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Abstract

Incorporating transformer models into edge devices poses
a significant challenge due to the computational demands
of adapting these large models across diverse applica-
tions. Parameter-efficient tuning (PET) methods (e.g. LoRA,
Adapter, Visual Prompt Tuning, etc.) allow for targeted
adaptation by modifying only small parts of the transformer
model. However, adapting to dynamic unlabeled target distri-
butions at the test time remains complex. To address this, we
introduce AdMiT: Adaptive Multi-Source Tuning in Dynamic
Environments. AdMiT innovates by pre-training a set of PET
modules, each optimized for different source distributions
or tasks, and dynamically selecting and integrating a sparse
subset of relevant modules when encountering a new, few-
shot, unlabeled target distribution. This integration lever-
ages Kernel Mean Embedding (KME)-based matching to
align the target distribution with relevant source knowledge
efficiently, without requiring additional routing networks or
hyperparameter tuning. AdMiT achieves adaptation with
a single inference step, making it particularly suitable for
resource-constrained edge deployments. Furthermore, Ad-
MiT preserves privacy by performing an adaptation locally
on each edge device, without the need for data exchange.
Our theoretical analysis establishes guarantees for AdMiT’s
generalization, while extensive benchmarks demonstrate that
AdMiT consistently outperforms other PET methods across
a range of tasks, achieving robust and efficient adaptation.

1. Introduction

Pretrained transformers [1-5] have achieved remarkable
success across diverse tasks, but their large parameter
counts—often reaching billions [2, 5]—present challenges
for deployment, especially on edge devices with limited com-
putational resources. To address these limitations, parameter-
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efficient tuning (PET) methods, such as prefix/prompt tuning
[6-9], adapters [10], and LoRA [11], have been introduced.
These methods allow the pretrained model to remain fixed
while only adjusting a small set of additional parameters
tailored to specific target distributions, significantly reduc-
ing memory and computation needs while often achieving
performance comparable to that of full fine-tuning.

Most existing PET methods are either single-
source—focusing on a single PET module trained
for one distribution—or, when incorporating multiple PET
modules, require additional computational resources such as
routing networks [12] or extensive hyperparameter tuning
[13, 14]. These approaches lack the ability to directly
integrate knowledge from multiple PET modules, each
trained on different source distributions. In dynamically
evolving environments, adaptation methods benefit from
leveraging multiple sources of pre-trained knowledge.
Instead of relying on a single PET module trained on a
single source, integrating multiple PET modules enables
more robust adaptation to shifting distributions by drawing
from a diverse set of source-specific knowledge[15]. This
multi-source approach is particularly advantageous when
access to the original source data used for training each
module is restricted due to privacy, storage, or other
constraints. In such scenarios, training a unified PET
module across combined sources is infeasible, making
it both practical and effective to adaptively employ and
integrate an array of pre-trained PET modules during
test time, resulting in performance improvements often
unattainable with single-source PET adaptation.

In this work, we introduce AdMiT (Adaptive Multi-
Source Tuning in Dynamic Environments), a novel frame-
work designed to efficiently adapt pre-trained PET modules
across multiple dynamic distributions. AAMiT pre-trains a
structured set of PET modules, each specifically tuned to
a different source distribution, providing a versatile foun-
dation for multi-source adaptation. During test time, when
faced with new, small-batch target data from a new distri-
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Figure 1. The diagram illustrates the AAMiT workflow, which includes pretraining source modules, matching modules during deployment,
and updating the integrated module. In the pretraining stage, given a loss function £ and source distributions {Dg,} ;_v:l’ we freeze the base
model f and fine-tune each module 6‘ for its respective distribution. We also map the source data to an embedding space H as empirical

Kernel Mean Embeddmgs (KMEs) {u(

Y j=1. During the KME module matching stage (Sec. 3.1), AMiT maps the target data T" to

an empirical KME /L(T) and approximates it as a weighted combination of source KMEs, determining the weight coefficients ;. In the
module integration and adaptation stage (Sec. 3.2), AAMIT integrates the source modules with the highest weights to create an adaptive
module 6(t) for the current target batch. This module 6(t) can then be directly applied to the target distribution or further adapted using
sharpness-aware pseudo-label minimization for enhanced alignment with the target data.

bution, AdMIT (1) selects a relevant subset of PET mod-
ules based on their alignment with the target distribution,
and (2) integrates these selected modules into a newly com-
posed module optimized for the current target batch. This
integrated module can then be directly applied to the tar-
get distribution, achieving efficient adaptation with lower
computational overhead compared to existing PET methods
[12, 14, 16]. Additionally, this integrated module enables fur-
ther fine-tuning if desired, allowing AdMiT to dynamically
enhance its alignment with the target distribution. This dual
capability—of zero-shot applicability and optional on-the-fly
adaptation—enables AdMiT to adapt robustly to evolving
target distributions with low computational cost. Our experi-
ments demonstrate AAMiT’s effectiveness in both zero-shot
and test-time adaptation settings, highlighting its adaptability
and strong performance across dynamic distributions.

AdMIT offers two key advantages. First, by dynamically
matching and adapting multiple pre-trained PET modules to
the target distribution using small batches of target data, Ad-
MiT achieves superior performance over traditional single-
source PET adaptation methods. The ability to integrate
multiple PET modules enables AdMiT to more effectively
capture complex target distributions by leveraging a diverse
set of source-specific knowledge through Kernel Mean Em-
bedding (KME)-based matching (Sec. 3.1). Second, AAMiT
bypasses the need for additional hyperparameter tuning or
routing network training during deployment by using KME
to align the target with relevant source distributions. This
approach eliminates the computational burden of full model
inference, allowing for fast multi-source PET adaptation.

As aresult, AMIT is particularly well-suited for resource-
constrained edge deployments, where both efficiency and
flexibility are essential. Moreover, this KME-based distribu-
tion matching ensures data privacy, as no raw data exchange
is required during adaptation.

Main Contributions. We present a new multi-source PET
approach, AdMiT, that enables edge devices to selectively in-
tegrate a minimal subset of PET modules from a pre-trained
collection, adapting in real-time to new, unlabeled data in an
unsupervised, few-shot setting. Our contributions include
the following:

» Adaptive Multi-source Module Selection and Integra-
tion. AdAMIT efficiently selects and integrates a subset
of pre-trained PET modules from a structured collection,
based on the distributional characteristics of incoming
target data. This adaptive integration avoids the computa-
tional burden associated with training routing networks or
hyperparameter tuning for each new target distribution. By
selectively combining relevant modules, AAMiT achieves
performance comparable to that obtained by using all mod-
ules simultaneously but with significantly reduced storage
and computational requirements, making it practical for
edge deployment.

Efficient, Privacy-preserving Adaptation. Unlike exist-
ing PET methods that utilize additional routing networks
or data-alignment steps for multi-source adaptation [12],
AdMIT achieves adaptation by transforming empirical data
distributions in a kernel embedding space [17, 18]. This
approach avoids the need to exchange raw data, preserving
data privacy and reducing computational costs. Moreover,



AdMIT performs efficient module selection and combina-
tion without additional inference steps, enabling real-time
adaptation on edge devices.

* Theoretical Guarantees. We provide theoretical guar-
antees on AdMiT’s generalization performance, showing
how it can effectively balance the sample sizes of source
modules and the target batch size to ensure reliable multi-
source adaptation. This guarantee highlights that well-
trained source modules can provide robust adaptation even
with limited target data.

¢ Comprehensive Empirical Evaluation and Insights.
Extensive evaluations on challenging datasets, including
Digit-Five, CIFAR-100C, and ImageNet-C, demonstrate
that AAMiT consistently surpasses existing PET methods
across various adaptation distributions. AdMiT shows a
notable improvement in accuracy when adapting to new
distributions (Table 1) and effectively preserves knowledge
from source distributions(Table 2), showcasing strong per-
formance in adaptation and retention. Additionally, Ad-
MiT effectively identifies and integrates the most rele-
vant modules(Figure 3) consistently achieving optimal
results with minimal computational overhead. Additional
results on the segmentation task, using Cityscapes [19] and
ACDC [20] datasets, are provided in the Appendix, demon-
strating AdMiT ’s effectiveness in handling dynamic dis-
tributions across different tasks.

