive moment-sentence pairs {(m, s)} and the set of
negative moment-sentence pairs {(m−, s)}. We compute the
intra-video ranking loss for all video-sentence pairs {(v, s)}.
Using the sum-margin setup, the intra-video triplet loss is:

Lintrasum =
∑
{(v,s)}

∑
{(m,s)}

∑
{(m−,s)}

[
αintra−S(m, s)+S(m−, s)

]
+

(3)
Similarly, using the max-margin setup, we calculate the

intra-video triplet loss by,

m̂ = argmax
m−

S(m−, s) (4)

Lintramax =
∑
{(v,s)}

∑
{(m,s)}

[
αintra − S(m, s) + S(m̂, s)

]
+

(5)

Here, [f ]+ = max(0, f) and αintra is the ranking loss margin
for intra-video moments.

Learning for Videos. Learning to distinguish intra-video
moments only allows the model to learn subtle changes in the
video. It does not allow the model to distinguish moments from
different videos. However, learning to differentiate moments
from different videos is important as we need to localize the
correct moment in the video corpus. Hence, we also learn
to distinguish moments from different videos by capitalizing
on the text-guided global semantics of videos. As the global
semantics varies across videos we try to distinguish videos
based on these global semantics. To do so, we learn to
maximize the relevance of correct video-sentence pairs. Video-
sentence relevance is computed in terms of moment-sentence
relevance. As a result, learning to align video-sentence pairs
enforces constraints on the representation of moments from
different videos to be dissimilar. Inspired by the work of [27],
we compute the relevance of a video and a sentence by,

R(v, s) = log
(∑
{m}

exp
(
βS(m, s)

))1/β

, (6)

where β is a factor that determines how much to magnify the
importance of the most relevant moment-sentence pair and
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TABLE I
TABULATED SUMMARY OF THE DETAILS OF DATASET CONTENTS

Number of videos Moment-sentence
Dataset Total Train/Val/Test pairs

DiDeMo 10464 8395 / 1065 / 1004 26892
Charades-STA 6670 5336 / - / 1334 16128
ActivityNet Captions 20k 10009 / 4917 / - 71942

{m} is the set of all the moments in video v. As β → ∞,
R(v, s) approximates maxmi∈v S(mi, s). This is necessary
because all the segments of the video do not correspond to
the sentence.

For each positive video-sentence pair (v, s) where the sen-
tence s relates to a segment of the video v, we can consider two
sets of negative pairs {(v−, s)} and {(v, s−)}. Using the sum-
margin setup, we calculate the triplet loss for video-sentence
alignment of all the positive video-sentence pairs {(v, s)} by,

Lvideosum =
∑
{(v,s)}

∑
{(v−,s)}

[
αvideo −R(v, s) +R(v−, s)

]
+

+
∑
{(v,s)}

∑
{(v,s−)}

[
αvideo −R(v, s) +R(v, s−)

]
+

(7)

Similarly, using the max-margin setup, we compute the
triplet loss for video-sentence alignment by,

v̂ = argmax
v−

R(v−, s) (8)

ŝ = argmax
s−

R(v, s−) (9)

Lvideomax =
∑
{(v,s)}

[
αvideo −R(v, s) +R(v̂, s)

]
+

+
∑
{(v,s)}

[
αvideo −R(v, s) +R(v, ŝ)

]
+

(10)

Here, αvideo is the ranking loss margin for learning inter-video
global semantic concepts.

Learning Objective. We combine the calculated loss for
intra-video case and video-sentence alignment case and try to
minimize it as our final objective. For the sum-margin setup,
the final objective is,

min
θ
Lintrasum + λ1Lvideosum + α‖W‖2F (11)

Similarly, for the max-margin setup, the final objective is,

min
θ
Lintramax + λ1Lvideomax + α‖W‖2F (12)

Here, θ represents the network weights and all the learnable
weights are lumped together in W . λ1 balances the contri-
bution between learning to distinguish intra-video moments
and learning to distinguish videos based on a text query. α
is the weight on the regularization loss. Our objective is to
optimize θ to generate a proper representation for candidate
moments and sentences to minimize these combined losses.
During training, these losses are computed for a mini-batch
where the mini-batches are sampled randomly from the entire
training set. This stochastic approach yields the advantage

TABLE II
TABULATED SUMMARY OF THE IMPLEMENTATION DETAILS REGARDING

VIDEO PROCESSING FOR THREE DATASETS

Video # of candidate Per Unit Temporal dimension
Dataset length moments duration of layers

DiDeMo 12 21 2.5s {6,5,4,3,2,1}
Charades-STA 64 61 1s {31,16,8,4,2,1}
ActivityNet Captions 512 1023 1s {512, 256, 128, 64, 32,

16, 8, 4 ,2, 1}

of reducing the probability of selecting instances with high
semantic relation as the negative samples.

