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Abstract—Tracking plant cells in three-dimensional (3D) tissue captured through light microscopy presents significant challenges due
to the large number of densely packed cells, non-uniform growth patterns, and variations in cell division planes across different cell
layers. In addition, images of deeper tissue layers are often noisy, and systemic imaging errors further exacerbate the complexity of the
task. In this paper, we propose a novel learning-based method DEGAST3D: Learning Deformable 3D GrAph Similarity to Track Plant
Cells in Unregistered Time Lapse Images exploits the tightly packed 3D cell structure of plant cells to create a three-dimensional graph
for accurate cell tracking. We also propose a novel algorithm for cell division detection and an effective three-dimensional registration,
improving state-of-the-art algorithms. On a public dataset, our novel cell pair matching method outperforms the baseline by 6.83%,
5.96%, 6.40% in precision, recall, and F-1 score, respectively. On the same dataset, our proposed novel cell division technique
improves the results of the baseline method by 15.38% and 14.78% in terms of recall and F1-score, respectively. The implementation of
our method can be found using this url path: https://github.com/ShazidAraf/PLANT-CELL-TRACKING
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1 INTRODUCTION

MORPHOGENETIC analysis is a cardinal topic of in-
terest in computational biology, which analyzes the

development of various biological forms, including cell
growth and division patterns in both plant and animal
tissues. Tracking the development of these cells over time
provides a quantitative description of cell growth and divi-
sion characteristics [1], [2], [3], [4], gene expression [5], [6],
enzyme/protein localization [7], [8], [9] and analyzing bio
signals [10] .

The plant of interest for this study is Arabidopsis thaliana.
This plant is a genetic model system and a representative
system to study shoot apical meristem (SAM) morphology
of dicotyledenous plants. Thus, its study aids in understand-
ing the morphological processes of several other plants as
discussed by the authors of [11], [12]. In order to analyze
the cell growth and division characteristics, this work fo-
cuses on the Shoot Apical Meristems (SAM) [13] of the
plant. Shoot Apical Meristems (SAM) are densely packed
multi-layer tissues that provide cells for the development
of leaves, stems, and branches. With the advancement of
microscopy imaging techniques, time-lapse images of long
time series can be collected from SAM by Confocal Laser
Scanning Microscopy (CLSM) [14] based live cell imaging.
In this imaging technique, a laser beam is moved along
the depth of the SAM tissue, which results in a series of
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two-dimensional images. The two-dimensional images are
referred to as slices, which, when put together, forms the
image stack of the SAM. Fig. 1 shows some exemplar slices
of the SAM region of Arabidopsis thaliana captured by CLSM.

The Shoot Apical Meristems (SAM) of Arabidopsis
Thaliana is a tightly packed structure with many cells.
Spatio-temporal tracking of such a large number of cells
is computationally expensive and time-consuming. In ad-
dition, the images captured from the deep layers of SAM
suffer from low signal-to-noise ratio (SNR), as mentioned in
[15], which makes the problem of tracking deep-layer cells
very challenging. Further, the plant has a natural tendency
of growing towards the light source it gets exposed to
[16]. As a result, when a plant is kept in a non-uniform
lighting setup, the plant leans toward the light source and
gets tilted. The live cell imaging technique can not capture
this information as it only captures two-dimensional images
on X-Y plane (or, top view), thus further complicating the
problem of tracking plant cells. Hence, there’s a need for
an automated, fast, and robust algorithm that can perform
tracking of plant cells in Shoot Apical Meristems (SAM)
of Arabidopsis Thaliana. In this paper, we propose a novel
deep learning-based method, DEGAST3D: DEformable 3D
GrAph Similarity to Track plant cells and detect cell divi-
sion events.

1.1 Related Work

There are several studies on plant cell tracking. Most of them
are based on two-dimensional local-graph matching [17],
[18], [19], [20], which exploits the tight spatial topology of
neighboring cells. In those studies, a two-dimensional local
star graph [21] is constructed by connecting the centroid
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Fig. 1: The time series of microscopic plant cell images are shown. There is a time axis and a Z-axis. Z-axis which goes along
the depth of the plant indicates the slice number and the time axis indicates the time passed during imaging. According to
the dataset [4], time difference between two time points is 4 hours. On Z-axis, images of 3 slices are shown. Those slices
are sampled from the top, middle, and bottom of the SAM, respectively.