2. Related Works

Parameter Efficient Tuning (PET). Large-scale pre-trained
models have greatly enhanced performance in natural lan-
guage processing [1] and computer vision [21] by transfer-
ring learned knowledge to downstream tasks. PET methods,
such as prompt tuning [21] and adapters [10], allow efficient
adaptation by fine-tuning a small subset of parameters. Tech-
niques like CoOp [22] and CoCoOp [23] leverage prompt
optimization for out-of-distribution generalization, while
CLIP-Adapter [24] and Tip-Adapter [25] fine-tune CLIP
using adapters or key-value cache models, improving adapt-
ability to target distributions. However, most PET methods
are not designed to handle continuously shifting small-batch
target distributions effectively; they adapt independently to
each distribution, creating distribution-specific PET modules
and often forgetting previously learned information. In con-
trast, our method enables consistent adaptation to dynamic
target distributions while preserving knowledge of the pre-
trained source distributions, addressing a gap in existing PET
approaches. Our approach is compatible with various PET
modules, including LoRA [11], VPT [21], and adapters [10].
Test Time Adaptation (TTA). Unsupervised Domain Adap-
tation (UDA) requires extensive target distribution data for
offline adaptation, whereas TTA operates continuously on
incoming test batches [26—28]. Initial TTA approaches [29]
used test-batch statistics rather than training data, with meth-

ods like TENT [30] updating batch-normalization param-
eters to reduce entropy on target data. DUA [31] further
refines alignment with target distributions by persistently up-
dating batch-norm statistics across test batches. While these
single-source TTA methods are effective, they often struggle
with forgetting source knowledge over time, particularly in
dynamic settings. Approaches like CoOTTA and BeCoTTA
[32, 33] use stochastic source restoration to mitigate drift,
and EATA [34] employs regularization to preserve critical pa-
rameters, thus reducing forgetting. However, these methods
often adapt to each batch separately, requiring substantial
computational resources to balance adaptation and forget-
ting. In contrast, our multi-source approach dynamically
matches relevant source modules to the target distribution,
integrating them efficiently and minimizing forgetting with
minimal computational overhead.

Ensemble Learning and Multi-source Adaptation. En-
semble learning, a well-known technique, enhances model
robustness by combining outputs from various models [35].
Techniques like SESoM [12] and mixture models [14] aim to
handle dynamic target distributions by combining multiple
pre-trained models or PET modules. However, due to privacy
constraints or storage limitations, direct access to source data
from pre-trained models or PET modules is often unavailable.
This limitation requires ensemble methods to rely on addi-
tional hyperparameter tuning [ 14, 16] or routing networks
[12] to match the target and source distributions, leading to
substantial computational overhead and frequent forward in-
ference. For CNN-based applications, such adjustments are
manageable [15, 36], but in the context of large pre-trained
transformers, this tuning becomes prohibitively costly. Our
approach bypasses these constraints by performing source-
target matching through Kernel Mean Embeddings (KMEs),
enabling efficient and privacy-preserving adaptation with-
out requiring raw data or extensive computation, making it
well-suited for large-scale pre-trained models in dynamic
environments.

3. Proposed Method: AAMiT

Our method, AdMIT, leverages a pretrained transformer
model f along with a collection of parameter-efficient tuning
(PET) modules, each pretrained on distinct source tasks or
domains. These PET modules, represented by parameters
{0, }é\’zl, have significantly fewer parameters than the base
model f and can be flexibly integrated into f as needed,
thus forming a structured repository of source knowledge.
We denote the transformer f combined with a module 6 as
fo. The core idea of AAMIT is to optimize adaptation to a
target task or domain by selectively blending these pretrained
modules based on their distributional representations in an
embedding space and combining their weights to maximize
relevance. The adaptation to target distribution is shown in
figure 1.



Algorithm 1 AdMiT: Adaptive Multi-Source Tuning in Dy-
namic Environments.

1: Input: Pretrained transformer model f, Pretrained
source modules {6 } é\r:l’ empirical KME of source mod-

—

ules {4(S;)}5C ;. number of modules to be selected M
(M < N), streaming sequential unlabeled test data
7O = {2V - 73 = 2P} - .70 =
oy

2: Output: M scaled weights, finetuned new module 6(t),
size of synthetic dataset Z

3: Use Alg. A (in the Appendix) to generate synthetic data

N

and estimate {y(S;)};2,

4: whilet > 1 do
for Each x; in the ¢-th batch do
: Calculate the empirical KME of the target batch
(Eqn. 3)
end for
: Obtain mixture weights {@(t)’}}_, by solving
Eqn. 4
9:  Find and select the top M in {w(t)7}.,

10 Rescale selected weights to sum up to 1, thus obtain
{w(t)'}7L;.
11: Create a new module 6(t) by a weighted averaging

of the selele/}ed pretrained modules
0(t) = > 5 w(t)'0;

12: Finetune fj ;) with Eqn. 8

13: end while

¢ Pretraining stage: Pretraining and KME calculation.

Given a loss function £ and a set of source tasks or do-
mains {Ds; }}_,, we freeze the base transformer model
f and only update the PET modules, rather than fully
fine-tuning f on each domain. For each source Dg j» WE
optimize the parameters 0; as 0; = argmingy L( fo; Ds ;).
To capture the source distributions, we map the source
data to an embedding space H and represent the empiri-

cal distributions using Kernel Mean Embeddings (KMEs)

o —

{M ( Sj ) };\/: 1+
* Deployment stage: KME Module matching. (Sec. 3.1)
In this stage, AAMiT maps the target data 7" to an empirical

Kernel Mean Embedding (KME) 1(T') and approximates

it as a linear combination of source KMEs {@}le,

expressed as N/(ﬁ = Z;V=1 wj@. This approach to
multi-source distribution estimation, commonly applied
in previous works [15, 16, 36], enables us to interpret the
mixture weights {w;} as relevance scores for each source
module. These weights guide the selection and integration
of source modules, ensuring that the target is adapted
efficiently and effectively. We also provide a theoretical
bound on the estimation error for this approximation.

* Deployment stage: Module integration and adaptation.
(Sec. 3.2) Using the computed mixture weights 1w, AAMiT
selects the source modules with the highest weights and
integrates them to create a combined module €. This inte-
grated module 6 is subsequently fine-tuned on the target
domain Dy to refine its alignment with the target distribu-
tion. For further enhancement, we apply sharpness-aware
pseudo-label minimization [37, 38] to adjust the ensemble
module and improve its robustness on the target domain.

Throughout the deployment stage, only a small number of
unlabeled target samples are required to identify and inte-
grate the source modules most relevant to the current target
distribution. A detailed pseudocode for AAMiT can be found
in Algorithm 1. In the following sections, we provide an
in-depth explanation of the principles guiding the design of
AdMIT.

3.1. Module Matching using KME

In the pretraining stage, given the heterogeneous feature
spaces across different models, we assume a unified feature
space facilitated by a public feature extractor G(+), which
maps the original data ' from both source and target distri-
butions into a shared representation space * = G(x’). This
setup is practical, as publicly available pre-trained models
can serve as feature extractors. In our experiments, we use a
DenseNet201 model [39] pre-trained on ImageNet for this
purpose. Since source data are inaccessible during the de-
ployment stage, we require a metric to assess the similarity
between source and target distributions without exchanging
data or performing forward model inference.

Kernel Mean Embedding (KME) [40—43] provides a pow-
erful tool for measuring distribution similarity. KME maps
probability distributions into vectors in a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) H using a posi-
tive semi-definite bounded kernel 0 < k(-,-) < K, simpli-
fying the similarity evaluation of two distributions to inner
product calculations in RKHS. Given a distribution P of an
X -valued random variable, its KME is defined as:

g (P) == /-ex k(x,-) dP(x). (D

The norm of the KME in H can be expressed by the inner
product:

(P, == (ur(P), e (P)) = Bq ypk(z,y).  (2)

Since true distributions P are typically unknown, we es-
timate the KME and its norm using a finite batch X =

{za i) ~ P

|X]
— 1
X) = — S k(zn,), 3
) = 7 2 ko) ()



Z k(xi, xj).

Ti,x; €EX

These empirical KMEs are computed on source datasets
{S; }é\le ~ Ds; during the pretraining stage, and on the
target batch T' ~ D in the deployment stage.

In the deployment stage, we assume the target distribution
can be approximated as a linear combination of source dis-
tributions, such that Dy ~ ZN_I w;Ds ; for some mixture

weights {w]} ;. Using the linearity of expectation, we can

express the KME of the target as (p, =~ Z =1 WikDs -

Each source KME {p( )}J 1 serves as a basis in the
Hilbert space #, allowing us to decompose the target empir-

ical KME (T") using these bases. By solving the following
optimization, we obtain the mixture weights {w; }5\;1 to
match source and target distributions:

N
min w(T) — Z w;p(S)|| - 4
{w; } j=1 j=1
H

This KME-based approach serves as a reliable metric for
distribution similarity (See Section H), enabling efficient
and privacy-preserving matching between source and target
distributions.

Theorem 3.1. For a bounded kernel 0 < k(-,-) < K, with
probability at least 1 — 0, the (biased) empirical MMD (ob-
tained by drawing m samples from p = Dy and n samples

from q = Zjvzl w;Ds, with Z;V=1 w; = 1) is bounded by:
(Proof in the Appendix Corollary H.3.)

\/> \/7 /K(m+n)log5

The mixture weight solution w; from optimization 4 also
implies the similarity of the distribution of source domain
Ds ; and the target domain D7, leading to the module selec-
tion strategy in Alg. 1.

