
AdMiT: Adaptive Multi-Source Tuning in Dynamic Environments

Xiangyu Chang1, Fahim Faisal Niloy1, Sk Miraj Ahmed1,2*, Srikanth V. Krishnamurthy1,
Basak Guler1, Ananthram Swami4, Samet Oymak3, Amit Roy-Chowdhury1

1University of California, Riverside 2Brookhaven National Laboratory
3University of Michigan, Ann Arbor 4DEVCOM Army Research Laboratory
{cxian008@, fnilo001@, sahme047@, krish@cs, basakg@, amitrc@ece.}ucr.edu

ananthram.swami.civ@army.mil, oymak@umich.edu

Abstract

Incorporating transformer models into edge devices poses
a significant challenge due to the computational demands
of adapting these large models across diverse applica-
tions. Parameter-efficient tuning (PET) methods (e.g. LoRA,
Adapter, Visual Prompt Tuning, etc.) allow for targeted
adaptation by modifying only small parts of the transformer
model. However, adapting to dynamic unlabeled target distri-
butions at the test time remains complex. To address this, we
introduce AdMiT: Adaptive Multi-Source Tuning in Dynamic
Environments. AdMiT innovates by pre-training a set of PET
modules, each optimized for different source distributions
or tasks, and dynamically selecting and integrating a sparse
subset of relevant modules when encountering a new, few-
shot, unlabeled target distribution. This integration lever-
ages Kernel Mean Embedding (KME)-based matching to
align the target distribution with relevant source knowledge
efficiently, without requiring additional routing networks or
hyperparameter tuning. AdMiT achieves adaptation with
a single inference step, making it particularly suitable for
resource-constrained edge deployments. Furthermore, Ad-
MiT preserves privacy by performing an adaptation locally
on each edge device, without the need for data exchange.
Our theoretical analysis establishes guarantees for AdMiT’s
generalization, while extensive benchmarks demonstrate that
AdMiT consistently outperforms other PET methods across
a range of tasks, achieving robust and efficient adaptation.

1. Introduction
Pretrained transformers [1–5] have achieved remarkable
success across diverse tasks, but their large parameter
counts—often reaching billions [2, 5]—present challenges
for deployment, especially on edge devices with limited com-
putational resources. To address these limitations, parameter-

*Work done while the author was at University of California, Riverside.

efficient tuning (PET) methods, such as prefix/prompt tuning
[6–9], adapters [10], and LoRA [11], have been introduced.
These methods allow the pretrained model to remain fixed
while only adjusting a small set of additional parameters
tailored to specific target distributions, significantly reduc-
ing memory and computation needs while often achieving
performance comparable to that of full fine-tuning.

Most existing PET methods are either single-
source—focusing on a single PET module trained
for one distribution—or, when incorporating multiple PET
modules, require additional computational resources such as
routing networks [12] or extensive hyperparameter tuning
[13, 14]. These approaches lack the ability to directly
integrate knowledge from multiple PET modules, each
trained on different source distributions. In dynamically
evolving environments, adaptation methods benefit from
leveraging multiple sources of pre-trained knowledge.
Instead of relying on a single PET module trained on a
single source, integrating multiple PET modules enables
more robust adaptation to shifting distributions by drawing
from a diverse set of source-specific knowledge[15]. This
multi-source approach is particularly advantageous when
access to the original source data used for training each
module is restricted due to privacy, storage, or other
constraints. In such scenarios, training a unified PET
module across combined sources is infeasible, making
it both practical and effective to adaptively employ and
integrate an array of pre-trained PET modules during
test time, resulting in performance improvements often
unattainable with single-source PET adaptation.

In this work, we introduce AdMiT (Adaptive Multi-
Source Tuning in Dynamic Environments), a novel frame-
work designed to efficiently adapt pre-trained PET modules
across multiple dynamic distributions. AdMiT pre-trains a
structured set of PET modules, each specifically tuned to
a different source distribution, providing a versatile foun-
dation for multi-source adaptation. During test time, when
faced with new, small-batch target data from a new distri-

𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑Target Data

�𝝁𝝁 𝑺𝑺𝟏𝟏
�𝝁𝝁 𝑺𝑺𝟐𝟐

�𝝁𝝁 𝑺𝑺𝟑𝟑

�𝝁𝝁 𝑻𝑻𝑻𝑻 →

𝜽𝜽𝒕𝒕 Pretrained
model

Integrated
Module

𝒇𝒇

𝒘𝒘𝟏𝟏

𝒘𝒘𝟐𝟐

𝒘𝒘𝟑𝟑

𝒘𝒘𝟏𝟏 𝒘𝒘𝟐𝟐 𝒘𝒘𝟑𝟑

Deployment stage:
KME module matching

Deployment stage:
Module integration and adaptation

Pretrained
model

PET
Module

𝒇𝒇
𝜽𝜽

�𝝁𝝁 𝑺𝑺𝟏𝟏

�𝝁𝝁 𝑺𝑺𝟐𝟐

𝜽𝜽𝟏𝟏 𝜽𝜽𝟐𝟐 𝜽𝜽𝟑𝟑

�𝝁𝝁 𝑺𝑺𝟑𝟑

Source Data

𝑺𝑺𝟑𝟑 → �𝝁𝝁 𝑻𝑻

Target Data

Pretraining stage:
Obtaining source modules and KMEs

𝑺𝑺𝟐𝟐 →

𝑺𝑺𝟏𝟏 →

Figure 1. The diagram illustrates the AdMiT workflow, which includes pretraining source modules, matching modules during deployment,
and updating the integrated module. In the pretraining stage, given a loss function L and source distributions {DS|}Nj=1, we freeze the base
model f and fine-tune each module θj for its respective distribution. We also map the source data to an embedding space H as empirical
Kernel Mean Embeddings (KMEs) {µ̂(Sj)}Nj=1. During the KME module matching stage (Sec. 3.1), AdMiT maps the target data T to

an empirical KME µ̂(T) and approximates it as a weighted combination of source KMEs, determining the weight coefficients ŵj . In the
module integration and adaptation stage (Sec. 3.2), AdMiT integrates the source modules with the highest weights to create an adaptive
module θ(t) for the current target batch. This module θ(t) can then be directly applied to the target distribution or further adapted using
sharpness-aware pseudo-label minimization for enhanced alignment with the target data.

bution, AdMiT (1) selects a relevant subset of PET mod-
ules based on their alignment with the target distribution,
and (2) integrates these selected modules into a newly com-
posed module optimized for the current target batch. This
integrated module can then be directly applied to the tar-
get distribution, achieving efficient adaptation with lower
computational overhead compared to existing PET methods
[12, 14, 16]. Additionally, this integrated module enables fur-
ther fine-tuning if desired, allowing AdMiT to dynamically
enhance its alignment with the target distribution. This dual
capability—of zero-shot applicability and optional on-the-fly
adaptation—enables AdMiT to adapt robustly to evolving
target distributions with low computational cost. Our experi-
ments demonstrate AdMiT’s effectiveness in both zero-shot
and test-time adaptation settings, highlighting its adaptability
and strong performance across dynamic distributions.

AdMiT offers two key advantages. First, by dynamically
matching and adapting multiple pre-trained PET modules to
the target distribution using small batches of target data, Ad-
MiT achieves superior performance over traditional single-
source PET adaptation methods. The ability to integrate
multiple PET modules enables AdMiT to more effectively
capture complex target distributions by leveraging a diverse
set of source-specific knowledge through Kernel Mean Em-
bedding (KME)-based matching (Sec. 3.1). Second, AdMiT
bypasses the need for additional hyperparameter tuning or
routing network training during deployment by using KME
to align the target with relevant source distributions. This
approach eliminates the computational burden of full model
inference, allowing for fast multi-source PET adaptation.

As a result, AdMiT is particularly well-suited for resource-
constrained edge deployments, where both efficiency and
flexibility are essential. Moreover, this KME-based distribu-
tion matching ensures data privacy, as no raw data exchange
is required during adaptation.
Main Contributions. We present a new multi-source PET
approach, AdMiT, that enables edge devices to selectively in-
tegrate a minimal subset of PET modules from a pre-trained
collection, adapting in real-time to new, unlabeled data in an
unsupervised, few-shot setting. Our contributions include
the following:

• Adaptive Multi-source Module Selection and Integra-
tion. AdMiT efficiently selects and integrates a subset
of pre-trained PET modules from a structured collection,
based on the distributional characteristics of incoming
target data. This adaptive integration avoids the computa-
tional burden associated with training routing networks or
hyperparameter tuning for each new target distribution. By
selectively combining relevant modules, AdMiT achieves
performance comparable to that obtained by using all mod-
ules simultaneously but with significantly reduced storage
and computational requirements, making it practical for
edge deployment.

• Efficient, Privacy-preserving Adaptation. Unlike exist-
ing PET methods that utilize additional routing networks
or data-alignment steps for multi-source adaptation [12],
AdMiT achieves adaptation by transforming empirical data
distributions in a kernel embedding space [17, 18]. This
approach avoids the need to exchange raw data, preserving
data privacy and reducing computational costs. Moreover,

AdMiT performs efficient module selection and combina-
tion without additional inference steps, enabling real-time
adaptation on edge devices.

• Theoretical Guarantees. We provide theoretical guar-
antees on AdMiT’s generalization performance, showing
how it can effectively balance the sample sizes of source
modules and the target batch size to ensure reliable multi-
source adaptation. This guarantee highlights that well-
trained source modules can provide robust adaptation even
with limited target data.

• Comprehensive Empirical Evaluation and Insights.
Extensive evaluations on challenging datasets, including
Digit-Five, CIFAR-100C, and ImageNet-C, demonstrate
that AdMiT consistently surpasses existing PET methods
across various adaptation distributions. AdMiT shows a
notable improvement in accuracy when adapting to new
distributions (Table 1) and effectively preserves knowledge
from source distributions(Table 2), showcasing strong per-
formance in adaptation and retention. Additionally, Ad-
MiT effectively identifies and integrates the most rele-
vant modules(Figure 3) consistently achieving optimal
results with minimal computational overhead. Additional
results on the segmentation task, using Cityscapes [19] and
ACDC [20] datasets, are provided in the Appendix, demon-
strating AdMiT ’s effectiveness in handling dynamic dis-
tributions across different tasks.