Inference. In the inference step, for a query sentence, we
compute the similarity of candidate moment representations
with the query sentence representation using Eqn. 2. We
retrieve the candidate moment from the video corpus that
results in the highest similarity.

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance
of our proposed method for the task of temporal localization
of moments in a corpus of video. We first discuss the datasets
we use and the implementation details of the experiments.
Then we report and analyze the results both quantitatively and
qualitatively.

A. Datasets

We conduct experiments and evaluate the performance on
three benchmark text-based video moment retrieval datasets,
namely DiDeMo [6], Charades-STA [5], and ActivityNet
Captions [66]. All of these datasets contain unsegmented and
untrimmed videos with natural language sentence annotations
with temporal information. Table I summarizes the details of
the contents of three datasets.

DiDeMo. The Distinct Describable Moments (DiDeMo)
dataset [6] is one of the most diverse datasets for the temporal
localization of moments in videos given natural language
descriptions. The videos are collected from Flickr and each
video is trimmed to a maximum of 30 seconds. The videos in
the dataset are divided into 5-second segments to reduce the
complexity of annotation. The dataset is split into training,
validation, and test sets containing 8,395, 1,065, and 1,004
videos respectively. The dataset contains a total of 26,892
moment-sentence pairs and each natural language description
is temporally grounded by multiple annotators.

Charades-STA. Charades-STA dataset is introduced in [5]
to address the task of temporal localization of moments in
untrimmed videos. The dataset contains a total of 6,670
videos with 16,128 moment-sentence pairs. We have used the
published split of videos during training and testing (train-
5,336, test-1,334). As a result, the training set and the testing
set contain 12,408 and 3,720 moment-sentence pairs respec-
tively. This dataset is originally built on the Charades [67]
activity dataset with temporal activity annotation and video-
level description. Authors in [5] adopted a keyword matching
strategy to generate clip-level sentence annotation.

ActivityNet Captions. ActivityNet Captions [66] dataset,
which is proposed for dense video captioning task, is built
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TABLE III
COMPARISON OF PERFORMANCE FOR THE TASK OF TEMPORALLY LOCALIZING MOMENTS IN A VIDEO CORPUS ON DIDEMO DATASET. († REPORTED FROM

[23]) (↓ INDICATES THE PERFORMANCE IS BETTER IF THE SCORE IS LOW)

DiDeMo
Feature used IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓

Moment Prior† [23] - 0.22 2.34 2527 0.17 1.99 3234
MCN† [6] RGB (ResNet-152) 2.15 12.47 1057 1.55 9.03 1423
SCDM [13] RGB (ResNet-152) + Flow (TSN) 0.57 4.43 - 0.22 1.42 -
VSE++ [63] + SCDM [13] RGB (ResNet-152) + Flow (TSN) 0.70 4.16 - 0.30 2.81 -
CAL† [23] RGB (ResNet-152) 3.90 16.51 831 2.81 12.79 1148

HMAN (sum-margin, Eqn. 11) RGB (ResNet-152) 5.63 26.49 412 4.51 20.82 546

HMAN (TripSiam [64]) RGB (ResNet-152) + Flow (TSN) 2.34 17.82 509 1.59 13.92 637
HMAN (DSLT [65]) RGB (ResNet-152) + Flow (TSN) 5.95 25.45 313 4.66 20.04 447
HMAN (sum-margin, Eqn. 11) RGB (ResNet-152) + Flow (TSN) 6.25 28.39 302 4.98 22.51 416
HMAN (max-margin, Eqn. 12) RGB (ResNet-152) + Flow (TSN) 5.47 20.82 618 3.86 16.28 905

TABLE IV
COMPARISON OF PERFORMANCE FOR THE TASK OF TEMPORALLY LOCALIZING MOMENTS IN A VIDEO CORPUS ON CHARADES-STA DATASET. (†

REPORTED FROM [23]) (↓ INDICATES THE PERFORMANCE IS BETTER IF THE SCORE IS LOW)

Charades-STA
Feature used IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓

Moment Prior† [23] - 0.17 1.63 4906 0.05 0.56 11699
MCN† [6] RGB (ResNet-152) 0.52 2.96 6540 0.31 1.75 10262
SCDM [13] RGB (I3D) 0.73 6.41 - 0.56 4.23 -
VSE++ [63] + SCDM [13] RGB (I3D) 1.02 5.06 - 0.70 3.37 -
CAL† [23] RGB (ResNet-152) 0.75 4.39 5486 0.42 2.78 8627