Practical Considerations. In real-world applications, not
all source modules are closely aligned with the target distri-
bution, and calculating Kernel Mean Embeddings (KMEs)
of source data in Eqn. 4 can be computationally intensive,
as it involves summing up to |S;| kernel functions for each
source. To enhance efficiency and reduce computational
overhead, we employ the following strategies: (1) instead
of using all source modules during adaptation, we select
only the modules with the highest weights @; (as shown
in Alg. 1), thus focusing on the most relevant sources, and

M(T) Z w;(S;)

(2) to approximate each source KME @ we generate a
smaller synthetic dataset {z,,}Z _, (where Z < |S;|). This
synthetic dataset enables efficient computation by reducing
the number of kernel functions involved, and it preserves

privacy by eliminating the need for raw data exchange dur-
ing KME decomposition [44]. Details of the synthetic data
generation algorithm for source KMEs are provided in the
Appendix, Alg. A.

Using synthetic datasets to approximate KMEs offers two
major advantages. First, direct access to original source data
is often restricted due to privacy or storage constraints, mak-
ing it necessary to rely on the accessible information from
source modules. Generating synthetic data allows us to cre-
ate accurate KME approximations for each source module in
a privacy-preserving way. Second, synthetic datasets provide
a computationally efficient alternative to direct KME calcu-
lations using source data. By involving fewer data points,
synthetic KMEs significantly reduce the computational load
for matching the target distribution with source KMEs, mak-
ing adaptation feasible even in resource-limited settings. We
have theoretically demonstrated that (see Appendix Alg. A)
the synthetic KMEs closely approximate the one calculated
from the raw data. This fidelity ensures that the adaptation
performance remains reliable and robust, as shown in our
experiments, and enables efficient yet effective alignment of
target and source distributions.

3.2. Module Integration and Adaptation

Drawing inspiration from the benefits of a good initialization
in test-time adaptation and transfer learning [12, 16, 36, 45],
we integrate PET modules trained on distributions related
to the target distribution, as these modules are presumed to
contain valuable knowledge relevant to these distributions.
This integration is achieved through a weighted mixture of
the selected modules, aiming to achieve a transfer gain:

M
t) = Z w;ib;,
i=1

where w; is obtained from Alg. 1, and 6(t) represents the
integrated module. Directly applying the integrated module
on the target distribution results in a zero-shot adaptation,
whose performance can be bounded by the following theo-
rem.

Theorem 3.2 (Zero-shot adaptation loss bound). Assume

that the source training error is at most €; the loss

L(fs (x), f(x)) € Hy,; and the empirical MMD between
J

Z;V:1 w;Ds; and D is from Theorem 3.1. Then, the finite-
sample loss is:

LT, fsrui) = 2 |[EUssuyi, (@), 9(0)]

zi~DT

SHO(\/EJF\/;

Proof can be found in the Appendix, Theorem H.5.



To further boost performance, we fine-tune 6(¢) for the target
distribution DT(t) at time ¢:

0(t)" = ar%(ﬂ)lin L(fo): DY)
t

Starting from the integrated PET module 6(¢) offers an ef-
ficient initialization, as the fine-tuning does not incur addi-
tional forward inference costs even as the number of candi-
date modules N or selected modules M increases.
Practical Considerations. Although test-time adaptation
(TTA) can stabilize the adapted models, it risks model col-
lapse during the tuning process, where the model may incor-
rectly classify all inputs as belonging to a single category
over time [38]. To mitigate this, we incorporate sharpness-
aware techniques [37, 38] to make the model less sensitive
to large gradients that may arise from test samples [34].

Once we obtain the new module 6(t) for the target batch
T = {IEEt) } Ql at time step ¢, we compute the entropy of
the pseudo-labels predicted by the model with this module.
The entropy of the predictions for the ¢-th target batch from
the model fy(y) is:

K
£O = —Epo 3 50 log(31), ®)

c=1

To properly fine-tune the new module 6(¢) with this
pseudo-label entropy minimization, we aim to make the
model insensitive to large gradients by encouraging con-
vergence to a flat region of the entropy loss surface. This
approach, which seeks a flat minimum, provides good gen-
eralization and robustness against large gradients [37, 38]:

min £540) ({7} 21; 1), ©)

where £54(*) £ hax LOULMYE A +e

€llasp
"SA" denotes sharpness-aware. The gradient for this opti-
mization can be approximated (see Appendix A for details):

VLA 2 Vo LO (2N N ey ®)

Applying Eqn. 8 instead of standard SGD to update the
parameters of 6(t) based on Eqn. 5 results in a more robust
solution for pseudo-label entropy minimization. The effect
of sharpness-aware adaptation is discussed further in the
ablation study.

4. Evaluations

In our experiments, we evaluate AAMiT ’s effectiveness by
adapting PET modules pre-trained on source distributions to
target data drawn from stationary or dynamically evolving

Table 1. Static Adaptation on ImageNet-C. Following a similar
experiment setup in Fig. 2, we adapt to a target corruption domain
by taking the rest 15 — 1 = 14 domains as source domains, given
varying target batch size. Due to space limitations, we report only
the averaged accuracy across all target domains.

Source Method BS=256 BS=128 BS=64 BS=16 BS=1
TENT-Best [30] 522 523 52.0 524 51.7
TENT-Worst [30] 34.7 345 353 34.7 31.6

Single BECOTTA-Best [33] 60.4 61.5 62.0 61.1 55.4
BECoTTA-Worst [33] 353 36.4 379 373 304
SAR-Best [38] 58.1 623 61.4 60.3 54.1

SAR-Worst [38] 37.5 38.6 38.2 38.1 31.1

GT-Tuning 67.7 68.8 69.7 65.4 60.3

m-tuning-PL [16] 61.4 62.4 62.7 61.5 57.1

SESoM-PL [12] 62.3 62.6 62.5 62.0 56.3
CONTRAST [15] 63.5 63.1 63.1 61.7 579

Multi Model soup [46] 523 534 522 51.7 49.5
AdMIT 63.8 63.7 62.4 623 587
AdMIT-ZeroShot 60.2 59.6 584 55.9 533
AdMiT-Plain 63.5 62.2 62.1 61.0 56.6

distributions (See experiment setting details in Appendix
Sec. F). The target distributions involve the same task as
the source but differ due to distribution shifts relative to the
source distributions on which the PET modules were trained.

We consider two adaptation scenarios: (1) a static adapta-
tion setting where the target data are drawn from a stationary
distribution, and (2) a dynamic adaptation setting where the
target data are drawn sequentially from an evolving distri-
bution. The former scenario demonstrates AAMiT ’s effec-
tiveness in adapting to a stationary target distribution using
pre-trained source modules, while the latter highlights Ad-
MiT ’s robustness in adapting to evolving target distributions
over time.

Datasets. For the static adaptation scenario, we evaluate
AdMIT on the Digits-Five dataset [47], which includes five
digit datasets—MNIST (MT), MNIST-M (MM), USPS (UP),
SVHN (SV), and Synthetic Digits (SY)—each covering 10
classes (0-9). In these experiments, four distributions are
used as sources, with the remaining one reserved for testing.
We also use the ImageNet-C dataset [48], which applies 15
types of severe corruptions (details in Appendix Sec. G) to
ImageNet images [49], following the setup in [38].

For the dynamic adaptation scenario, we utilize the
CIFAR-100C benchmark [48], which extends the CIFAR-
100 dataset [50] by introducing 15 types of noise at varying
levels of severity (1 to 5). This setup results in up to 75 dis-
tinct distributions, allowing us to assess AdMiT ’s capacity
for continuous adaptation as the target distribution evolves.

Finally, although our primary evaluation focuses on im-
age classification tasks, our method is not limited to this
setting. It can be extended to other tasks, such as semantic
segmentation, with results for segmentation tasks provided
in the Appendix E.

4.1. Baseline Methods

Our evaluation includes comparisons with state-of-the-art
(SOTA) single-source test-time adaptation (TTA) methods,



e of the e weght Source Method MM MT UP SV SY | Avg

MINIST (uT) E. TENTBest[30]  56.1 984 849 87.0 952 | 843
— 7 I TENT-Worst [30] ~ 17.6 542 596 114 155|317

MNISEA (MM)E ﬂmm Single BECOTTA-Best[33] 523 97.6 857 864 956 | 835
;. BECOTTA-Worst [33] 22.6 53.8 60.7 249 23.6|37.1

LAl SAR-Best [38] 578 973 862 864 920 | 839

SVHN(SY) EB])4I‘ . SAR-Worst [38] 369 573 629 404 358 | 46.6
’ GT-Tuning 704 996 93.1 905 972 | 90.1

Synthetic (SY) E » I 7-tuningPL[16] 613 982 89.1 862 94.6 | 858
SESoM-PL[12] ~ 621 983 886 87.1 945 | 86.0

USPS (UP) E . . N I CONTRAST[I5]  63.1 976 885 87.2 943 |86.1
. Mulii Model soup [46] 523 832 715 664 752 | 69.7

NS AdMIT 632 989 893 865 962 | 868

AdMiT-ZeroShot 545 972 863 80.5 923 | 822

AdMIT-Plain 613 963* 874 853 93.1 | 847

Figure 2. Static adaptation on Digits-Five. (Left): Sample images from the source and target domains used in the adaptation task, which
include MNIST (MT), MNIST-M (MM), SVHN (SV), Synthetic (SY), and USPS (UP). (Center): Heatmap depicting the mixture weights
assigned to various source modules during adaptation to the target domain. Larger mixture weights (w;) indicate a higher similarity between
the target and source domains. The weights in each column sum to 1, as the four remaining domains are used to adapt to the target domain.
(Right): We train the source modules using 4 digits datasets to perform adaptation on the remaining dataset. All the results are the average
of 5 runs. Best performance is bolded, and second-best performance is underlined. The table clearly demonstrates that the average accuracy
of AdMiT outperforms other baselines and is closest to the performance achieved by tuning with ground-truth labels. We also report the
module integration (without tuning) results as AdMiT-ZeroShot, and the module adapation using plain SGD tuning results as AdMiT-Plain.