2. Related Works
Parameter Efficient Tuning (PET). Large-scale pre-trained
models have greatly enhanced performance in natural lan-
guage processing [1] and computer vision [21] by transfer-
ring learned knowledge to downstream tasks. PET methods,
such as prompt tuning [21] and adapters [10], allow efficient
adaptation by fine-tuning a small subset of parameters. Tech-
niques like CoOp [22] and CoCoOp [23] leverage prompt
optimization for out-of-distribution generalization, while
CLIP-Adapter [24] and Tip-Adapter [25] fine-tune CLIP
using adapters or key-value cache models, improving adapt-
ability to target distributions. However, most PET methods
are not designed to handle continuously shifting small-batch
target distributions effectively; they adapt independently to
each distribution, creating distribution-specific PET modules
and often forgetting previously learned information. In con-
trast, our method enables consistent adaptation to dynamic
target distributions while preserving knowledge of the pre-
trained source distributions, addressing a gap in existing PET
approaches. Our approach is compatible with various PET
modules, including LoRA [11], VPT [21], and adapters [10].
Test Time Adaptation (TTA). Unsupervised Domain Adap-
tation (UDA) requires extensive target distribution data for
offline adaptation, whereas TTA operates continuously on
incoming test batches [26–28]. Initial TTA approaches [29]
used test-batch statistics rather than training data, with meth-

ods like TENT [30] updating batch-normalization param-
eters to reduce entropy on target data. DUA [31] further
refines alignment with target distributions by persistently up-
dating batch-norm statistics across test batches. While these
single-source TTA methods are effective, they often struggle
with forgetting source knowledge over time, particularly in
dynamic settings. Approaches like CoTTA and BeCoTTA
[32, 33] use stochastic source restoration to mitigate drift,
and EATA [34] employs regularization to preserve critical pa-
rameters, thus reducing forgetting. However, these methods
often adapt to each batch separately, requiring substantial
computational resources to balance adaptation and forget-
ting. In contrast, our multi-source approach dynamically
matches relevant source modules to the target distribution,
integrating them efficiently and minimizing forgetting with
minimal computational overhead.
Ensemble Learning and Multi-source Adaptation. En-
semble learning, a well-known technique, enhances model
robustness by combining outputs from various models [35].
Techniques like SESoM [12] and mixture models [14] aim to
handle dynamic target distributions by combining multiple
pre-trained models or PET modules. However, due to privacy
constraints or storage limitations, direct access to source data
from pre-trained models or PET modules is often unavailable.
This limitation requires ensemble methods to rely on addi-
tional hyperparameter tuning [14, 16] or routing networks
[12] to match the target and source distributions, leading to
substantial computational overhead and frequent forward in-
ference. For CNN-based applications, such adjustments are
manageable [15, 36], but in the context of large pre-trained
transformers, this tuning becomes prohibitively costly. Our
approach bypasses these constraints by performing source-
target matching through Kernel Mean Embeddings (KMEs),
enabling efficient and privacy-preserving adaptation with-
out requiring raw data or extensive computation, making it
well-suited for large-scale pre-trained models in dynamic
environments.

3. Proposed Method: AdMiT

Our method, AdMiT, leverages a pretrained transformer
model f along with a collection of parameter-efficient tuning
(PET) modules, each pretrained on distinct source tasks or
domains. These PET modules, represented by parameters
{θj}Nj=1, have significantly fewer parameters than the base
model f and can be flexibly integrated into f as needed,
thus forming a structured repository of source knowledge.
We denote the transformer f combined with a module θ as
fθ. The core idea of AdMiT is to optimize adaptation to a
target task or domain by selectively blending these pretrained
modules based on their distributional representations in an
embedding space and combining their weights to maximize
relevance. The adaptation to target distribution is shown in
figure 1.

Algorithm 1 AdMiT: Adaptive Multi-Source Tuning in Dy-
namic Environments.

1: Input: Pretrained transformer model f , Pretrained
source modules {θj}Nj=1, empirical KME of source mod-

ules {µ̂(Sj)}Nj=1, number of modules to be selected M
(M < N), streaming sequential unlabeled test data
T (1) = {x(1)i }

|T |
i=1 → T (2) = {x(2)i }

|T |
i=1 → . . . T (t) =

{x(t)i }
|T |
i=1 → . . .

2: Output: M scaled weights, finetuned new module θ(t),
size of synthetic dataset Z

3: Use Alg. A (in the Appendix) to generate synthetic data
and estimate {µ̂(Sj)}Nj=1

4: while t ≥ 1 do
5: for Each xi in the t-th batch do
6: Calculate the empirical KME of the target batch

(Eqn. 3)
7: end for
8: Obtain mixture weights {ŵ(t)j}Nj=1 by solving

Eqn. 4
9: Find and select the top M in {ŵ(t)j}Nj=1

10: Rescale selected weights to sum up to 1, thus obtain
{w(t)j}Mj=1.