HMAN (TripSiam [64]) RGB (I3D) 1.27 7.60 2821 0.70 4.49 5766
HMAN (DSLT [65]) RGB (I3D) 1.05 7.27 2390 0.54 4.61 5496
HMAN (sum-margin, Eqn. 11) RGB (I3D) 1.29 7.73 2418 0.83 4.12 6395
HMAN (max-margin, Eqn. 12) RGB (I3D) 1.40 7.79 2183 1.05 4.69 5812

on the ActivityNet dataset [68]. It consists of YouTube video
footage where each video contains at least two ground truth
segments and each segment is paired with one ground truth
caption [11]. This dataset contains around 20k videos which
are split into training, validation, and testing set. We use
the published splits over videos (train set – 10,009 videos,
validation set – 4,917 videos), where the evaluation is done
on the validation set. Videos are typically longer in length than
DiDeMo and Charades-STA datasets.

B. Evaluation Metric

We use the standard evaluation criteria adopted by various
previous temporal moment localization works [5], [13], [12].
These works use R@k, IoU=m metric, which reports the
percentage of cases where at least one of the top-k results
have Intersection-over-Union (IoU) larger than m [5]. For
a sentence query, R@k, IoU=m reflects if one of the top-
k retrieved moments has Intersection-over-Union with the
ground truth moment larger than the specified threshold m.
So, for each query sentence, R@k, IoU=m is either 1 or 0. As
this metric is associated with a queried sentence, we compute
it for all the sentence queries in the testing set (DiDeMo,
Charades-STA) or in the validation set (ActivityNet Captions)
and report the average results. We report R@k, IoU=m over
all queried sentences for k ∈ {10, 100} and m ∈ {0.50, 0.70}.
We also use median retrieval rank (MR) as an evaluation

TABLE V
COMPARISON OF PERFORMANCE FOR THE TASK OF TEMPORALLY

LOCALIZING MOMENTS IN A VIDEO CORPUS ON ACTIVITYNET CAPTIONS
DATASET. († REPORTED FROM [23])

ActivityNet Captions
Feature IoU = 0.50 IoU = 0.70

used R@10 R@100 R@10 R@100
Moment Prior† - 0.05 0.47 0.03 0.26
MCN† [6] RGB (ResNet-152) 0.18 1.26 0.09 0.70
CAL† [23] RGB (ResNet-152) 0.21 1.58 0.10 0.90

HMAN (sum) RGB (C3D) 0.43 2.84 0.22 1.48
HMAN (max) RGB (C3D) 0.66 4.75 0.32 2.27

metric. MR computes the median of the rank of the correct
moment for each query. Lower values of MR indicate good
performance. We compute MR for IoU ∈ {0.50, 0.70}. Note
that DiDeMo dataset provides multiple temporal annotations
for each sentence. We consider a detection is correct if it
overlaps with a minimum of two temporal annotations with
a specified IoU .

C. Implementation Details

For DiDeMo dataset, we use ResNet-152 features [69],
where pool5 features are extracted at 5 fps over the video
frames. Then the features are max-pooled over 2.5s clips.
Also, we extract optical flow features from the penultimate
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TABLE VI
COMPARISON OF THE PERFORMANCE OF HMAN WITH/WITHOUT THE HIERARCHICAL MOMENT ENCODER MODULE. THE EXPERIMENTS ARE DONE FOR

DIDEMO AND CHARADES-STA DATASETS. († REPORTED FROM [23]) (↓ INDICATES THE PERFORMANCE IS BETTER IF THE SCORE IS LOW)

DiDeMo Charades-STA
IoU = 0.50 IoU = 0.70 IoU = 0.50 IoU = 0.70

R@10 R@100 MR↓ R@10 R@100 MR↓ R@10 R@100 MR↓ R@10 R@100 MR↓

HMAN (sum, w/o TCN) 3.44 14.14 1168 2.14 9.91 1636 1.13 6.12 4170 0.43 4.09 8295
HMAN (sum, w/ TCN) 6.25 28.39 302 4.98 22.51 416 1.29 7.73 2418 0.83 4.12 6395

HMAN (max, w/o TCN) 3.41 12.13 1603 1.99 8.96 2214 0.70 4.71 5800 0.46 3.13 10907
HMAN (max, w/ TCN) 5.47 20.82 618 3.86 16.28 905 1.40 7.79 2183 1.05 4.69 5812

TABLE VII
ABLATION STUDY FOR THE EFFECTIVENESS OF LEARNING EMBEDDING

SPACE UTILIZING DIFFERENT LOSS COMPONENTS AS DESCRIBED IN III-F
FOR DIDEMO DATASET USING SUM-MARGIN SET UP.