Source Method GN SN IN DB FGB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG | Avg
TENT-Best [30] 742 653 51.0 507 473 458 420 369 352 243 246 14.2 11.9 11.9 82 | 362

Single SAR-Best [38] 712 717 692 644 560 542 598 593 562 527 494 46.8 482 420 449 | 564
BECoTTA-Best [33] | 69.7 714 658 687 543 534 557 524 557 472 524 46.3 49.6 424 419 | 55.1
m-tuning-PL [16] 798 763 81.1 757 662 625 681 616 619 587 634 529 50.7 53.1 56.0 | 64.5
SESoM-PL [12] 750 76.0 748 69.0 656 604 603 545 558 545 553 49.7 50.8 514 539 | 60.5

Multi Model soup [46] 52.1 553 49.6 48.0 487 49.1 432 73.0 765 741 743 56.3 51.2 478 583 | 572
CONTRAST [15] 782 753 744 761 722 708 71.7 721 739 714 746 71.5 69.5 713 654 | 725

AdMIT 79.1 744 744 752 692 718 737 731 789 752 749 73.2 70.5 72.8 650 | 73.3

Table 2. Dynamic adaptation forgetting evaluation on CIFAR-100C. We take N = 4 source modules pretrained on Snow, Frost, Fog,
and Bright for all the involved methods in the table. The table illustrates the average test accuracy (with all corruption domains of severity
level 5) on the 4 source domains during a sequential adaptation across different target domains for various methods. AAMiT selects M = 3
modules to adapt to new domains. All the results are the average of 5 runs. We employ these models for adaptation on 15 sequential target
domains. Best performance is bolded, and second-best performance is underlined.

such as TENT [30], BECoTTA [33], and SAR [38]. These across source outputs, while 7-tuning [16] fine-tunes hyper-

methods serve as benchmarks for adapting individual source parameters based on a weighted mix of source modules, and
models to target distributions, providing insight into how CONTRAST [15] computes optimal weights for combin-
well a single-source approach performs in adapting to un- ing multiple source model outputs through gradient descent.
seen distributions. As our problem setting involves adapting These multi-source methods allow us to evaluate the effec-
pre-trained models to new, dynamic distributions during tiveness of combining knowledge from multiple distributions
deployment, it is closely related to the objectives of TTA. and highlight the computational trade-offs involved. For fair
Therefore, these widely recognized single-source TTA meth- comparison, we implement pseudo-label (PL) entropy mini-
ods are natural baselines for evaluating AdMiT s ability to mization for tuning mixture weights in SESoM and 7-tuning,
adapt effectively. Following a setup similar to that in [36], denoting these as SESoM-PL and m-tuning-PL, and apply
we apply each source model independently to specific test a greedy model soup approach to minimize PL entropy by
distribution data, reporting Best and Worst results, corre- averaging module mixtures, following [46]. All baseline
sponding to the highest and lowest performance achieved methods, including those originally based on CNN architec-
across individual source models. tures, have been reproduced on a transformer architecture for
We also compare against leading multi-source ensem- consistency in our comparisons. Additional implementation
ble methods in both static adaptation and dynamic adap- details are provided in the Appendix.
tation settings, as these approaches simultaneously lever- Lastly, we provide an upper-bound baseline, GT-Tuning,
age multiple sources and provide a baseline for assessing which tunes a new PET module using ground-truth labels, of-
the benefits of multi-source adaptation. SESoM [12] trains fering insight into the best achievable performance with full

an attention-based routing network for adaptive weighting label access on the target distribution. Together, these base-
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Figure 3. Module Selection on CIFAR-100C. Performance of
AdMIiT on various domains of CIFAR-100C with different numbers
of selected source modules. We pretrain a set of 75 modules (each
for a corruption domain and severity level) and select top-£ modules
based on empirical KME weights. M = k indicates the number of
selected source modules. Results show that with limited target data
(batch size=128), selecting just a few modules (k > 1) maintains
performance comparable to that from using all modules (k = 75).
Mean performance across domains (shown as markers) improves
with more modules but with diminishing returns, demonstrating
our method’s efficiency even with significantly fewer modules.

lines capture both single-source and multi-source strategies,
illustrating AdMiT’s effectiveness in adapting to dynamic
target distributions efficiently and without label access.
Module adaptation. We evaluate AAMiT on the Digits-Five
[47] dataset for digit classification, with N = 4 source
modules and all M = N modules used for inference on
each target distribution. As shown in Figure 2, GT-Tuning
achieves the best performance (serving as an upper bound
with labeled data), while AAMIT achieves the second best
results (underlined) in most target distributions. The accom-
panying heatmap illustrates the average weights assigned to
each source module, with higher weights corresponding to
greater similarity between target and source distributions.
We also include results from AdMiT-Plain, which uses
plain SGD instead of sharpness-aware tuning for adaptation.
In some cases (star-marked cells), plain SGD leads to
decreased performance, underscoring that sharpness-aware
adaptation provides more stable tuning results.

Module integration. We also assess the performance of the
integrated module without any tuning to gauge the efficiency
of AdMIT in a zero-shot adaptation setting, as shown in
Figure 2. AdMiT-ZeroShot denotes the accuracy achieved
by directly applying the integrated module on target
distributions without further adaptation, achieving higher
average accuracy than most single-source TTA methods
and demonstrating AdMIT ’s efficiency and effectiveness
in leveraging multi-source knowledge. We further evaluate
AdMIT on 15 target distributions of the ImageNet-C dataset,
varying the target batch sizes to assess stability. Due to
space constraints, we report the average accuracy across
target distributions in Table 1. The results show that AAMiT

is less sensitive to batch size variations compared to other
TTA methods, providing stable performance across different
batch sizes.

Module selection. In previous experiments, all source
modules were used regardless of their relevance to the target.
To investigate selective module integration, we conduct
experiments on the CIFAR-100C dataset with a set of
N = 75 pre-trained modules. For each target batch, AAMiT
selects the top M = k modules based on mixture weights.
Results in Fig. 3 indicate that AAMiT effectively identifies
and uses only the most relevant modules, achieving strong
adaptation performance with fewer modules.

Forgetting of source knowledge. To evaluate the resistance
of AdMIT to catastrophic forgetting in dynamic test
distributions, we use the CIFAR-100C dataset with four
source modules pretrained on Snow, Frost, Fog, and Bright
distributions. AdMIT selects M = 3 modules for adaptation
to each new target distribution, maintaining higher accuracy
on the original source distributions after adaptation. Table 2
shows that AAMIT outperforms other methods, including
multi-source approaches like m-tuning and SESoM, as
well as anti-forgetting methods like BECoTTA and SAR.
Methods like Model Soup and TENT, which adapt solely to
the current target, show a faster rate of forgetting.
Computational efficiency. To demonstrate AdMiT’s
computational advantages, we compare the overhead of
our module matching approach against the additional costs
incurred by hyperparameter tuning and routing network
training. The results show that AAMIT achieves efficient
source-target matching with lower computational cost and
without any need for forward inference or retraining during
deployment. Additionally, we evaluate the compatibility of
AdMIT with various PET methods to confirm its minimal
overhead and adaptability across different configurations.
See the Appendix for the results.