11: Create a new module θ(t) by a weighted averaging
of the selected pretrained modules
θ(t) =

∑M
j=1 w(t)

jθj
12: Finetune fθ(t) with Eqn. 8
13: end while

• Pretraining stage: Pretraining and KME calculation.
Given a loss function L and a set of source tasks or do-
mains {DS j}Nj=1, we freeze the base transformer model
f and only update the PET modules, rather than fully
fine-tuning f on each domain. For each source DS j , we
optimize the parameters θj as θj = argminθL(fθ;DS j).
To capture the source distributions, we map the source
data to an embedding space H and represent the empiri-
cal distributions using Kernel Mean Embeddings (KMEs)
{µ̂(Sj)}Nj=1.

• Deployment stage: KME Module matching. (Sec. 3.1)
In this stage, AdMiT maps the target data T to an empirical
Kernel Mean Embedding (KME) µ̂(T) and approximates
it as a linear combination of source KMEs {µ̂(Sj)}Nj=1,

expressed as µ̂(T) =
∑N

j=1 wj µ̂(Sj). This approach to
multi-source distribution estimation, commonly applied
in previous works [15, 16, 36], enables us to interpret the
mixture weights {wj} as relevance scores for each source
module. These weights guide the selection and integration
of source modules, ensuring that the target is adapted
efficiently and effectively. We also provide a theoretical
bound on the estimation error for this approximation.

• Deployment stage: Module integration and adaptation.
(Sec. 3.2) Using the computed mixture weights ŵj , AdMiT
selects the source modules with the highest weights and
integrates them to create a combined module θ. This inte-
grated module θ is subsequently fine-tuned on the target
domain DT to refine its alignment with the target distribu-
tion. For further enhancement, we apply sharpness-aware
pseudo-label minimization [37, 38] to adjust the ensemble
module and improve its robustness on the target domain.

Throughout the deployment stage, only a small number of
unlabeled target samples are required to identify and inte-
grate the source modules most relevant to the current target
distribution. A detailed pseudocode for AdMiT can be found
in Algorithm 1. In the following sections, we provide an
in-depth explanation of the principles guiding the design of
AdMiT.

3.1. Module Matching using KME
In the pretraining stage, given the heterogeneous feature
spaces across different models, we assume a unified feature
space facilitated by a public feature extractor G(·), which
maps the original data x′ from both source and target distri-
butions into a shared representation space x = G(x′). This
setup is practical, as publicly available pre-trained models
can serve as feature extractors. In our experiments, we use a
DenseNet201 model [39] pre-trained on ImageNet for this
purpose. Since source data are inaccessible during the de-
ployment stage, we require a metric to assess the similarity
between source and target distributions without exchanging
data or performing forward model inference.

Kernel Mean Embedding (KME) [40–43] provides a pow-
erful tool for measuring distribution similarity. KME maps
probability distributions into vectors in a high-dimensional
Reproducing Kernel Hilbert Space (RKHS)H using a posi-
tive semi-definite bounded kernel 0 ≤ k(·, ·) ≤ K, simpli-
fying the similarity evaluation of two distributions to inner
product calculations in RKHS. Given a distribution P of an
X -valued random variable, its KME is defined as:

µk(P) :=
∫
x∈X

k(x, ·) dP (x). (1)

The norm of the KME in H can be expressed by the inner
product:

||µk(P)||2H := ⟨µk(P), µk(P)⟩ = Ex,y∼Pk(x, y). (2)

Since true distributions P are typically unknown, we es-
timate the KME and its norm using a finite batch X =

{xn}|X|
n=1 ∼ P:

µ̂(X) :=
1

|X|

|X|∑
n=1

k(xn, ·), (3)

||µ̂(X)||2H :=
1

|X|2
∑

xi,xj∈X

k(xi, xj).

These empirical KMEs are computed on source datasets
{Sj}Nj=1 ∼ DS j during the pretraining stage, and on the
target batch T ∼ DT in the deployment stage.

In the deployment stage, we assume the target distribution
can be approximated as a linear combination of source dis-
tributions, such that DT ≈

∑N
j=1 wjDS j for some mixture

weights {wj}Nj=1. Using the linearity of expectation, we can
express the KME of the target as µDT ≈

∑N
j=1 wjµDSj

.

Each source KME {µ̂(Sj)}Nj=1 serves as a basis in the
Hilbert spaceH, allowing us to decompose the target empir-
ical KME µ̂(T) using these bases. By solving the following
optimization, we obtain the mixture weights {ŵj}Nj=1 to
match source and target distributions:

min
{wj}N

j=1

∥∥∥∥∥∥µ̂(T)−
N∑
j=1

wjµ̂(Sj)

∥∥∥∥∥∥
H

. (4)

This KME-based approach serves as a reliable metric for
distribution similarity (See Section H), enabling efficient
and privacy-preserving matching between source and target
distributions.

Theorem 3.1. For a bounded kernel 0 ≤ k(·, ·) ≤ K, with
probability at least 1− δ, the (biased) empirical MMD (ob-
tained by drawing m samples from p = DT and n samples
from q =

∑N
j=1 wjDS j , with

∑N
j=1 wj = 1) is bounded by:

(Proof in the Appendix Corollary H.3.)