IoU = 0.50 IoU = 0.70
R@10 R@100 R@10 R@100

HMAN (intra) 0.57 6.00 0.52 4.71
HMAN (video) 1.77 10.03 0.30 2.34
HMAN (proposed) 6.25 28.39 4.98 22.51

layer from a competitive activity recognition model [70]. We
use Kinetics pretrained I3D network [71] to extract per second
clip features for the Charades-STA dataset. For ActivityNet
Captions dataset, we use extracted C3D features [72]. We set
the number of input clips of a video, l = 12 for DiDeMo
dataset, l = 64 for Charades-STA dataset, and l = 512 for
ActivityNet Captions dataset. Here, per unit length of input
video represents non-overlapping clip of 2.5s duration for
DiDeMo and non-overlapping clip of 1s duration for both
Charades-STA and ActivityNet Captions dataset. For DiDeMo
dataset, we use a fully connected layer followed by max-pool
to generate representations with temporal dimension 6 for each
video. Then we use 6 temporal convolutional layers to generate
representations with temporal dimensions of {6, 5, 4, 3, 2, 1}
resulting in representations for 21 candidate moments. Simi-
larly for Charades-STA, we use a fully connected layer fol-
lowed by max-pool to generate representations with temporal
dimension 32 for each video. Then we use 6 temporal convolu-
tional layers with the temporal dimension of {32, 16, 8, 4, 2, 1}
where we use the 31 candidate moment representations from
the last 5 layers. Additionally, we use a branch temporal
convolutional layer to generate representations of 30 over-
lapping candidate moments, each with 6s duration and 2s
stride. Combining these, we consider 61 candidate moments
for each video of Charades-STA dataset. For ActivityNet Cap-
tions dataset, we use a feedforward network followed by 10
convolutional layers to generate representations with temporal
dimension of {512, 256, 128, 64, 32, 16, 8, 4, 2, 1}, resulting in
1023 candidate moment representations. Table II illustrates
the implementation details for video processing for all three
datasets. we consider sentences with maximum of 15 words in
length. If a sentence contains more than 15 words, the tailing
words are truncated.

The proposed network is implemented in TensorFlow and
trained using a single RTX 2080 GPU. To train the HMAN
network, we use mini-batches containing 64 video-sentence

TABLE VIII
PERFORMANCE COMPARISON FOR THE TASK OF RETRIEVING CORRECT

VIDEO BASED ON SENTENCE QUERY ON DIDEMO AND CHARADES-STA
DATASET.

DiDeMo Charades-STA
R@10 R@100 R@200 R@10 R@100 R@200

VSE++ [63] 2.49 16.81 29.53 1.89 13.31 24.43
HMAN (max) 12.43 42.43 58.22 2.26 15.87 27.26
HMAN (sum) 15.36 55.23 69.12 2.45 18.51 30.52

pairs for DiDeMo and Charades-STA and 32 video-sentence
pairs for ActivityNet Captions. We use the learning rate with
exponential decay initializing from 10−3 for all three datasets.
ADAM optimizer is used to train the network. We use 0.9
as the exponential decay rate for the first moment estimates
and 0.999 as the exponential decay rate for the second-
moment estimates. We set αintra and αvideo to 0.05 and 0.20,
respectively for all three datasets. λ1 is empirically set to
5, 1, and 1.5, respectively for DiDeMo, Charades-STA, and
ActivityNet Captions. α is set to 5×10−5 for all three datasets.

D. Result Analysis
We conduct the following experiments to evaluate the

performance of our proposed method:
• Comparison of the performance of proposed HMAN for the

task of temporal localization of moments in video corpus
with different baseline approaches and a concurrent work.

• Evaluation of the effectiveness of utilizing hierarchical mo-
ment encoder module.

• Investigation of the impact of learning joint embedding
space by utilizing different components of the loss function
(learning for intra-video moments (Lintra) and learning for
videos (Lvideo).

• Evaluation of the effectiveness of utilizing global semantics
to identify the correct video.

• Analyzing the effectiveness of video relevance computation
(Eqn. 6) for the task of temporal localization of moments
in a video corpus.

• Studying the performance of proposed HMAN for different
visual features.

• Performance comparison of HMAN with decreasing number
of test set moment-sentence pairs.

• Evaluation of the run time efficiency.
• Analysis of the λ1 parameter sensitivity.

Temporal Localization of Moments in Video Corpus. Table
III, Table IV, and Table V illustrate the quantitative perfor-
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TABLE IX
COMPARISON OF THE PERFORMANCE OF PROPOSED LOGSUMEXP POOLING AND AVERAGE POOLING. WE COMPARE THE PERFORMANCE FOR THE TASK

OF TEMPORAL LOCALIZATION OF MOMENTS IN VIDEO CORPUS FOR DIDEMO AND CHARADES-STA DATASET.