Fig. 2: (a) The overlay of SAM in two time-points when
tilting occurs. The blue solid and red dotted lines indicate
time t1 and t2, respectively. (b) The cross-section view with
respect to the green line in (a) is shown. The patches marked
by yellow circles reveal that the shape and size of the same
cells captured in the two-dimensional plane change due to
tilt.

of the cell of consideration to the centroids of its neighbor-
ing cells. This graph structure represents the neighboring
structure of the cell of consideration. Two cells from dif-
ferent time points that have the closest graph structure are
considered the corresponding cells (also known as match-
ing cells). In these works, cell correspondences are done
between a pair of slices of two consecutive time points,
combined to obtain pairwise tracks over the entire stack.
Chakraborty et al. [22] proposed a conditional random field
(CRF) [23] based approach where all cells located on a
slice are considered as nodes of the graph and all cells
having common boundary are connected to form the graph.
Marginal posteriors of each node are calculated using loopy
belief propagation [24] followed by a graph labeling method
to obtain the optimal correspondence.

Although this method gives very accurate results, it
is not scalable for larger datasets as the graph labeling
optimization step is fairly slow. A few recent works [25], [26]
form a three-dimensional local graph of a cell by combining
two-dimensional local star graphs of adjacent slices. How-
ever, these approaches do not use the inter-slice connection
among the cells, thus ignoring the three-dimensional spatial
information of the cells. In addition, these works assume
that two matching cells must have the same number of
neighbors which makes these approaches very susceptible
to segmentation error. Another recent method, DeepSeed
[18], uses the weighted sum of shape similarity and neigh-
boring structure similarity scores between the cells. The
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Fig. 3: The entire workflow is shown in the figure. Image stacks obtained by CLSM imaging are segmented using a 3D
segmentation technique (section 2.1). Then, registration is done for pairwise time points using our proposed 3D registration
method (section 2.2). Finally, our novel learning-based approach is used for cell pair matching (section 2.3) and cell division
detection (section 2.4).

corresponding cell pairs (seed pairs) are then selected based
on a similarity score threshold. This is followed by using
relative position concerning the seed pairs to track the rest
of the cells iteratively. Instead of using the shape similarity
of individual cells, [27] compares the patches of cells of
two different time points and uses the K-M algorithm [28]
for patch association. However, these methods are highly
dependent on segmentation accuracy and hence result in
subpar performance for deeper layer cells of the plant.

Another limitation of the algorithms [18], [22], [27] is
that they solve tracking problems only in a two-dimensional
plane. This assumption ignores phenomena like the tilting
of plants. Fig 2 illustrates that when tilt occurs, the same
cells change shape or size when the same cross-section is
observed. As a result, the methods largely dependent on
two-dimensional cell shape in tracking fail under tilting
conditions of the SAM.

1.2 Contributions
To address the limitations of existing approaches, our pro-
posed method, DEGAST3D, makes the following contribu-
tions.

• We develop a novel learning-based tracking algo-
rithm for plant cells that uses three-dimensional ge-
ometric information of the tightly packed plant cell
structure.

• We develop a 3D registration technique that aligns
the plant in two different time points.

• We propose a three-dimensional graph matching
technique where graphs are connected to k nearest
neighbors to extract contextual information of the cell
structure, increasing tracking accuracy.

• We further develop a novel learning-based cell divi-
sion detection technique that uses three-dimensional
shape and local graph similarity to detect mother and
daughter pairs.

The organization of this paper is as follows: Section 2 pro-
vides a detailed description of the proposed methodology.
Experiments and results are discussed in Section 3. Finally,
Section 4 concludes the paper.

2 METHODOLOGY

This paper tackles the core problem of tracking SAM cells
over long time periods. The inputs are unregistered plant

Fig. 4: Segmentation of plant cells using Cellpose3D. (a) Cell
segmentation in a horizontal slice. (b) Cell segmentation on
the vertical slice. (c) 3D reconstruction using the 3D instance
segmentation

image stacks of multiple time points with constant intervals.
Over this time period, some cells divide. The objective is
to track tightly packed plant cells and detect cell division
events to determine cell lineages that develop over a period
of time. In this section, we elaborate on our proposed
pipeline for performing robust tracking of plant cells. Firstly,
three-dimensional segmentation of CLSM plant stack im-
ages is done. Then, three-dimensional registration aligns
the SAM image stacks over time. Finally, a novel learning-
based three-dimensional local graph matching technique is
employed to find cell pair matches of tightly packed plant
cells and detect cell division events. Fig. 3 shows the entire
workflow of our proposed algorithm.