1

2

∥∥∥∥∥∥µ̂(T)−
N∑

j=1

wj µ̂(Sj)

∥∥∥∥∥∥
H

<

√
K

m
+

√
K

n
+

√
K(m+ n) log 1

δ

2mn
.

The mixture weight solution ŵj from optimization 4 also
implies the similarity of the distribution of source domain
DS j and the target domain DT , leading to the module selec-
tion strategy in Alg. 1.
Practical Considerations. In real-world applications, not
all source modules are closely aligned with the target distri-
bution, and calculating Kernel Mean Embeddings (KMEs)
of source data in Eqn. 4 can be computationally intensive,
as it involves summing up to |Sj | kernel functions for each
source. To enhance efficiency and reduce computational
overhead, we employ the following strategies: (1) instead
of using all source modules during adaptation, we select
only the modules with the highest weights ŵj (as shown
in Alg. 1), thus focusing on the most relevant sources, and
(2) to approximate each source KME µ̂(Sj), we generate a
smaller synthetic dataset {zm}Zm=1 (where Z ≪ |Sj |). This
synthetic dataset enables efficient computation by reducing
the number of kernel functions involved, and it preserves

privacy by eliminating the need for raw data exchange dur-
ing KME decomposition [44]. Details of the synthetic data
generation algorithm for source KMEs are provided in the
Appendix, Alg. A.

Using synthetic datasets to approximate KMEs offers two
major advantages. First, direct access to original source data
is often restricted due to privacy or storage constraints, mak-
ing it necessary to rely on the accessible information from
source modules. Generating synthetic data allows us to cre-
ate accurate KME approximations for each source module in
a privacy-preserving way. Second, synthetic datasets provide
a computationally efficient alternative to direct KME calcu-
lations using source data. By involving fewer data points,
synthetic KMEs significantly reduce the computational load
for matching the target distribution with source KMEs, mak-
ing adaptation feasible even in resource-limited settings. We
have theoretically demonstrated that (see Appendix Alg. A)
the synthetic KMEs closely approximate the one calculated
from the raw data. This fidelity ensures that the adaptation
performance remains reliable and robust, as shown in our
experiments, and enables efficient yet effective alignment of
target and source distributions.

3.2. Module Integration and Adaptation
Drawing inspiration from the benefits of a good initialization
in test-time adaptation and transfer learning [12, 16, 36, 45],
we integrate PET modules trained on distributions related
to the target distribution, as these modules are presumed to
contain valuable knowledge relevant to these distributions.
This integration is achieved through a weighted mixture of
the selected modules, aiming to achieve a transfer gain:

θ(t) =

M∑
i=1

w̄iθi,

where w̄i is obtained from Alg. 1, and θ(t) represents the
integrated module. Directly applying the integrated module
on the target distribution results in a zero-shot adaptation,
whose performance can be bounded by the following theo-
rem.

Theorem 3.2 (Zero-shot adaptation loss bound). Assume
that the source training error is at most ϵ; the loss
L(fθ̂j (x), f(x)) ∈ Hk; and the empirical MMD between∑N

j=1 wjDS j and DT is from Theorem 3.1. Then, the finite-
sample loss is:

L(DT , g, f∑wj θ̂j
) =

∑
xi∼DT

[
L(f∑wj θ̂j

(xi), g(xi))
]

≤ ϵ+O(

√
1

m
+

√
1

n
)

Proof can be found in the Appendix, Theorem H.5.

To further boost performance, we fine-tune θ(t) for the target
distribution DT

(t) at time t:

θ(t)∗ = argmin
θ(t)

L(fθ(t);DT
(t)).

Starting from the integrated PET module θ(t) offers an ef-
ficient initialization, as the fine-tuning does not incur addi-
tional forward inference costs even as the number of candi-
date modules N or selected modules M increases.
Practical Considerations. Although test-time adaptation
(TTA) can stabilize the adapted models, it risks model col-
lapse during the tuning process, where the model may incor-
rectly classify all inputs as belonging to a single category
over time [38]. To mitigate this, we incorporate sharpness-
aware techniques [37, 38] to make the model less sensitive
to large gradients that may arise from test samples [34].

Once we obtain the new module θ(t) for the target batch
T (t) = {x(t)i }

|T |
i=1 at time step t, we compute the entropy of

the pseudo-labels predicted by the model with this module.
The entropy of the predictions for the t-th target batch from
the model fθ(t) is:

L(t) = −ED(t)
T

K∑
c=1

ŷ(t)c log(ŷ(t)c), (5)

To properly fine-tune the new module θ(t) with this
pseudo-label entropy minimization, we aim to make the
model insensitive to large gradients by encouraging con-
vergence to a flat region of the entropy loss surface. This
approach, which seeks a flat minimum, provides good gen-
eralization and robustness against large gradients [37, 38]:

min
λ
LSA(t)({x(t)i }

B
i=1;λ), (6)

where LSA(t) ≜ max
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ+ ϵ) (7)

"SA" denotes sharpness-aware. The gradient for this opti-
mization can be approximated (see Appendix A for details):

∇λLSA(t) ≈ ∇λL(t)({x(t)i }
B
i=1;λ)|λ+ϵ∗(λ). (8)

Applying Eqn. 8 instead of standard SGD to update the
parameters of θ(t) based on Eqn. 5 results in a more robust
solution for pseudo-label entropy minimization. The effect
of sharpness-aware adaptation is discussed further in the
ablation study.