DiDeMo Charades-STA
IoU = 0.50 IoU = 0.70 IoU = 0.50 IoU = 0.70

R@10 R@100 R@10 R@100 R@10 R@100 R@10 R@100

HMAN (sum, ave) 5.63 26.05 4.43 20.82 1.10 7.19 0.62 4.47
HMAN (sum, log) 6.25 28.39 4.98 22.51 1.29 7.73 0.83 4.12

HMAN (max, ave) 5.27 17.65 4.01 13.60 0.75 7.00 0.51 4.53
HMAN (max, log) 5.47 20.82 3.86 16.28 1.40 7.79 1.05 4.69

TABLE X
ABLATION STUDY OF THE PERFORMANCE OF HMAN (SUM-MARGIN) FOR

DIFFERENT VISUAL FEATURES FOR DIDEMO DATASET.

IoU = 0.50 IoU = 0.70
R@10 R@100 R@10 R@100

VGGNet 2.61 16.36 1.79 12.82
VGGNet + Flow 3.98 21.29 3.14 16.76
ResNet 5.63 26.49 4.51 20.82
ResNet + Flow 6.25 28.39 4.98 22.51

mance of our framework for the task of temporal localiza-
tion of moments in the video corpus. The evaluation setup
considers IoU ∈ {0.50, 0.70} and for each IoU threshold,
we report R@10, R@100 and MR. For a query sentence,
the task requires to search over all the videos and retrieve
the relevant moment. For example, in the DiDeMo dataset,
the test set consists of 1,004 videos totaling 4,016 moment-
sentence pairs. Again, we consider 21 candidate moments for
each video. So, for each query sentence, we need to search
over 21× 1,004 = 21,084 moment instances and retrieve the
correct moment. This is itself a difficult task and the addition
of ambiguity of similar kinds of activities in different videos
makes the problem even harder. We compare the proposed
method with the following baselines:
• Moment Frequency Prior: We use Moment Frequency

Prior baseline from [6], which selects moments that cor-
respond to gifs most frequently described by the annotators.

• MCN: The Moment Context Network [6] for temporal
localization of moments in a given video is scaled up to
search moment from the entire video corpus.

• SCDM: The state-of-the-art Semantic Conditioned Dynamic
Modulation (SCDM) network [13] for temporal localization
of moments in a video is scaled up to search over the entire
video corpus.

• VSE++ + SCDM: We use joint embedding based retrieval
approach (VSE++ [63]) combined with SCDM as a baseline.
In this setup, the framework first retrieves a few relevant
videos (top 5%) and then localize moments on those re-
trieved videos using SCDM approach.

• CAL: We compare with Clip Alignment of Language [23].
It is a concurrent work that addresses the task of localizing
moments in a video corpus by aligning clip representation
with language representation in the embedding space.

Note that we do not compare with baselines that utilize tem-
poral endpoint features from [6], as these directly correspond
to dataset priors and do not reflect a model’s capability [57].

TABLE XI
ABLATION STUDY OF THE PERFORMANCE OF HMAN (SUM-MARGIN)
WHEN THE NUMBER OF TEST SET DATA IS DECREASED FOR DIDEMO

DATASET.

IoU = 0.50 IoU = 0.70
R@10 R@100 MR↓ R@10 R@100 MR↓

HMAN (100%) 6.25 28.39 302 4.98 22.51 416
HMAN (50%) 6.90 30.15 268 5.68 23.73 372
HMAN (25%) 8.74 34.93 193 7.06 27.62 269
HMAN (10%) 13.35 45.60 102 10.30 36.65 142

We observe that MCN and CAL perform better than the
state-of-the-art SCDM approach in DiDeMo dataset but per-
form poorly compared to the SCDM approach in Charades-
STA dataset. This is due to the fact that the video contents
and language queries differ a lot among different datasets
[12]. MCN and CAL learn to distinguish both intra-video
moments and inter-video moments locally while SCDM only
learns to distinguish intra-video moments. As DiDeMo dataset
contains diverse videos of different concepts and relatively less
number of candidate moments, learning to differentiate inter-
video moments locally improves performance significantly.
However, learning to differentiate inter-video moments locally
does not have much impact on Charades-STA dataset. This
also indicates the importance of distinguishing moments from
different videos based on global semantics for a diverse
set of video datasets. We also observe that in some of the
cases, VSE++ + SCDM scores drop compared to the SCDM
approach. Since the performance of VSE++ + SCDM depends
on retrieving correct video, the localization performance drops
if the retrieval approach fails to retrieve correct videos with
higher accuracy.