2.1 Segmentation
Cell segmentation is the first step for cell-tracking algo-
rithms, which helps identify individual cells, present in
the SAM tissue. State-of-the-art cell tracking methods such
as [18], [22], [27] focused on watershed segmentation [29]
technique that segments the cell border on every slice. How-
ever, watershed segmentation does not provide the three-
dimensional spatial relationships of the cells among the
slices. Recently, learning-based techniques such as spherical
harmonics [30], U-Net watershed [31], Cellpose3D [32] have
been proposed, which provide instances of every cell in
three-dimensional space. Among these works, Cellpose3D
[32] provides the best segmentation performance on the
plant cells. Hence, this technique has been used in this pa-
per. Cellpose3D learns the gradient map along the X, Y, and
Z-axis. Using that gradient map and some post-processing
steps, it predicts the instances of the plant cells. Fig. 4 shows
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Fig. 5: Proposed method for registration of plant stacks. At first, the three-dimensional instance segmentation is obtained
using Cellpose3D. Then, the number of correspondent cell pairs (seed pairs) is determined using the method described in
[18]. The point cloud of seed pair cells of each stack is extracted. Using the FPFH (Fast Point Feature Histogram) feature of
the point cloud, RANSAC algorithm is used to determine the translation and rotation matrix that is used for registration.

the application of Cellpose3D to get the instances of plant
cells.

2.2 Registration

Cell growth and division cause physiological changes in
the structure of the plant, which result in slight orientation
and shift along the X, Y, and Z axes. Also, during the live
imaging technique, the plant has to be physically moved
between image acquisition time intervals. These incidents
misalign the image stacks at different time points.

As plant cells are tightly packed, the positions of the
cells do not change abruptly in a short time interval. Hence,
if image stacks are aligned (or registered) properly, we can
focus on a small region of interest in the image stack instead
of searching the cell on the entire stack to track a particular
cell. Thus, registration saves time and computational costs.
Authors of [33] proposed a landmark-based registration
algorithm that obtained state-of-the-art results on register-
ing two-dimensional slices. However, the algorithm shows
subpar performance where three-dimensional registration
is needed (for example, the tilting case of Fig. 2). This
motivates us to propose a novel 3D registration algorithm,
an overview of which has been shown in Fig. 5.

Our proposed algorithm involves three steps. The first
step obtains three-dimensional instance segmentation maps
using pre-trained Cellpose3D models [32]. The second step
obtains several high-confidence pairwise cell correspon-
dences (also known as seed pairs) using the algorithm
proposed in [18]. Finally, the Random Sample Consensus
(RANSAC) algorithm [34] is used to determine the rotation
and translation matrix from the point clouds of matching
seed pair cells. The use of RANSAC is motivated by the
fact that some false positive matches can be found in
determining seed pairs in the second step. RANSAC can
estimate the parameters of a mathematical model from a
set of matching data containing false positive matches. The
estimated rotation and translation matrix is used to perform
registration between two plant image stacks. Fig. 6 shows
the overlays of two-time points from the top before and
after registration. However, the SAM is considered a rigid
object in this registration technique, which is not practically
true. We considered a region of interest for tracking cells
described in the next sub-section to address this issue.

(a) (b)

Fig. 6: Overlay of cell borders of plant image stacks are
shown. The red and green channels indicate cell borders
of two different time points of SAM. (a) When plant image
stacks are unregistered, cell borders of two-time points are
visible separately. (b) After registration, the cell borders of
two-time points get overlapped in most of the cases.

2.3 Cell Pair Matching
The SAM cells are non-rigid due to cell growth and cell divi-
sion. Hence, the segmentation map of a cell gets deformed
as it grows over time. In addition, over-segmentation and
under-segmentation may occur due to image noise. As a
result, when we overlay the image stacks of two consecutive
time points, the corresponding cells do not always overlap.
To tackle this issue, we consider a region of interest to find
a match for every cell. Let us consider a cell st1 of time
point t1 which has centroid at coordinate ct1 ∈ R3. There
are total q number of cells s(1)t2 , s

(2)
t2 , · · ·, s(q)t2 in the next time

point t2 with their centroid coordinate at c(1)t2 , c
(2)
t2 , · · ·, c(q)t2 ,

respectively.
In order to find the corresponding cell of st1 at time

point t2 , we consider n number of candidate cells of
set R = {s(1)t2 , s

(2)
t2 , · · ·, s(n)t2 } which have lowest distance

from coordinate ct1 among all other cells at time point t2.
Mathematically

∥∥∥c(1)t2 − ct1

∥∥∥ ⩽
∥∥∥c(2)t2 − ct1

∥∥∥ · · · ⩽ ∥∥∥c(n)t2 − ct1

∥∥∥ · · · ⩽ ∥∥∥c(q)t2 − ct1

∥∥∥
The region of interest comprises the cells in R as shown
in Fig. 7. We use a 3D geometric feature extractor [35]
and propose a 3D graph matching algorithm to predict the
corresponding cell of st1 out of those candidates in R.
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(a)

(b)

Fig. 7: Longitudinal section of plant for two consecutive time
points where (a) and (b) indicate the former and later time
point, respectively. In (a), the cell with the yellow circle is
the cell that needs to be tracked. In (b), cells marked by the
blue circle are the candidates of matching, and the cell with
a red border is the true matching. The green circle indicates
our region of interest.