4. Evaluations
In our experiments, we evaluate AdMiT ’s effectiveness by
adapting PET modules pre-trained on source distributions to
target data drawn from stationary or dynamically evolving

Table 1. Static Adaptation on ImageNet-C. Following a similar
experiment setup in Fig. 2, we adapt to a target corruption domain
by taking the rest 15− 1 = 14 domains as source domains, given
varying target batch size. Due to space limitations, we report only
the averaged accuracy across all target domains.

Source Method BS=256 BS=128 BS=64 BS=16 BS=1

Single

TENT-Best [30] 52.2 52.3 52.0 52.4 51.7
TENT-Worst [30] 34.7 34.5 35.3 34.7 31.6

BECoTTA-Best [33] 60.4 61.5 62.0 61.1 55.4
BECoTTA-Worst [33] 35.3 36.4 37.9 37.3 30.4

SAR-Best [38] 58.1 62.3 61.4 60.3 54.1
SAR-Worst [38] 37.5 38.6 38.2 38.1 31.1

GT-Tuning 67.7 68.8 69.7 65.4 60.3

Multi

π-tuning-PL [16] 61.4 62.4 62.7 61.5 57.1
SESoM-PL [12] 62.3 62.6 62.5 62.0 56.3

CONTRAST [15] 63.5 63.1 63.1 61.7 57.9
Model soup [46] 52.3 53.4 52.2 51.7 49.5

AdMiT 63.8 63.7 62.4 62.3 58.7
AdMiT-ZeroShot 60.2 59.6 58.4 55.9 53.3

AdMiT-Plain 63.5 62.2 62.1 61.0 56.6

distributions (See experiment setting details in Appendix
Sec. F). The target distributions involve the same task as
the source but differ due to distribution shifts relative to the
source distributions on which the PET modules were trained.

We consider two adaptation scenarios: (1) a static adapta-
tion setting where the target data are drawn from a stationary
distribution, and (2) a dynamic adaptation setting where the
target data are drawn sequentially from an evolving distri-
bution. The former scenario demonstrates AdMiT ’s effec-
tiveness in adapting to a stationary target distribution using
pre-trained source modules, while the latter highlights Ad-
MiT ’s robustness in adapting to evolving target distributions
over time.

Datasets. For the static adaptation scenario, we evaluate
AdMiT on the Digits-Five dataset [47], which includes five
digit datasets—MNIST (MT), MNIST-M (MM), USPS (UP),
SVHN (SV), and Synthetic Digits (SY)—each covering 10
classes (0-9). In these experiments, four distributions are
used as sources, with the remaining one reserved for testing.
We also use the ImageNet-C dataset [48], which applies 15
types of severe corruptions (details in Appendix Sec. G) to
ImageNet images [49], following the setup in [38].

For the dynamic adaptation scenario, we utilize the
CIFAR-100C benchmark [48], which extends the CIFAR-
100 dataset [50] by introducing 15 types of noise at varying
levels of severity (1 to 5). This setup results in up to 75 dis-
tinct distributions, allowing us to assess AdMiT ’s capacity
for continuous adaptation as the target distribution evolves.

Finally, although our primary evaluation focuses on im-
age classification tasks, our method is not limited to this
setting. It can be extended to other tasks, such as semantic
segmentation, with results for segmentation tasks provided
in the Appendix E.

4.1. Baseline Methods
Our evaluation includes comparisons with state-of-the-art
(SOTA) single-source test-time adaptation (TTA) methods,

Source Method MM MT UP SV SY Avg

Single

TENT-Best [30] 56.1 98.4 84.9 87.0 95.2 84.3
TENT-Worst [30] 17.6 54.2 59.6 11.4 15.5 31.7

BECoTTA-Best [33] 52.3 97.6 85.7 86.4 95.6 83.5
BECoTTA-Worst [33] 22.6 53.8 60.7 24.9 23.6 37.1

SAR-Best [38] 57.8 97.3 86.2 86.4 92.0 83.9
SAR-Worst [38] 36.9 57.3 62.9 40.4 35.8 46.6

GT-Tuning 70.4 99.6 93.1 90.5 97.2 90.1

Multi

π-tuning-PL [16] 61.3 98.2 89.1 86.2 94.6 85.8
SESoM-PL [12] 62.1 98.3 88.6 87.1 94.5 86.0

CONTRAST [15] 63.1 97.6 88.5 87.2 94.3 86.1
Model soup [46] 52.3 83.2 71.5 66.4 75.2 69.7