For HMAN, we report the performance for both sum-margin
and max-margin based triplet loss setups. Additionally, for
DiDeMo and Charades-STA dataset, we report the perfor-
mance of HMAN for two different loss calculation setups:
TripSiam [64] and DSLT [65]. In Table III, Compared to base-
line approaches, the performance of our proposed approach is
better for all metrics and outperforms other approaches with
a maximum of 11.88% absolute improvement in DiDeMo
dataset. We observe that the sum-margin based triplet loss
setup outperforms the max-margin setup, while both of these
setups perform better than other baselines in DiDeMo dataset.
For a fair comparison with CAL and MCN, we report the
performance of HMAN with the ResNet-152 feature computed
from RGB frames only. This setup also outperforms CAL and
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TABLE XII
PER EPOCH TRAINING AND INFERENCE TIME FOR CHARADES-STA

DATASET.

Approach Training time Inference time

Sliding-based 35.05 s 90.46 s
HMAN 21.18 s 83.91 s

MCN. We also conduct experiment incorporating temporal
end point feature in HMAN for DiDeMo dataset. It results
in ∼ 0.5% − 1% improvement over HMAN (sum-margin)
in R@k metrics. It indicates the bias in the dataset where
different types of events are correlated with different time
frames of the video. In Table IV, for the Charades-STA dataset,
the performance of HMAN is better for all metrics and the
max-margin based triplet loss setup outperforms other baseline
approaches with a maximum of 3.4% absolute improvement.
In Table V, for ActivityNet Captions dataset, the HMAN max-
margin setup outperforms other baselines with a maximum of
3.17% absolute improvement. We do not compute SCDM and
VSE++ + SCDM baselines for ActivityNet Captions dataset.
Moment representations in SCDM and VSE++ + SCDM ap-
proaches are conditioned on sentence queries. For each query
sentence, we need to compute moment representations from
all the videos, resulting in O(n2) complexity. So testing on a
set of 34,160 query sentences and 4,917× 1,023 = 5,030,091
moment representations is impractical using these approaches.

TripSiam [64] and DSLT [65] are two different variants
of triplet loss which are used in object tracking. TripSiam
defines a matching probability for each triplet to measure
the possibility of assigning the positive instance to exemplar
compared with the negative instance and tries to maximize
the joint probability among all triplets during training. DSLT
[65] utilizes modulating function to minimize the contribution
of easy samples in the total loss. While both setups perform
better than baseline approaches, we observe that there is a
significant improvement in median retrieval rank (MR). This
indicates that even if TripSiam and DSLT can not retrieve
the correct moment, they are robust in terms of the semantic
association between moments and sentences.

Effectiveness of Hierarchical Moment Encoder. HMAN uti-
lizes stacked temporal convolutional layers in a hierarchical
structure to represent video moments. We conduct experiments
to analyze the effects of using the hierarchical moment encoder
module in our proposed model. We consider two setups, i)
w/ TCN: the hierarchical moment encoder module built using
temporal convolutional network is present in the model and ii)
w/o TCN: the hierarchical moment encoder module is replaced
with a simple feedforward network to project the candidate
moment representations in the joint embedding space. We
consider both sum-margin based and max-margin based triplet
loss to train the networks. Table VI illustrates the effect of
utilizing hierarchical moment encoder module. We observe
that for both the learning approaches and for both datasets,
there is a significant improvement in performance when the
hierarchical moment encoder module is used. For example,
in DiDeMo dataset, we observe ∼ 14% (sum-margin) and

Fig. 4. Illustration of λ1 parameter sensitivity on the HMAN performance.
We observe that for the set of values {3, 4, 5, 6, 7}, performance of HMAN
is stable.

∼ 8% (max-margin) absolute improvement in performance for
R@100, IoU = 0.50.

Ablation Study of Learning Joint Embedding Space. We
conduct experiments to analyze the impact of different
components of the loss function to learn the joint embedding
space for our targeted task in DiDeMo dataset and reported
the results in Table VII. We use three setups to learn the joint
embedding space:
• HMAN (intra): Only uses Lintra. So the network only

learns to distinguish intra-video moments.
• HMAN (video): Only uses Lvideo. So the network only

learns to disntinguish moments from different videos based
on global semantics.

• HMAN (proposed): Our proposed approach, combination
of Lintra and Lvideo.
In Table VII, we observe that the performance of HMAN is

poor for both the case of HMAN (intra) and HMAN (video).
Performance of HMAN (intra) is better compared to HMAN
(video) in Table VII when higher IoU threshold requirement
is considered (R@k, IoU = 0.7). This indicates that HMAN
(intra) learns to better identify temporal boundaries in a video
compared to HMAN (video), while HMAN (video) is better
at distinguishing moments from different videos compared to
HMAN (intra). However, when we combine both of these
criteria, there is a significant performance boost as the model
is able to effectively learn to identify both the correct video
and the temporal boundary. All the results in Table VII are
reported for sum-margin based triplet loss setup.