Fig. 8: A three-dimensional graph generated by connecting
the k-nearest neighbors. The central cell is shown by the
red circle, and its neighboring cells are shown by yellow
circles. Every cell is connected to its k-nearest neighbors (in
the figure k = 5 ).

2.3.1 3D Graph Matching

The local graph for a particular cell comprises total np

nodes where the centroids of that cell and its np − 1
number of nearest neighbors in the three-dimensional space
are considered. All these nodes are connected to k-nearest
neighbors, forming the local 3D graph as shown in Fig. 8.

The formation of this type of graph helps us in two ways.
Firstly, our graph is capable of extracting enriched features
in three-dimensional space. The local graphs presented in
[18], [26] consider a two-dimensional star graph that mainly
uses the positional information of neighboring cells with
respect to the center cell only. On the other hand, our
3D local graph uses positional information with respect
to not only the central cell but also the neighboring cells
among themselves, which extracts rich three-dimensional
spatial information. Secondly, our 3D local graph reduces
computational cost compared to the graph proposed in [22]
where the local graph is not formed. Rather, all the cells of
a slice are considered nodes of the graph, and all nodes
corresponding to the cells with common boundaries are
connected. However, the formation of this kind of large
graph makes the optimization computationally expensive
and time-consuming. On the contrary, the 3D local graph is
more inference-friendly with less computational expense.

We propose a learning-based 3D graph matching ap-
proach where the input is an anchor graph (the 3D local
graph of the cell we want to track) and n number of local
3D graphs of potential matching candidate cells in the next
time point. The objective is to point out the candidate graph
which has the highest similarity to the anchor graph. Fig. 9
shows the graph similarity model where the inputs are the
three-dimensional coordinates of two graphs. A geometric
feature extractor [35] has been used in order to extract the
three-dimensional geometric features of each node in a k-
nearest neighbor connected graph. The outputs of the model
are the point-to-point similarity score (shown as y1 ) and
overall graph similarity score(shown as y2). As two graphs
have the same number of nodes, we can make the one-to-
one association of nodes between two graphs based on their
distance. The point-to-point similarity score indicates how
similar the node pairs are based on their spatial orientation.
The overall graph similarity score indicates the overall sim-
ilarity between two graphs.

2.3.2 Training

The 3D local graph matching involves joint training on
both overall graph similarity and point-to-point similarity.
Overall graph similarity indicates which candidate graph is
the most similar to the anchor graph out of n candidates.
This supervision can be obtained directly from the ground
truth of the dataset where information regarding pairwise
correspondent cells are provided.

In the ground truth of our dataset, pairwise correspon-
dences are not provides for all the cell pairs; instead, only
a subset of cell pairs have them. Given a pair of corre-
spondent cells in a tightly packed cell structure of two
time points, we can assume that most of the neighbors
of those correspondent cells exhibit one-to-one matching
despite the matching information for all the neighboring
cells is not provided in the ground truth. It leads to point-
to-point similarity supervision, which is described in Fig.
10 in detail. Hence, training on point-to-point similarity
is a semi-supervised process that involves pairwise node
correspondence between two graphs.

Mathematically, there are n candidate graphs and
(y

(1)
1 , y

(1)
2 ), (y

(2)
1 , y

(2)
2 ), ......., (y

(n)
1 , y

(n)
2 ) are the outputs of
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Fig. 9: Graph Similarity Model (GSM) shown by the green box. There are two inputs of this model: three-dimensional
coordinates of two graphs where each graph has np number of points. The model provides two outputs. They are point-to-
point similarity prediction ( y1) for each point, and overall graph similarity prediction ( y2). The block diagram G, (.), σ, FC
indicates geometric feature extractor, dot product, sigmoid activation function and fully connected layer, respectively. In
the figure, the input and output shape of every block is shown.

Fig. 10: This figure describes how point-to-point supervision is obtained. Every circle represents the centroid of a cell. (a)
the brown and blue circles represent the center of the graph and its neighbors, respectively, at the one-time point. (b) the
purple and yellow circles represent the center of the graph and its neighbors, respectively, at another time point. From the
ground truth, we only know whether brown and purple cells are corresponding cells or not. The centers of two graphs
(brown and purple circles) are overlaid at the red color circle, and there can be three cases as shown in (c), (d), and (e). Case
- 1 : (c) the cells are matching cells according to the ground truth, and two local graphs are less deformed. Point-to-point
supervision is set to 1 for all point pairs (shown in the figure). Case 2: (d) the cells are matching cells, but local graphs are
slightly different due to deformation. In this case, some point pairs are far apart. The point pairs with distances within a
threshold value are set to 1. Otherwise, the ground truth is set to 0. Case -3 : (e) If the two cells are non-matching, all the
pairwise point-to-point ground truths are set to 0.
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the networks, p(1), p(2), ......, p(n) are the point-to-point sim-
ilarity ground truth and GTgraph is the overall graph simi-
larity ground truth.