5. Conclusion

We present AAMiT, a novel framework for transformers that
dynamically integrates multiple source parameter-efficient
tuning (PET) modules to address diverse and evolving target
distributions. Unlike traditional PET methods that focus
on single-source adaptation or require extra computation
for multi-source integration, AAMiT selects and integrates
relevant modules without the need for hyperparameter tun-
ing, routing networks, or raw data sharing. This makes it
well-suited for settings with privacy or resource constraints.
AdMIT performs well in both zero-shot and dynamic adap-
tation scenarios, using a multi-source approach to handle
distribution shifts while keeping source knowledge. Its the-
oretical guarantees ensure reliable adaptation, and its ef-
ficiency makes it practical for use in tasks with changing
distributions.
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A. Sharpness-aware Optimization

In order to properly finetune the new module 6(¢) with the
pseudo-label entropy minimization, we seek to make the
model insensitive to large gradients by encouraging the
model to converge to a flat area of the entropy loss sur-
face, since a flat minimum leads to good generalization and
robustness to large gradients [37, 38]:

min £54O ({27} 2.1; ), )

where £54(1) £ ax LOUzME A+ B
€ll2sp

in which £®) is defined in (5) in the main paper. In this con-
text, the inner optimization aims to discover a perturbation
¢ of the module parameter 6(¢) within a Euclidean ball of
radius p that maximizes entropy. The degree of sharpness
is measured by the maximum change in the Euclidean ball
neighbourhood N, (). This bi-level problem incentivizes
the optimization process to locate flat minima. Following
SAM [37], we can approximately solve the inner optimiza-
tion via a first-order Taylor expansion:

€*(\) £ arg max L(t)({xl(.t)}f;l; A+e)

llellz<p
~ argmax L8 ({218 0 + eTVALO {2V} 1)
llellz<p
= arg max eTV,\C(t)({ﬂfgt) 21 A)
llellz<p

Letv = V,\E(t)({xl(-t) B ;). Holder’s inequality implies
that ™y < [lellivlly < plivil, (/p -+ 1/g = 1). For p —
q = 2, the linear function achieves that bound ¢*(\)Tv =
pllvll2, where e*(\) = p - sgn(v) - %

By substituting €*(\) back into Eqn. 7 and differentiating
both sides, the final gradient approximation is:

VALSAD ~ v, L0 ({2 E Mrtery- (©

B. Synthetic data generation

The procedure is outlined in Alg. A. In the first two steps,
synthetic data points z1, .. ., zps are selected independently
of the private dataset, relying solely on the database size N.
In the main paper, we use g ~ A (0, 1). Steps 3 and 4 involve
constructing the linear subspace H s of H spanned by the
feature maps of these synthetic points and computing a finite
basis for this subspace. The private data is then accessed
to calculate the empirical KME fix (step 5), which is sub-
sequently projected onto the subspace H ;s and represented
using the precomputed basis (step 6-7). The algorithm en-
sures that the number of synthetic data points M increases to
infinity as N approaches infinity (step 1), guaranteeing that
Algorithm 1 yields a consistent estimator of the true KME



Algorithm A Synthetic Data Subspace of the RKHS

Require: Dataset D = {x1,...,xn} C X, kernel k on X,
number of synthetic data points M
Ensure: Weighted synthetic dataset (representing an esti-
mate of 1 x in the RKHS H of k)
1: Initialize 21, . .., z)s deterministically or randomly from
some distribution g on X
20 Ha Span({k(zla ')a veey k(zlbfa )}) CH
3: by, ..., bp form an orthonormal basis of H ; (obtained
using Gram-Schmidt process)
4 fix + 25:1 k(xy, ), empirical KME of X in H
5 ix < Z?:ﬂbf’ fx)by = 2?21 ayby, projection of
fix onto H s
6: Re-express fix < Zle Brby = 2%21 Wik (Zm, )
in terms of k(z,, *)
7: return (z1,w1), ..., (zp, war)

wx, provided that the synthetic data points are sampled from
a distribution with sufficiently large support.

Lemma B.1. ([44], Lemma 10) Let X be a compact metric
space and k : X x X — R a continuous kernel on X.
Suppose that the synthetic data points z1, z2, . . . are sampled
i.i.d. from a probability distribution q on X. If the support
supp(X) of X is included in the support of q, then

lax — x|l 2 0as N — oc. (D)
Proof Sketch. Let e > 0. Since k is continuous on the com-

pact space X x X, it is uniformly continuous. Therefore,
there exists > 0 such that

|k(x, 2 )—k(y,vy')| < € whenever |z—yl|+|z'—y| < 6.

The compactness of X implies it is totally bounded; thus,
supp(X’) can be covered by finitely many balls By, ..., Bg
of radius 6/2. Since supp(X') C supp(q) and each q(By) >
0, with high probability, each By, contains at least one sample
point z,, as M — oo.

For each x,,, select z,,(,) within distance § (possible due
to the coverage). Then,

. 1
lax = Axlly < D [k @n, ) = k(Zmm) )4,
n=1

N
1 1/2
= N Z (k(.ﬁﬂn, xn) - Qk(xny Zm(n)) =+ k(zm(n)a Zm(n))) /
n=1
< €.

The last inequality follows from the uniform continuity of
k and the choice of §. Therefore, as N — oo, we have
lfix — fixls = 0. O

C. Efficiency of AMiT
C.1. Parameter Efficiency

Table A. Number of parameters for different models’ scales and
their corresponding PET module size. ViT-T/S/B/L stands for
"Tiny, Small, Base, Large", corresponding to different pretrained
VIiT sizes. The bolded number is the size of the PET modules we
applied in our main paper experiments.

VIT-T ViT-S ViT-B ViT-L
Full model 5,543,716 21,704,164 85,875,556 303,404,132
Adapter 58,564 116,932 233,668 417,984
LoRA 93,028 185,956 371,812 888,932
VPT 37,732 75,364 150,628 299,108
Header 19,300 38,500 76,900 102,500

Table B. Computational cost. We evaluate the computational cost
and adaptation accuracy of multi-source adaptation for the baseline
methods compared to AAMiT on ViT-B/16, using a batch size of
128 and LoRA PET modules (as detailed in the main paper), under
both static (S) and dynamic (D) adaptation settings.

Tuning Method Avg. Tuned Params GFLOPs Tmage Classification Avg. Acc.(BS=128)

(PET module: LoRA) During Adaptation (M)  (Avg.) | ImageNet-C (S) Digits (S) CIFAR-100 (D)

Full - 85.87 17.58 619 84.1 453

T-tuning 0.25 18.24 624 85.8 64.5

SESoM 1.16 18.32 62.6 86.0 60.5

Multi CONTRAST 0.25 19.21 63.1 86.1 75

Model soup 0.23 22.14 534 69.7 572

AdMIT 0.23 17.62 63.7 86.8 733

AdMiT-ZeroShot 0 17.62 59.6 82.2 59.1

Table C. Latency from KME matching. We evaluate the adapta-
tion speed on ViT-B/16 backbone for Static adaptation on ImageNet-
C among different PET methods, to demonstrate the latency brought
by KME matching. The inference speed is defined by images per
second (imgs/sec). All results are the average of 5 runs.

Method GFLOPs Adaptation speed (img/sec) | Slowdown Percentage (%)
(Avg across BS) | BS=1 BS=32 BS=128 | BS=I | BS=32 | BS=128
Full fine-tuning 17.58 1234 3053 308.2 - - -
LoRA 17.58 957 2913 283.1 - - -
LoRA-AdMiT 17.62 945 2895 282.6 1.26 0.62 0.18
Adapter 17.81 1042 285.6 296.3 - - -
Adapter-AdMiT 17.85 102.5  285.1 295.9 1.63 0.18 0.13
VPT 18.32 1173 2483 251.4 - - -
VPT-AdMIT 18.38 116.6 2475 250.7 0.60 0.32 0.28

Parameter-efficient tuning (PET) methods align naturally
with model ensemble techniques[7], particularly in terms
of parameter efficiency. In contrast to other models where
an ensemble of N models results in /N times more module
parameters, the additional module parameters introduced by
the module integration in Alg. | is only of the size of one
PET module. This represents less than 0.4% of a pretrained
ViT-base model (=~ 86M, w.r.t. Table. A).

C.2. Computational Efficiency

In Table B, Table C, and Table D, we present a comprehen-
sive comparison of inference speeds and adaptation perfor-
mance across various benchmarks. As shown in Table D, we



Table D. Edge device performance evaluation: Adaptation per-
formance and inference speed comparison on Raspberry Pi 5 using
Digit-5 dataset (N = 4) and ImageNet-C (N = 14), with the
same experiment setting as the Figure 2 of the main paper. Existing
PET methods exhibit slower adaptation speed than full fine-tuning
despite tuning fewer parameters, as they require extra gradient prop-
agation through the PET modules. Different source-target matching
approaches further introduce varying computational overhead.

Tuning method Num of Adaptation Speed | Avg. Acc. (BS=128)
PET module: LoRA | Tuned Prams (M) | (img/100 second) | Digit-5 ImageNet-C
Full model 85.87 42 83.5 61.4

T-tuning 0.25 34 83.2 62.1
SESoM 1.16 25 84.1 62.3
CONTRAST 0.25 37 84.4 62.8
AdMIT 0.23 40 85.3 63.5
AdMiT-ZeroShot 0 145 81.5 58.2

evaluate the computational efficiency of different methods
on edge devices (Raspberry Pi 5) using Digit-5 (N = 4) and
ImageNet-C (N = 14) datasets.

The results reveal that existing PET methods exhibit
slower adaptation speeds than full fine-tuning despite tuning
fewer parameters, as they require extra gradient propagation
through the PET modules. Our method, AdMiT, demon-
strates (Table C) superior computational efficiency during
deployment with only a minimal slowdown (less than 2%)
compared to standard PET methods due to the empirical
KME calculation for module matching.