Effectiveness of Utilizing Global Semantics. Our proposed
learning objective utilizes global semantics to distinguish
moments from different videos. To do so, we learn to align
corresponding video-sentence pairs, where the video-sentence
relevance R(v, s) in the embedding space is computed in
terms of moment-sentence similarity S(m, s). So we use this
video-sentence relevance score R(v, s) to analyse the models
performance to identify or retrieve the correct video given a
text query and report the results in Table VIII. We use the
standard evaluation criteria R@k for video retrieval task and
report R@10, R@100, and R@200 scores for DiDeMo and
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Charades-STA dataset. Here, R@K calculates the percentage
of query sentences for which the correct video is found in
the top-K retrieved videos to the query sentence. In DiDeMo
test set, there are 1,004 videos with 4,016 moment-sentence
pairs (∼ 4 sentences per video) and in Charades-STA testset,
there are 1,334 videos with 3,720 moment-sentence pairs (∼
2.8 sentences per video). Due to the one-to-many correspon-
dences, we consider 4,016 and 3,720 video-sentence pairs
respectively for DiDeMo and Charades-STA datasets for the
video retrieval task, where a single video can pair up with
multiple sentences. Table VIII shows that both sum-margin
(HMAN (sum)) and max-margin (HMAN (max)) based triplet
loss setups of our proposed approach outperforms standard
Visual Semantic Embedding based retrieval approach (VSE++)
for the task of retrieving the correct video. Along with the
consistent improvement of performance in all metrics for
both datasets, We observe ∼ 40% absolute improvement of
retrieval performance for the metric R@200 for DiDeMo
dataset. As the video-sentence relevance is computed in terms
of moment-sentence similarity, this experiment validates the
models capability to distinguish videos as well as moments
from different videos utilizing global semantics.

Analysis of Video Relevance Computation Approach. In an
untrimmed video with temporal language annotation, the seg-
ment/portion of the video mostly matches with the sentence se-
mantics. So to compute the video-sentence relevance, it needs
to focus on the moments that have higher similarity with the
query sentence semantics. To tackle this issue, we compute the
video-sentence relevance using LogSumExp pooling (Eqn. 6)
of the moment-sentence similarity. In Table IX, we analyze the
significance of the LogSumExp pooling compared to average
pooling for both sum-margin and max margin based triplet
loss setups. In Table IX, ‘ave’ and ‘log’ indicates average
and LogSumExp pooling respectively, while ‘sum’ and ‘max’
indicates sum-margin based and max-margin based triplet loss
respectively. For both DiDeMo and Charades-STA datasets, we
observe that LogSumExp pooling performs better than average
pooling for the target task of temporal localization of moments
in video corpus in both sum-margin based and max-margin
based triplet loss setups.

Ablation Study of Different Visual Features. We conduct
experiments to study the performance of HMAN for different
visual features for DiDeMo dataset and reported the results
in Table X. We use extracted features from VGGNet [73],
ResNet-152 [69] for RGB frames and optical flow features
from [70]. In Table X, we observe that a combination of
RGB and optical flow features perform better than using only
an RGB stream. It indicates the models increased capacity
due to the increase in the number of learnable weights. As a
result, HMAN is suitable to work with multiple encodings of
the same data together compared to the shallow embedding
networks [6], [23]. We have reported the results for sum-
margin based triplet loss setup.

Performance of HMAN on Decreased Number of Moment-
sentence Pairs. Since HMAN searches for the correct
candidate moment across all the videos in the test set
during inference, the temporal localization performance of
HMAN is expected to improve by decreasing the number

Fig. 5. t-SNE visualization of text query representation and candidate
moment representations. Different color represents different video. The color
of the text representation is the same as the corresponding video. We use
different markers for the representation of incorrect candidate moments,
correct candidate moments and text. Here, representations of the text query and
the correct candidate moment coincide. Also, the representations of candidate
moments from the same video are clustered together.

of moment-sentence pairs in the test set. We conduct
experiments on DiDeMo dataset to evaluate the performance
of HMAN (learned using sum-margin based triplet loss) on
the decreased number of moment-sentence pairs in the test
phase. We consider four setups: HMAN (100%): Model
searches over the full test set during inference, HMAN
(50%): Model searches over each 50% of the test set
separately and take the average of the scores, HMAN (25%):
Model searches over each 25% of test set separately and take
the average of the scores, HMAN (10%): Model searches
over each 10% of test set separately and take the average of
the scores. Table XI illustrates the performance for all four
setups. We observe that with decreased number of test set
moment-sentence pairs, the performance of HMAN improves.