Binary cross-entropy loss (BCE) is used to train the
point-to-point supervision. The point-to-point supervision
loss (Lpp) can be expressed by

Lpp =
n∑

k1=1

np∑
k2=1

BCE(y
(k1)
1,k2

, p
(k1)
k2

) (1)

We note some cases where cell deformation or segmen-
tation errors occur very much. In those cases, the region
of interest shown in Fig. 7 does not always include the
true matching cell. Hence, we considered an extra class y′.
for graph similarity supervision which indicates the anchor
graph does not match with any candidate graph. The score
for y′ can be expressed by

y′ = 1−max(y
(1)
2 , y

(2)
2 , ..., y

(n)
2 ) (2)

Hence, the anchor graph can match with any of the mem-
bers of set Ycand = {y(1)2 , y

(2)
2 , · · ·, y(n)2 , y′} which is guided

by cross-entropy (CE) loss. The overall graph similarity
supervision (Lg) loss can be expressed by

Lg = CE(GTgraph, Ycand) (3)

Now the total loss can be written as

Ltotal = λLpp + Lg (4)

where λ is a non-negative hyper-parameter that controls the
weight of point-to-point similarity supervision in the joint
loss function.

The figure of overall training procedure is provided in
the supplementary. Although this approach can find most
of the matching cell pairs, some cells remain unmatched.
Inspired by [18], we can track the unmatched cells using
their relative positions with respect to matching pair cells
(demonstrated in Fig. 11).

2.4 Cell Division Detection
Cell division [36] is the process by which a mother cell
divides into two daughter cells. The state-of-the-art cell
division detection techniques [37], [38] were based on two
assumptions:

• The combined area of daughter cells is almost equal
to the area of mother cells.

• The combined cell borders of daughter cells are al-
most identical to the mother cell’s border.

However, the outcome from these assumptions is highly
dependent on the segmentation accuracy, and it also does
not consider cell growth over time. In this paper, we have
introduced a novel learning-based method for detecting
cell division. This method uses two sources of information
to detect cell division: the 3D shape similarity between
mother and daughter cells and the 3D local graph similarity
between mother and daughter cells. For every potential
mother cell, a region of interest (same as 7) is selected in
the next time point, and potential daughter cell pairs are
selected by taking pairs of adjacent cells in that region of
interest.

Fig. 11: (a) and (b) indicate the cells of former and later
time points, respectively. The circles indicate centroids of
the cells. Using the learning-based tracking method, most
of the cells are tracked. The same colored cells indicate the
matching pairs. However, the white color circles indicate
the cells that our method could not track. Using the relative
positions of the tracked cells (colored), we can associate the
untracked cells (shown by the dotted arrow).

2.4.1 3D Shape and Volume Similarity
In three-dimensional space, the shape and volume of com-
bined daughter cells are almost equal to the shape and
volume of the mother cell. To use this physical property,
we present a workflow shown in Fig. 12, which is to-
tally data-driven. Voxelization [39] is done on the point
clouds of mother and daughter cells. Then, subtraction is
done between the voxelized mother cell and concatenated
voxelized daughter cells. The subtracted result represents
distinct patterns based on whether the input point clouds
are from mother-daughter cell pairings. A 3D convolutional
neural network [40] is trained to do binary classification
between these two separate patterns, which is guided by
a BCE loss. Ydiv is the model output, which is a probability
score on how similar the mother and daughter pairs are in a
three-dimensional shape. GTdiv is the ground truth for cell
division. If the inputs are true, mother-daughters GTdiv is 1,
otherwise 0.

Lcell sim = BCE(Ydiv, GTdiv) (5)

2.4.2 Pairwise Local Graph Similarity
Spatially, the mother and daughter cells occupy almost the
same location in the SAM. Hence, the 3D local graph of the
mother cell and each of the daughter cells are almost similar.
To quantify how similar between two local 3D graphs, we
train the network presented in Fig. 9 using the loss function

Lgraph pair =

np∑
k=1

BCE(y1,k, pk)+BCE(y2, GTgraph pair) (6)

GTgraph pair can be obtained from the ground truth where
pairwise cell correspondences are provided. If a pair of cells
are corresponding cells their 3D local graphs are similar
and GTgraph pair is set to 1 otherwise, it is set to 0. The
overall graph similarity score y2 predicts a score based on
the similarity of two local 3D graph inputs.
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Fig. 12: Three-dimensional shape and volume similarity prediction between mother and combined daughter cells. Both the
point cloud of mother cell and concatenated daughter cell pair is voxelized and subtracted. The subtracted result is trained
by 3D convolutional model (C3D model). The training is guided by Binary Cross Entropy (BCE) loss.