Notably, AAMiT achieves the highest accuracy on both
benchmarks (85.3% on Digit-5 and 63.5% on ImageNet-
C) while maintaining competitive adaptation speed (40
img/100 second). For scenarios where fine-tuning is not fea-
sible, AdMiT-ZeroShot enables remarkably efficient adap-
tation through direct weighted combination of stored mod-
ules, achieving 81.5% and 58.2% accuracy on Digit-5 and
ImageNet-C respectively, while offering the fastest inference
speed (145 img/100 second) with zero tunable parameters.

Unlike existing methods that require extra tuning param-
eters or routing network optimization, AAMiT’s matching
and weight assignment rely solely on empirical KME calcu-
lations, making our method more computationally efficient
during deployment while achieving superior adaptation per-
formance.

D. Additional results

As shown in table. A, we use LoRA in the main paper as
PET modules. We provide the results for other PET modules
in this sections.

D.1. Details on different PET methods

Visual-Prompt Tuning (VPT). With a pre-trained Trans-
former (ViT) model as our starting point, we introduce a
set of p continuous embeddings in the input space, each of
dimension d, referred to as "prompts." During fine-tuning,
only the prompts specific to the task are updated, while the

Table E. Results on Digits, same setup as for Fig 2.We train the
source modules using 4 digits datasets to perform adaptation on the
remaining dataset. All the results are the average of 5 runs. Best
performance is bolded, and second-best performance is underlined.
(M =N =4).

PET Module  Source Method MM MT UP SV SY | Avg
Single  GT-Tuning 704 99.6 931 90.5 97.2 | 90.2

m-tuning-PL 61.3 982 89.1 862 94.6 | 859

LoRA Mulii SESoM-PL  62.1 983 88.6 87.1 945 | 86.1
Model soup 523 832 715 664 752 | 69.7

AdMIT 632 989 893 865 962 | 86.8

Single  GT-Tuning 71.3 99.8 941 899 97.0 | 904

m-tuning-PL  62.0 97.5 88.8 86.0 945 | 858
SESoM-PL  61.2 975 894 853 947 | 85.6
Model soup 53.3 832 700 65.1 749 | 693
AdMIT 639 97.8 889 850 944 | 86.0
Single  GT-Tuning 71.6 99.7 925 92.6 979 | 90.9
m-tuning-PL  63.5 98.8 88.6 854 96.1 | 86.5

VPT Muldi SESoM-PL 642 983 883 887 93.8 | 86.7
Model soup 51.8 825 719 664 754 | 69.6

AdMIT 657 994 899 885 972 | 88.1

Adapter Mulii

Transformer backbone remains frozen. We applied VPT-
Shallow[21] as follows:

VPT-Shallow. Prompts are inserted into the first Trans-
former layer only. Each prompt token is a learnable d—
dimensional vector. A module, which is a collection of
p (which is the prompt length) prompts is denoted as
P = {v € RYk € N,1 < k < p}, the shallow-prompted
ViT is:

[xlazlaEl] = Ll([m07P7E0D (E)
(@i, Z;, E;] = Li([xi—1,Zi—1,E;1]),i=2,--- ;1 (F)
y = Head(z;), (G)

where Z; € RP*¢ represents the features computed by the
i-th Transformer layer, and [z;, Z;, E;] € RU+P+P)xd (p
is the number of patches that a 2D image input is divided
into). The colors above indicate learnable and frozen param-
eters. For ViTs, x; is invariant to the location of prompts
since they are inserted after positional encoding. The overall
parameter count for Adapters in an [-layer Transformer can
be calculated as 0| = p x d.

Adapter. In the conventional configuration, a trans-
former model incorporates two Adapters per layer [51]. Each
Adapter layer is composed of 2 x k x d parameters, account-
ing for both the down and up-projection matrices. Here, k
represents the input dimension size, while d refers to the
bottleneck dimension of the Adapter. The overall param-
eter count for Adapters in an [-layer Transformer can be
calculated as |0] =2 X I x 2 X k X d.

Results for different PET modules. Following the
setup in main paper, we replace LoRA with Adapters,VPTs
as the PET module, and demonstrate the stationary distri-
bution adaptation results in Table. E. In can be concluded
that our method, AdMiT, retains good performance across
different PET modules.



E. Semantic Segmentation

AdMIT is not limited to image classification tasks and can be
seamlessly extended to tasks like semantic segmentation. In
this setting, we assume access to a collection of pre-trained
PET modules {67} =1, where each module is fine-tuned on
a distinct source distribution for pixel-wise classification.
Specifically, each module outputs per-pixel probabilities for
K classes, formulated as fy; : REXW — REXWXK 1o
adapt AdMiT for semantic segmentation, the entropy term
in Eqn. 5 of the main paper is updated as follows:

H W K
L (w) = Epe > Z Z Joe 108 (Ghe)  (HD)
h=1w=1 c=1

Here, yﬁ\gc represents the weighted probability output

corresponding to class ¢ for the pixel at location (h, w) at
time-step ¢. The rest of the framework remains unchanged,
ensuring consistency across tasks.

E.1. Datasets

Our experiments involve the following datasets:

e Cityscapes: The Cityscapes dataset [19] provides large-
scale, densely annotated pixel-level data for 30 classes,
grouped into 8 categories: flat surfaces, humans, vehicles,
constructions, objects, nature, sky, and void. Simulated vari-
ants of this dataset include fog and rain conditions [52, 53].
e ACDC: The Adverse Conditions Dataset (ACDC) [20]
includes pixel-level annotations for images captured under
adverse conditions such as fog, nighttime, rain, and snow.
The class structure aligns with the 19 semantic labels used
in the Cityscapes evaluation, excluding the void class.

E.2. Experimental Setup

For all experiments, we use HRViT-bl [54] as the segmenta-
tion model. We evaluate performance on 19 semantic labels,
excluding the void label.

We consider a static target distribution setting for evalua-
tion. Specifically, we train three source PET modules using
the clean, fog, and rain splits of the Cityscapes dataset.
After training, these modules are tested on the respective
weather condition splits of the ACDC dataset. Using AdMIiT,
we dynamically integrate the source modules for each target
condition and compare the results with baseline methods.

E.3. Results

Results on Cityscapes to ACDC: Table F shows the per-
formance of AAMiT and baseline methods on ACDC test
data under different weather conditions (static target distri-
butions). The source modules are trained on Cityscapes and
its simulated noisy variants. AdMIiT significantly outper-
forms baseline adaptation methods, with results reported in

Table F. Semantic segmentation results.

Source Method Fog Rain Snow Night | Avg
TENT-Best 254 217 197 13.5 | 20.0
Single =~ BECOTTA-Best 263 224 213 145 | 21.1
SAR-Best 258 222 201 155 | 209
m-tuning-PL 283 230 242 17.4 | 232
SESoM-PL 292 253 254 182 | 245
CONTRAST 324 294 252 187 | 264
Model soup 254 255 214 147 | 21.8
AdMIT 325 299 254 191 | 267
AdMiT-ZeroShot 27.5 223 19.9 14.7 | 21.1

Multi

terms of % mloU, highlighting its effectiveness in leveraging
multi-source knowledge for target adaptation.

F. Implementation details

We perform all the experiment on a single A100 GPU. We
use ViT-Base-16 [55] model in all our experiments. For all
experiments without extra clarification, we use a target batch
size of |T'| = 128, as used by TENT [30]. The experimental
setup for tuning the integrated module is listed as in Table. G
summarizing the optimization configurations we used. Im-
plementation details for each tuning method apply to both
source and target distributions.

In this problem setting, we propose to adaptively com-
bine multiple pre-trained parameter-efficient tuning (PET)
modules during deployment through suitable combination
weights, which are determined based on a limited number
of target samples. Consider the scenario where we have
a collection of N pre-trained PET modules, denoted as
{07 Y j=1, wWhich are fine-tuned on distinct source distribu-
tions. During deployment, target data arrives in an online
fashion as a sequence of batches {x( )}B — {a:(Q)} 2=

. {mgf)}izl ., where ¢ represents the time-stamp and
B is the number of samples in each target batch. The target

distribution at time-stamp ¢ is denoted as Dgf), implying

(B (t)
{a; "}z, ~ Dy
Motivated by the multi-source adaptation framework, we
model the target distribution at each time-stamp ¢ as a lin-
ear combination of source distributions, with combination
weights denoted as {w } "_,. Using these weights, AdMiT
integrates the pre- tramed PET modules to form an adaptive
module for the current target batch. Thus, the inference
model for test batch ¢ can be expressed as f:(pt ) = foq)
where 0(t) = Z;\Ll w;t)ﬁj is the dynamically integrated
PET module for time-stamp .
We implement the baselines as follows:
 TENT. TENT [30] adapts transformers by modifying
only the LayerNorm statistics during test-time adaptation
while keeping the PET modules and backbone weights
unchanged. It minimizes the entropy of predictions for
target batches, encouraging confident predictions. The
LayerNorm parameters (mean and variance) are updated



Table G. Hyperparameters for tuning AAMiT

Full, Adapter, LoRA VPT
Optimizer AdamW SGD
Optimizer momentum N/A 0.9

base_lr search range | {0.001, 0.0001, 0.0005, 0.005}  {50., 25.,10.,5.,2.5, 1.,0.5, 0.25, 0.1, 0.05}

Weight decay range
LR schedule

Warm up epochs
Total epochs

{0.01, 0.001, 0.0001, 0.0}
cosine decay
10
100

iteratively using gradients computed from the entropy loss.
Key hyperparameters include the learning rate for updat-
ing LayerNorm statistics (1 x 10~%) and the batch size for
target adaptation (B = 64).