AdMiT 63.2 98.9 89.3 86.5 96.2 86.8
AdMiT-ZeroShot 54.5 97.2 86.3 80.5 92.3 82.2

AdMiT-Plain 61.3 96.3* 87.4 85.3 93.1 84.7

Figure 2. Static adaptation on Digits-Five. (Left): Sample images from the source and target domains used in the adaptation task, which
include MNIST (MT), MNIST-M (MM), SVHN (SV), Synthetic (SY), and USPS (UP). (Center): Heatmap depicting the mixture weights
assigned to various source modules during adaptation to the target domain. Larger mixture weights (wj) indicate a higher similarity between
the target and source domains. The weights in each column sum to 1, as the four remaining domains are used to adapt to the target domain.
(Right): We train the source modules using 4 digits datasets to perform adaptation on the remaining dataset. All the results are the average
of 5 runs. Best performance is bolded, and second-best performance is underlined. The table clearly demonstrates that the average accuracy
of AdMiT outperforms other baselines and is closest to the performance achieved by tuning with ground-truth labels. We also report the
module integration (without tuning) results as AdMiT-ZeroShot, and the module adapation using plain SGD tuning results as AdMiT-Plain.

Source Method GN SN IN DB FGB MB ZB Snow Frost Fog Bright Contrast Elastic Pixel JPEG Avg

Single
TENT-Best [30] 74.2 65.3 51.0 50.7 47.3 45.8 42.0 36.9 35.2 24.3 24.6 14.2 11.9 11.9 8.2 36.2
SAR-Best [38] 71.2 71.7 69.2 64.4 56.0 54.2 59.8 59.3 56.2 52.7 49.4 46.8 48.2 42.0 44.9 56.4

BECoTTA-Best [33] 69.7 71.4 65.8 68.7 54.3 53.4 55.7 52.4 55.7 47.2 52.4 46.3 49.6 42.4 41.9 55.1

Multi

π-tuning-PL [16] 79.8 76.3 81.1 75.7 66.2 62.5 68.1 61.6 61.9 58.7 63.4 52.9 50.7 53.1 56.0 64.5
SESoM-PL [12] 75.0 76.0 74.8 69.0 65.6 60.4 60.3 54.5 55.8 54.5 55.3 49.7 50.8 51.4 53.9 60.5
Model soup [46] 52.1 55.3 49.6 48.0 48.7 49.1 43.2 73.0 76.5 74.1 74.3 56.3 51.2 47.8 58.3 57.2

CONTRAST [15] 78.2 75.3 74.4 76.1 72.2 70.8 71.7 72.1 73.9 71.4 74.6 71.5 69.5 71.3 65.4 72.5
AdMiT 79.1 74.4 74.4 75.2 69.2 71.8 73.7 73.1 78.9 75.2 74.9 73.2 70.5 72.8 65.0 73.3

Table 2. Dynamic adaptation forgetting evaluation on CIFAR-100C. We take N = 4 source modules pretrained on Snow, Frost, Fog,
and Bright for all the involved methods in the table. The table illustrates the average test accuracy (with all corruption domains of severity
level 5) on the 4 source domains during a sequential adaptation across different target domains for various methods. AdMiT selects M = 3
modules to adapt to new domains. All the results are the average of 5 runs. We employ these models for adaptation on 15 sequential target
domains. Best performance is bolded, and second-best performance is underlined.

such as TENT [30], BECoTTA [33], and SAR [38]. These
methods serve as benchmarks for adapting individual source
models to target distributions, providing insight into how
well a single-source approach performs in adapting to un-
seen distributions. As our problem setting involves adapting
pre-trained models to new, dynamic distributions during
deployment, it is closely related to the objectives of TTA.
Therefore, these widely recognized single-source TTA meth-
ods are natural baselines for evaluating AdMiT ’s ability to
adapt effectively. Following a setup similar to that in [36],
we apply each source model independently to specific test
distribution data, reporting Best and Worst results, corre-
sponding to the highest and lowest performance achieved
across individual source models.

We also compare against leading multi-source ensem-
ble methods in both static adaptation and dynamic adap-
tation settings, as these approaches simultaneously lever-
age multiple sources and provide a baseline for assessing
the benefits of multi-source adaptation. SESoM [12] trains
an attention-based routing network for adaptive weighting

across source outputs, while π-tuning [16] fine-tunes hyper-
parameters based on a weighted mix of source modules, and
CONTRAST [15] computes optimal weights for combin-
ing multiple source model outputs through gradient descent.
These multi-source methods allow us to evaluate the effec-
tiveness of combining knowledge from multiple distributions
and highlight the computational trade-offs involved. For fair
comparison, we implement pseudo-label (PL) entropy mini-
mization for tuning mixture weights in SESoM and π-tuning,
denoting these as SESoM-PL and π-tuning-PL, and apply
a greedy model soup approach to minimize PL entropy by
averaging module mixtures, following [46]. All baseline
methods, including those originally based on CNN architec-
tures, have been reproduced on a transformer architecture for
consistency in our comparisons. Additional implementation
details are provided in the Appendix.