Let m is the mother and (d1, d2) are daughter pairs. For
each of the inputs of (m, d1) and (m, d2) the network of
Fig. 9 predicts overall graph similarity score y2,d1

and y2,d2

respectively. The cell division score can be expressed by

Scorediv = wdYdiv + (1− wd)
(y2,d1 + y2,d2)

2
, (7)

where wd is a weighting factor for cell division which is set
to 0.5. If the value of Scorediv is higher than a threshold,
then it is reasonable to assume that cell division occurred.

3 EXPERIMENTS AND RESULTS

3.1 Dataset
For the experiments, we have used a publicly available
confocal imaging-based plant cell dataset [4] consisting of
six plants. For each plant, on average, 20 time points data
were provided with a gap of four hours between two
consecutive time points. Each time point image stack has
around 200 slices, and each slice has the size 512×512 pixel.
Two types of ground truth are provided with this dataset.
One is for segmentation, and another is for tracking. In
segmentation ground truth, instance segmentation of each
cell was given. The tracking ground truth provides pairwise
cell correspondence between two-time points.

3.2 Experimental Settings
Out of the available six plant data for cell tracking, four
plants have been used for training, one for validation, and
one for testing. We also engaged cross-validation to avoid
bias. From the recent 3D segmentation techniques such as
spherical harmonics [30], Cellpose3D [32], we have used
Cellpose3D. The spherical harmonics approach does not
preserve the polygonal shape of the cell, which makes this
approach inappropriate for detecting cell division. On the
other hand, Cellpose3D preserves the plant cell’s polygonal
shape, making this approach suitable for our work. The
pre-trained model of Cellpose3D is publicly available, and
according to [32], experiments on segmentation were done
on the same dataset with the same data-split we have used.

3.3 Results

We compare the tracking performance of our proposed
method with the method described in [22]. This method has
used watershed segmentation [29], which segments the cell
border of the plant cell. In our work, we have used Cell-
pose3D for segmentation. While comparing with [22], we
have used the cell borders from the segmentation provided
by Cellpose3D instead of using noisy watershed segmen-
tation to make a fair comparison. In addition, the method
described in [22] uses landmark-based 2D registration [33],
while we use 3D registration. Hence, we have provided a
comparative results for both 2D and 3D registration.

Fig. 13: (a) and (b) indicates the tracked cells of former and
later time point, respectively. The same colored cells of these
figures indicate the matching cell pairs.

3.3.1 Performance of Cell Pair Matching
We compare our novel method with [22] in TABLE 1 for
pairwise cell matching. The comparison includes both the
landmark-based two-dimensional registration [33] and pro-
posed three-dimensional registration technique. The evalu-
ation indices are precision, recall and F1 score. From TABLE
1, . We observe that proposed 3D registration has improved
the performance of the method described in [22] com-
pared to 2D registration. Overall, our method has secured
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Fig. 14: Coloured cells of (a) indicate the mother cells and
colored cells of (b) indicate the daughter cells. The arrow
sign shows mother-daughter correspondence.

6.83%, 5.96%and, 6.40% improvement in terms of precision,
recall and F1 score, respectively when 3D registration is
considered. Fig. 13 shows some visual results of cell pair
matching using our method.

TABLE 1: Performance comparison on different methods for
cell pair matching and cell division.

Cell Pair Matching

Method Reg. Precision Recall F1 Score

Chakraborty et al. [22] 2D [33] 0.7645 0.8118 0.7874
Chakraborty et al. [22] 3D (ours) 0.9209 0.8992 0.9099
DEGAST3D (Ours) 3D (ours) 0.9894 0.9588 0.9739

Cell Division

Method Reg. Precision Recall F1 Score

Chakraborty et al. [22] 2D [33] 0.9302 0.2857 0.4372
Chakraborty et al. [22] 3D (ours) 1.0000 0.3521 0.5208
DEGAST3D (Ours) 3D (ours) 0.9862 0.5059 0.6687

3.3.2 Performance on cell division detection

TABLE 1 shows the comparison of performances of our
novel method with [22] for cell division. It is evident that
our method outperforms the [22] ( 2D registration ) in all
metrics. When 3D registration is considered for [22], our
method shows competitive results on precision and shows
15.38% and 14.78% improvement in recall and F1-score,
respectively. Fig. 14 some visual results of cell division using
our method.