BECoTTA. BECoTTA(-M) [33] integrates multiple PET
modules using a MoDE (Mixture of Domain Experts)
module, which applies a Top-K routing strategy to se-
lect the K = 2 most relevant PET modules based on
input features. During pretraining, BECoTTA initializes
with D = 3 proxy domains (source domain, darkness,
and brightness) and trains the MoDE module alongside
a domain discriminator and a synergy loss, freezing the
backbone. In deployment, PET modules are activated for
online adaptation, with entropy-based filtering used to re-
fine pseudo-labels. The primary hyperparameters include
the number of proxy domains (D = 3) and the Top-K
selection parameter (/i = 2).

SAR. SAR [38] adapts transformers by restricting up-
dates to LayerNorm statistics during test-time adaptation
while freezing PET modules and backbone weights. Un-
like TENT, SAR selectively filters high-entropy (low-
confidence) samples, focusing on reliable predictions.
Sharpness-aware optimization is applied to smooth the
entropy loss, improving robustness against noisy target dis-
tributions. The key hyperparameters include the entropy
threshold for filtering (Ey = 0.4 x In(K), where K is the
number of classes) and the sharpness radius (p = 0.05)
for optimization.

m-Tuning. 7-Tuning [16] combines knowledge from mul-
tiple pre-trained PET modules by interpolating their out-
puts based on task similarity. Task embeddings are com-
puted using the Fisher Information Matrix (FIM), with sim-
ilarity calculated as cosine similarity between the embed-
dings of target and source tasks. The top £ PET modules
are selected for interpolation, and weights are optimized
via pseudo-label entropy minimization. Key hyperparame-
ters include the number of selected PET modules (k = 3),
learning rate for fine-tuning (1 X 10~4).

SESoM. SESoM [12] integrates the outputs of multiple
source models through the utilization of an additional
attention-based routing network. Within our experimental
framework, each PET module operates as a source-specific

unit. The logits derived from these modules are trans-
mitted to an attention-based routing network tasked with
computing sample-specific weights. The routing network
undergoes fine-tuning via pseudo-label entropy minimiza-
tion, employing few-shot pseudo-labeled target data while
maintaining the PET modules and backbone architecture in
a fixed state. Key hyperparameters comprise the learning
rate for the attention module (3 x 10~%) and a dropout rate
set at 0.1. An attentionn-based routing network of approxi-
mately d x d, +d!, x d'+v x dj+d; xd' +4d" = 0.85M
size (as defined in [12]) is employed to derive the attention
weights.

* CONTRAST. CONTRAST [15] adapts to evolving tar-
get distributions by dynamically combining pre-trained
source models and selectively updating the most relevant
model. For ViT-based architectures, CONTRAST com-
putes weights for PET modules based on LayerNorm statis-
tics or feature embeddings and updates the PET module
with the highest weight for each target batch. Key hy-
perparameters include learning rate for weight updates
(1 x 10™%), and test batch size (B = 128).

* Model Soup. Model Soup [46] improves performance by
averaging the weights of multiple fine-tuned PET modules
without additional inference cost. We adapt Model Soup
by sequentially adding PET modules to the soup using
the Greedy Soup strategy, retaining only modules that
improve validation accuracy. Hyperparameters include
learning rates ({1074, 107°}) and using 10% of training
data for validation.

G. Details of dataset corruptions

We summarize these corruptions types by example in Fig. A.
The order of these corruptions is the same as the order in
Table. 2 and Figure. 3.

H. Theoretical Insights

H.1. Maximum Mean Discrepancy as distribution
similarity metric

The objective of module selection in AAMiT is to quan-
tify the similarity between the source distribution Dg and



Brightness Contrast

Figure A. Examples of each corruption type in the image corruptions benchmark. While synthetic, this set of corruptions aims to represent
natural factors of variation like noise, blur, weather, and digital imaging effects.

the target distribution D7 without access to the raw data.
Rather than comparing moments of different orders, such
as E;p(x™), we adopt a more comprehensive metric,
E.-p(f(x)), to universally characterize the properties of
distributions.

The discrepancy between the expected function values
across two distributions, D7 and Dg, is captured by the Max-
imum Mean Discrepancy (MMD). Mathematically, MMD is
defined in a reproducing kernel Hilbert space (RKHS) # as:

MMD(F, D7, Ds) = sup (Eznps (f()) — Eznp, (f(2))) -
feF

Without loss of generality, f is assumed to reside within a
unit ball , i.e., || f||% < 1. The RKHS is structured using
an orthogonal basis derived from the decomposition of a
symmetric and positive semi-definite kernel function k(x, y).
In the main paper, we employ a Gaussian radial basis kernel
k(z,y) = exp(—[|z — y|*).

A symmetric and positive semi-definite kernel function
k(x,y) can be decomposed [40] into a set of eigenval-
ues {\; }$2, and corresponding orthogonal eigenfunctions

{ihi() 32
k(z,y) = Z)\zd)z(m)djz(y)
i=1

These eigenfunctions form an orthogonal basis {v/A;1;(-)}
used to construct the Hilbert space 7{. Any function f within
this space can be expressed either as a linear combination of
these basis functions:

f)= Z Fiv/ A (),

or represented as an infinite-dimensional vector in H: f =
(f1, fs - -)7,- When one parameter of the kernel function is
fixed to x, it behaves like a function with a single variable
or an infinite vector:

k(z,-) = Zki¢i(w)¢i(') = (VM1 (@), VAo (), .. )4,

This leads to the following computation for the inner product
of these two functions, illustrating the reproducing property
of RKHS:

(fik(z,))n = (f1, fa, -
= Zfi\/)‘_iwi(x)

f(@),

which effectively captures the essence of the reproducing
property within the RKHS framework.

Furthermore, for a given distribution D, we introduce the
kernel mean embedding (KME), defined as:

pip = Egplk(z, )]
This allows the expressions within the Maximum Mean Dis-

crepancy (MMD) to be rewritten in terms of inner products
in the RKHS:

EwwD(f(m)) = Em~D<f7 k(:l:, )>'H = <f7 Em~Dk(ma )>7~L
= <f7 ,U"D>'H'

In the context of MMD, we assess the supremum with

D (VA (@), V(@) )3,



these inner products:

MMD(F,Dr,Ds) = sup (Ezwps(f(z)) — Ezp,(f(2)))
[1fl% <1
= Sup <IUDT7f>H_<Mstf>H
£l <1
= sup (up, — pps, flm < sup |up, — poslla - 1 f1n
[1fll# <1 [1fll#<1

= ||up; — s ||n-

We work with several source datasets S; = {(x;, yz)}‘iﬁl ~
Ds;, j € [N] in the pretraining stage, and an unlabeled
target batch T = {(x;, )}lzq;l1 ~ D7 in the deployment
stage. The empirical KME at these phases can be estimated
as:

— 1
[L(T) = m Z k(:cn,-),

zn €T

wnESj

k(xzn,-).

@

We can also compute the squared Maximum Mean Dis-
crepancy (MMD?) by expanding the definition:

MMD?(Dr, Ds;) = ||up, — ks, |3

= |l |5 — 2{upr, ips, )0 + lps, |5
=Ezyp k(2. y) — 2Exp; yons, k(T Y)
+ Em,yNDs,-k(may)7

which results in the following empirical estimate:

MMD (T, 5;)

1 2
= T k nyvm) k nytm
Tp | 2 Fam ) = e (En 2m)
Tn,Tm €T zw,6T7-’Em,€Sj
1
+W > (@, wm). )

TnyTm ESJ'

We provide proofs for the following properties:

« If the kernel k(-, ) is universal, the mapping from D to
(D) via KME is injective.

° MMD(Y)T7 DS) = 0 if and Ol‘lly if DT = Dg.

These properties enable the measurement of distribution

similarity through MMD and KME.

Theorem H.1. [f the kernel k is universal, then the mean
map 1 : Px — H is injective.

Proof. We will use a proof by contradiction to establish the
theorem.