Evaluation of Run Time Efficiency. We conduct experi-
ments on the Charades-STA dataset to compare the run time
of HMAN with the sliding window-based approaches. The
differences in the sliding-based approach compared to the
setup of HMAN is that: i) the moment encoder module
with temporal convolutional network of HMAN is replaced
by a simple single layer feedforward network, ii) instead of
generating candidate moment representations directly from the
video, we slide over the video to extract features of different
temporal durations, then use extracted features to generate
candidate moment representations. Table XII illustrates that
for both training case and inference case, the sliding-based
approach takes longer than HMAN per epoch, even though
the network is much smaller in the sliding-based approach
compared to HMAN. For a fair comparison, we keep the
number of candidate moments the same, and similar com-
putations (apart from hierarchical moment encoder module
replaced by single layer feed forward network) are done for
both the approaches. We have computed the run time for five
epochs and reported the average results. Here, the inference
time is higher due to the added requirement of computing the
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Fig. 6. Example illustration of the performance of HMAN for the task of localization of moments in a corpus of videos. For each query sentence, we display
the top-3 retrieved moments. The retrieved moments are surrounded by gold boxes and the ground truth moments are indicated by green lines. We observe
that for each of the queries, the top-3 retrieved moments are semantically related to the sentence proving the efficacy of our approach.

cosine distance between each text query and all the candidate
moment representations.
λ1 Parameter Sensitivity Analysis. In our framework, λ1

balances the contribution of Lintra and Lvideo for both sum-
margin and max-margin case. We choose the value of λ1
empirically. We conduct an experiment to check the sensitivity
of HMAN performance based on a set of values for λ1 in the
DiDeMo dataset where λ1 ∈ {3, 4, 5, 6, 7}. In Figure 4 shows
that for this set of values of λ1, the performance is stable.

E. Qualitative Results

t-SNE Visualization. We provide t-SNE visualization of em-
bedding representations of text query and candidate moments
in Figure 5. For a text query, we consider embedding represen-
tation of the text query, representations of candidate moments
from the correct video, and representations of candidate mo-
ments from randomly picked 9 other videos and visualize the
distribution of representations. In Figure 5, different color rep-
resents different videos. Each video has 21 candidate moments.
We keep the color of the text query representation the same as
the color of candidate moments representation from the correct
video and use separate markers for correct candidate moment
and text query representation. We observe that representations
of the text query and the correct candidate moment coincide.
Also, the representations of candidate moments from the same
video are clustered together.

Example Illustration. In Figure 6, we illustrate some quali-
tative results for our proposed approach. The two examples in
the top row are for the DiDeMo dataset and the two examples

in the bottom row are for the Charades-STA dataset. For
each query sentence, we demonstrate the examples where the
network is able to retrieve the correct moment as the rank-1
from the test set videos. We also display rank-2 and rank-
3 moments retrieved by the model for each query sentence.
Figure 6(a) shows that for the query ‘The baby falls down’, the
model was able to retrieve the correct moment with the highest
matching. However, the interesting fact lies in the retrieved
rank-2 and rank-3 moments. For the query ‘The baby falls
down’, the retrieved rank-2 and rank-3 moments also contain
activity of a baby, including a baby falling down. Similar
results are observed for other examples for both datasets. For
example, in Figure 6(b), for the query sentence ‘A person
opens the door’, the model was able to retrieve the correct
moment with the highest matching. However, all top-3 ranked
moments contain activity related to a door. In the rank-2
moment, a person is opening a door and in the rank-3 moment,
a person is fixing a door. Similarly, the top retrieved moments
for a query of a dog running and hiding contain activities of
a dog (Figure 6(b)) and top retrieved moments for a query
of a person standing and sneezing contain standing activity
and sneezing activity (Figure 6(d)). These results indicate the
model’s capability of retrieving moments with similar semantic
concepts from the corpus of videos.

V. CONCLUSION

In this work, we explore an important and under-explored
task of localizing moments in a video corpus based on text
query. We adapt existing temporal localization of moments
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approaches and video retrieval approaches for the proposed
task and identified the shortcomings of those approaches.
Towards addressing the challenging task, we propose Hierar-
chical Moment Alignment Network (HMAN), a novel neural
network that effectively learns a joint embedding space for
video moments and sentences to retrieve the matching moment
based on semantic closeness in the embedding space. Our
proposed learning objective allows the model to identify subtle
changes of intra-video moments as well as distinguish inter-
video moments utilizing text-guided global semantic concepts
of videos. We adopt both sum-margin based and max-margin
based triplet loss setups separately and achieve performance
improvement over other baseline approaches in both setups.
We experimentally validate the effectiveness of our proposed
approach on the DiDeMo, Charades-STA, and ActivityNet
Captions datasets.
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