3.3.3 Performance on 3D Registration

Most of the previous works [18], [22], [27] are based on
two-dimensional registration while we have proposed and
and implemented a 3D registration method. In TABLE 1,
we compare the performance of 2D registration [33] and
our proposed 3D registration method for the same tracking
approach. Our 3D registration significantly enhances the
results of [22] in both cell pair matching and cell division
detection. Specifically, for cell pair matching, precision, re-
call, and F1-score improve by 15.64%, 8.74%, and 12.25%,
respectively. For cell division detection, precision, recall, and
F1-score increase by 6.98%, 6.64%, and 8.36%, respectively.

3.3.4 Cell lineage generation

Inspired by [41], Xie et al. [27] proposed a node chaining
method for plant cell trajectories, which we adopted for
long-term lineage generation. Table 2 compares the accuracy
of three methods for determining long-term cell lineages.
We note that dataset [4] does not provide long-time lineages
of all the cells. In the evaluation of long-time tracks, we have
only considered those cells which have ground truth tracks
of at least 16 hours. Accuracy, measured as the percentage
of experimental lineages matching ground truth, shows our
method outperforming the others by 23.03 % and 12.96 %,
respectively.

TABLE 2: Performance Comparison on Determining Long-
time Trajectory Accuracy

Method Registration Accuracy (%)

Chakraborty et al. [22] 2D [33] 47.96
Chakraborty et al. [22] 3D (Ours) 58.29
DEGAST3D (Ours) 3D (Ours) 70.99

3.4 Effects of Errors in Segmentation

The quality of segmentation can be judged in two aspects.
Firstly, whether the segmentation technique can detect cells
correctly, and secondly, whether the segmentation technique
preserves the shape of the cells. We used Cellpose3D [32] as
a 3D segmentation method of plant cells. There are other 3D
segmentation techniques such as Spherical Harmonics (SH)
[30] and Unet Watershed (UW) [31]. The SH method, while
avoiding under-segmentation, fails to preserve cell shapes.
In contrast, UW is more effective at retaining cell shapes but
suffers from under-segmentation, leading to fewer detected
cells compared to the ground truth. Cellpose3D outperforms
both SH and UW in terms of cell detection and shape
representation. Our method focuses on two objectives: cell
pair matching and cell division detection. Cell pair matching
only uses the centroids of the cells in 3D, no shape infor-
mation is utilized here. Conversely, cell division detection
is highly dependent on accurate cell shape representation.
As shown in Table 3, SH segmentation exhibits a massive
performance drop in cell division detection (Recall and F-
1 Score) due to its failure in preserving cell shapes. SH
segmentation exhibits only a slight performance drop in
cell pair matching, as it is nearly as effective as Cellpose3D

TABLE 3: Performance comparison on different segmenta-
tion techniques

Cell Pair Matching

Segmentation Method Precision Recall F-1 Score

Cellpose3D [32] 0.9892 0.9588 0.9739
Spherical Harmonics (SH) [30] 0.9611 0.9715 0.9663
Unet Watershed (UW) [31] 0.9358 0.9113 0.9234

Cell Division

Segmentation Method Precision Recall F-1 Score

Cellpose3D [32] 0.9862 0.5059 0.6687
Spherical Harmonics (SH) [30] 1.0 0.0462 0.0882
Unet Watershed (UW) [31] 1.0 0.4125 0.5842
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in detecting cells. Meanwhile, UW outperforms SH in cell
division detection due to its shape-preserving characteristics
but shows the worst performance in cell pair matching
because of under-segmentation. Cellpose3D is efficient in
both cell detection and shape preservation and so it ex-
hibits the best results for both cell pair matching and cell
division detection. In summary, the performance of DE-
GAST3D improves with higher-quality segmentation. While
the algorithm remains robust in cell pair matching even
without shape preservation, accurate cell division detection
necessitates shape-preserving segmentation.

3.5 Performance with 2D single slice-based tracking

Most of the previous works [18], [22], [27] consider 2D
star graph in order to perform cell pair matching. On the
other hand we consider 3D k-nearest neighbor connected
graph for the same purpose. In TABLE 4 we investigate
how our algorithm performs if we consider only 2D slices
for cell pair matching without considering any 3D structure.
To be specific we want to evaluate how does 2D k-nearest
neighbor connected graph perform with respect to 2D star
graph based methods. We consider that all the methods
incorporate same registration method. We observe from
TABLE 4 our approach outperforms all the other methods
in two-dimensional slice-by-slice cell matching. It indicates
the superiorty of proposed cell-matching approach over
existing approaches.