Assume that ¢4 : Px — H is not injective. Then, there
exist two different probability measures p and ¢ such that

plp] = ulql, ie.,

The mean map p[p] is represented as:

ulpl() = /X Kz, ) dplz),

and similarly,

plal() = [ k(e da(o)
For any f € H, we have:
(£ P = (f. pla])n-

The inner product (f, u[p])# can be written as:

<fa/1’[p]>?-[ = EXNP[f(X)L

and similarly,

(f, nla))n = Exn~glf(X)].
Since p[p] = ulql, it follows that:

Ex /(X)) = Exg[f(X)] VS €.

By the universality of the kernel k, the RKHS # is dense
in C'(X). This means that the above equality holds for all
continuous functions f € C(X).

By the uniqueness theorem for measures, if two measures
p and g agree on all continuous functions, then p = ¢. This
contradicts our assumption that p and ¢ are different.

Therefore, the assumption that p is not injective must be
false, and hence p is injective. O

Theorem H.2. Let F be a unit ball in a universal RKHS
‘H, defined on the compact metric space X, with associated
continuous kernel k(-,-). Then MMD {F,p,q} = 0 if and

only if p = q.
Proof. First, it is clear that p = ¢ implies MMD {F, p, ¢}
is zero. We now prove the converse.

By the universality of #, for any given ¢ > O and f €
C(X), there exists a g € H such that

If = gllee <.

We next make the expansion
[Exf(z) —Eyf(y)l < [Esf(x) — Exgla)|+
[Ezg(2) — Eyg(y)| + [Eyg(y) — By f(y)]-
The first and third terms satisfy
Bz f(z) — Exg(a)| < Egf(2) —g(2)] < e
Next, write
Exg(x) —Eyg(y) = (9, p — g} = 0,
since MMD {F, p, ¢} = 0 implies p, = . Hence
[Exf(z) —Eyfly)] < 2€
forall f € C(X) and € > 0, which implies p = q. O



H.2. w-convergence bound

For a bounded kernel 0 < k(-,
estimator of MMD is

MMDb[]-"XY—bup< Zf% _nyL>7

feF

-) < K, the biased empirical

where X, Y are random variables from distribution p, ¢, and
{z;}71,{y:}1, are samples drawn from these two distri-
butions.

We want to show that the absolute difference between
MMD(F, p, q) and MMDy(F, X,Y) is close to its expected
value, independent of the distributions p and ¢q. To this end,
we prove three intermediate results, which we then combine.
The first result we need is an upper bound on the absolute dif-
ference between MMD(F, p, ¢) and MMDy,(F, X, Y"). Wi
have

IMMD(F p,) ~ MMD, (F, X, V)
= lsup (Eo() ~ €, (1)
fer
1 & 1 ¢
T jer (m ;f(xi) Ta f(yi)) |
< s E0) <)~ 1y 321w+ 3 )

(K)

Then, we provide an upper bound on the difference be-
tween A(p, ¢, X,Y") and its expectation. Changing either of
x; or y; in A(p, g, X,Y) results in changes in magnitude of
at most 2K /2 /m or 2K/? /n, respectively. We can then
apply McDiarmid’s theorem [56], given a denominator in

the exponent of
9K 1/2\ 2 9K 1/2\ 2
() ()
m n
1 1 4K
_ 4k ( N ) _ 4K (m+n)
m n mn

+

to obtain

EX,Y[A(paQava)] > 6) S

62mn
exp (—mmm) - D

)Ery (A(]LQ,X,Y) -

)

Next, we exploit symmetrisation, following [57], to upper
bound the expectation of A(p, ¢, X,Y’). Denoting by X’
an i.i.d sample of size m drawn independently of X (and
likewise for Y'), we have

EX,Y[A(pa q, X7 Y)] <

E() = - DS~ E()+ > ()

Ex,y sup
fer

=Ex,y sup [Ex (;L Zf(ﬂié)) - % > fa)
i=1 =1

feF

+ % Zf(yz)’
i=1

Ex/ ( Zf ;Zf(%))

P23 ) - Ey(f)‘
i=1

= Ex,y sup
fer

< Exyx vy sup

fEf i=1 i—1
1 n
+ Ey,y’ sup flyi) —Ey(f
Y.y’ Sup ; (i) — Ey(f)

1 m
= Exyx/, vy sup ZUi (f (@) = fxa))| +
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The first step applies Jensen’s inequality to simplify the
expression. Next, the triangle inequality is used to separate
the terms, followed by substituting the Rademacher aver-
age to connect the empirical and expected values. Finally,
the Rademacher averages are bounded as defined in Defini-
tion 30 of [18]. Combining Eqn. L with the bounded term



Ex v[A(p,q,X,Y)] derived from Eqn. M, we can obtain

oy (somx-2[(5) 4 (5) )

62mn N

Combining Eqn. N with Theorem 7 in [18], leads to the
following Corollary:

Corollary H.3. If p = q, then with probability at least
1 — 6, the (biased) empirical MMD (obtained by drawing m
samples from p and n samples from q) is bounded by:

1 K K K(m+n)log +
—MMDy(p,q) < \| — + 1/ — + M
2 m n 2mn

for any arbitrarily small § > 0.

Setting p = Dy, q = Y1, w;Ds;j, Y0, w; = 1 leads

to:
N
1|—= — K K
> M(T)—;:leﬂ(sj) Vo V%

H

K(m+n)log
2mn '

The above result upper-bounds the error of estimating
empirical target KME with weighted average of empirical
source KME in the optimization in 4 of the main paper. Note
that n is the number of samples from ¢, i.e. the number
of samples from the involved source datasets, thus as the
number of modules NV increases, n also increases.

Similarly, we can derive the following estimation error
bound for KME and empirical KME:

Corollary H.4. ([58], Theorem 1) With probability at least
1 — d we have

— K 2log 3
- <2/= i
lu(p) = )l < 24—+ —

Proof. Proof can be found in [58], section B.1. O

H.3. Loss bound
H.3.1. Assumptions

Suppose we are given a pretrained frozen backbone trans-
former model f, and there are N source domains in the
upload phase. We build PET modules on their own domains
and upload them to the module store for future users. Each

. . N
source domain has a corresponding dataset {S;};_, , re-

flecting the distribution Ds;. The source datasets will be
inaccessible after the pretraining stage.

We also assume that a global optimal rule function g :
X — Y exists for the domain adaptation problem,

Vj € [N],V(z,y) € Sj,9(z) = y.

We assume that all sources are competent, and the source
datasets are sufficient to solve their domains. Formally speak-
ing, the modules éj can help the pretrained model to reach a
small error rate € > 0 with respect to a certain loss function
L (upper-bounded by |L|) on their domain distribution D ;
when applied with the pretrained backbone model f:

Vj € [N], L(Ds;; fy,) = Banps, [L(fg,(2),y)] < € (O)

In this context, the loss function L : ) x ) — R can
be either a regression loss or classification loss. Since the
domains {S;}7, are equipped with low-error pre-trained
modules, they are referred to as solved domains.

In the deployment phase, a new user wants the model to
solve the current domain with only unlabeled testing data
x ~ Dy. Thus the target is to learn a good model ft which
minimizes £(D7, f;), utilizing the information contained in
pre-trained modules {6, } P
Theorem H.5 (Zero-shot adaptation loss bound). Assume
that the assumptions in corollary H.3 hold. The module 0;
from each source dataset satisfies Vj € [N], L(Ds ;, fé] ) =
Esnps, [L(féj (2),y)] < e. Assume that the loss function
L(féj (x), f(x)) € H. The empirical MMD between distri-

. . N ST
bution mixture y ;_, w;Ds; and current distribution Dy
can be estimated from

N
MMDy = || u(T) =Y w;n(S)
j=1 "

Then the finite sample loss satisfies:

LDT . fsrui) = O |5 ay, (20),9(0)]

IiNDT
/1 1
<e+O( +\/>)
m n

Proof. By the reproducing property, the loss function can be
written as:

L(fs 0,5, 9(%) = I~ gy 5. (2) = (L~ . K, ).

We then can represent the error of each model in the form of
KME. For the current mixture:



The empirical loss can also be represented by:
<L2w1é1’m>’ =
<L2wjéj ) ”/(:F)> - <sz,ey > wgfb“])> +
J
(A)
<szjéj’zwj@> P)
J

(B)

We then bound (A) and (B) separately.
By the convergence rate for empirical MMD,

N
(A) = (L~ g 4, (1) = > winalS;))
j=1
—_— N —_—
< o g, M(T) =D w;u(S5)|
j=1
< O(m,n) Q

(B) < \<szﬁ,2wjuosj>

EwO ’Zwﬂﬁ‘ ij/”LD$7

N
Z ‘ 9 ’MD51>
+ LI Zwm ) = D winpg, |

<e+z\f \/Qlogﬁ ®)

The last steps of the estimation (A) and (B) can be ob-
tained directly from corollary H.4 and corollary H.3, and

this completes the proof.
O

Theorem H.5 estimates the loss in directly applying the
integrated module 6(t) to the target domain without any
tuning on the target dataset, i.e. the zero-shot performance.
It ensures a good initialization of the tuning in Sec. 3.2,
leading to a good adaptation performance.
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