TABLE 4: Performance comparison of cell pair matching in
2D slice tracking

Method Precision Recall F-1 Score

Chakraborty et al. [22] 0.9209 0.8992 0.9099
Liu et al. [18] 0.4461 0.5910 0.5085
Liu et al. [27] 0.3730 0.4789 0.4194
DEGAST3D (ours) 0.9461 0.9114 0.9285

3.6 Ablation Study

The proposed cell pair matching method has two steps. In
the first step, we find pairwise cell matching using a deep
neural network. However, some cells are left unmatched in
this step. In the second step, we track those untracked cells
using their relative position with respect to the tracked cells.
Clearly, in the second step, no learning-based approach is
involved. In our ablation study, we show the comparison
between one-step and two-step tracking while changing dif-
ferent factors of tracking, such as the number of connections
to neighbors in graph formation, the size of the region of
interest, and the impact of modified loss function during
training.

3.6.1 Effect of changing the number of connections with
neighbors in graph formation
Given the centroids of np number of cells, we form the graph
by joining k nearest points among themselves. In TABLE 5,
we show how the results of cell matching change with dif-
ferent values of k. We note that the precision value increases
with the increase of k. Because an increase of k means more
information is used regarding the spatial orientation of the

nodes. Hence, cell matching accuracy increases with the
increase of k. In addition, while using one-step tracking,
some cells are left untracked. Some untracked cells can find
their matching pairs in two-step tracking. As a result, we
observe an increase in recall value in two-step tracking.

TABLE 5: Effect of changing the number of collections with
neighbors (k)

One-step Tracking Two-step Tracking

k Prec. Recall F-1 Sc. Prec. Recall F-1 Sc.

4 0.9801 0.9074 0.9423 0.9781 0.9567 0.9673
5 0.9880 0.9130 0.9491 0.9804 0.9575 0.9688
6 0.9909 0.9219 0.9551 0.9894 0.9588 0.9739

3.6.2 Effect of changing the size of the region of interest
The size of the region of interest is related to n, which
indicates how many candidate graphs are compared against
the anchor graph. TABLE 6 shows when n increases, the
precision value decreases while the recall value increases in
one-step tracking. It is because when n is lower, the network
learns to classify for fewer classes, which is easier. Hence,
the precision value gets higher when a low value of n is
used. On the other hand, with the lower value of n, the
region of interest does not always cover the true matching
cell. As a result, the number of unmatched cells increases,
lowering the recall value.

TABLE 6: Effect of changing the number of matching candi-
dates (n)

One-step Tracking Two-step Tracking

n Precision Recall F1 Precision Recall F1

5 0.9978 0.8887 0.9401 0.9937 0.9694 0.9814
10 0.9858 0.9058 0.9441 0.9819 0.9503 0.9658
20 0.9909 0.9219 0.9551 0.9894 0.9588 0.9739

TABLE 7: Impact of Individual Loss Terms

One-step Tracking Two-step Tracking

Loss Precision Recall Precision Recall

Lpp 0.9408 0.3605 0.8305 0.8819
Lg 0.9394 0.6928 0.9316 0.9132
Lpp + Lg 0.9909 0.9219 0.9894 0.9588

3.6.3 Effect of individual loss terms
Two losses guided the learning-based 3D graph matching.
They are point-to-point similarity supervision loss (Lpp) and
overall graph similarity supervision loss (Lg). In TABLE 7,
we demonstrate the importance of both of the loss terms.
If we train the network with only one loss term, all metrics
show lower values in one- and two-step tracking. Hence,
both of the loss terms are necessary for effective cell track-
ing.

3.7 Scalability to Larger Dataset
Larger datasets can be addressed in two aspects: the in-
creased number of average cells per plant and the increased
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number of time points. If the region of interest (ROI) is fixed,
the running time of the algorithm is linearly proportional
to the number of average cells per plant and time points.
Additionally, if we consider n number of cells in the ROI,
the cell pair matching and cell division detection have time
complexity of O(n) and O(n2), respectively. However, our
efficient 3D registration, combined with the densely packed
nature of plant cells, enables the selection of a small ROI
rather than processing the entire stack. Consequently, a
small value of n is sufficient for cell pair matching and
detecting cell division. Hence, it is possible of scale our
approach to larger datasets keeping the size of ROI (n cells)
unchanged.

4 CONCLUSION

This paper proposes a novel learning-based method to
automatically track plant cells in any three-dimensional,
unregistered condition. Unlike the state-of-the-art methods
where tracking was done by two-dimensional graph match-
ing, our proposed method constructs a three-dimensional
graph that extracts the tight spatial features in a more so-
phisticated way, taking cell growth and deformity into con-
sideration. The method also introduces a unique learning-
based cell division detection algorithm, utilizing volumetric
and structural data for improved accuracy. Additionally, the
proposed 3D registration method can be applied to any com-
putational biology related application. DEGAST3D’s robust-
ness against segmentation quality to track cells, scalability
to larger datasets, and ability to handle 3D unregistered
conditions make it a versatile tool for computational biol-
ogy, particularly in scenarios involving tightly packed cell
structures.
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