Lastly, we provide an upper-bound baseline, GT-Tuning,
which tunes a new PET module using ground-truth labels, of-
fering insight into the best achievable performance with full
label access on the target distribution. Together, these base-

GN SN IN DB GB MB ZB
Sn

ow Fro
st Fog

Brig
ht

Con
tra

st
Ela

stic Pix
el

JPE
G

Domains of CIFAR-100C

64

66

68

70

72

74

76

78

80

Ta
rg

et
 d

om
ai

n
ad

ap
ta

tio
n

ac
cu

ra
cy

Number of selected modules (M=k) out of N=75
k=1
k=3
k=5
k=15
k=75

k=1 mean: 72.3
k=3 mean: 75.2
k=5 mean: 75.6
k=15 mean: 76.2
k=75 mean: 76.5

Figure 3. Module Selection on CIFAR-100C. Performance of
AdMiT on various domains of CIFAR-100C with different numbers
of selected source modules. We pretrain a set of 75 modules (each
for a corruption domain and severity level) and select top-k modules
based on empirical KME weights. M = k indicates the number of
selected source modules. Results show that with limited target data
(batch size=128), selecting just a few modules (k > 1) maintains
performance comparable to that from using all modules (k = 75).
Mean performance across domains (shown as markers) improves
with more modules but with diminishing returns, demonstrating
our method’s efficiency even with significantly fewer modules.

lines capture both single-source and multi-source strategies,
illustrating AdMiT’s effectiveness in adapting to dynamic
target distributions efficiently and without label access.
Module adaptation. We evaluate AdMiT on the Digits-Five
[47] dataset for digit classification, with N = 4 source
modules and all M = N modules used for inference on
each target distribution. As shown in Figure 2, GT-Tuning
achieves the best performance (serving as an upper bound
with labeled data), while AdMiT achieves the second best
results (underlined) in most target distributions. The accom-
panying heatmap illustrates the average weights assigned to
each source module, with higher weights corresponding to
greater similarity between target and source distributions.
We also include results from AdMiT-Plain, which uses
plain SGD instead of sharpness-aware tuning for adaptation.
In some cases (star-marked cells), plain SGD leads to
decreased performance, underscoring that sharpness-aware
adaptation provides more stable tuning results.
Module integration. We also assess the performance of the
integrated module without any tuning to gauge the efficiency
of AdMiT in a zero-shot adaptation setting, as shown in
Figure 2. AdMiT-ZeroShot denotes the accuracy achieved
by directly applying the integrated module on target
distributions without further adaptation, achieving higher
average accuracy than most single-source TTA methods
and demonstrating AdMiT ’s efficiency and effectiveness
in leveraging multi-source knowledge. We further evaluate
AdMiT on 15 target distributions of the ImageNet-C dataset,
varying the target batch sizes to assess stability. Due to
space constraints, we report the average accuracy across
target distributions in Table 1. The results show that AdMiT

is less sensitive to batch size variations compared to other
TTA methods, providing stable performance across different
batch sizes.
Module selection. In previous experiments, all source
modules were used regardless of their relevance to the target.
To investigate selective module integration, we conduct
experiments on the CIFAR-100C dataset with a set of
N = 75 pre-trained modules. For each target batch, AdMiT
selects the top M = k modules based on mixture weights.
Results in Fig. 3 indicate that AdMiT effectively identifies
and uses only the most relevant modules, achieving strong
adaptation performance with fewer modules.
Forgetting of source knowledge. To evaluate the resistance
of AdMiT to catastrophic forgetting in dynamic test
distributions, we use the CIFAR-100C dataset with four
source modules pretrained on Snow, Frost, Fog, and Bright
distributions. AdMiT selects M = 3 modules for adaptation
to each new target distribution, maintaining higher accuracy
on the original source distributions after adaptation. Table 2
shows that AdMiT outperforms other methods, including
multi-source approaches like π-tuning and SESoM, as
well as anti-forgetting methods like BECoTTA and SAR.
Methods like Model Soup and TENT, which adapt solely to
the current target, show a faster rate of forgetting.
Computational efficiency. To demonstrate AdMiT’s
computational advantages, we compare the overhead of
our module matching approach against the additional costs
incurred by hyperparameter tuning and routing network
training. The results show that AdMiT achieves efficient
source-target matching with lower computational cost and
without any need for forward inference or retraining during
deployment. Additionally, we evaluate the compatibility of
AdMiT with various PET methods to confirm its minimal
overhead and adaptability across different configurations.
See the Appendix for the results.

5. Conclusion
We present AdMiT, a novel framework for transformers that
dynamically integrates multiple source parameter-efficient
tuning (PET) modules to address diverse and evolving target
distributions. Unlike traditional PET methods that focus
on single-source adaptation or require extra computation
for multi-source integration, AdMiT selects and integrates
relevant modules without the need for hyperparameter tun-
ing, routing networks, or raw data sharing. This makes it
well-suited for settings with privacy or resource constraints.
AdMiT performs well in both zero-shot and dynamic adap-
tation scenarios, using a multi-source approach to handle
distribution shifts while keeping source knowledge. Its the-
oretical guarantees ensure reliable adaptation, and its ef-
ficiency makes it practical for use in tasks with changing
distributions.

Acknowledgments
This work was partially supported by NSF grants CCF-
2046816, CCF-2403075, CCF-2008020, NSF CNS
grant 210698, and Office of Naval Research grants
N000142412289 and N000141812252. Additionally,
research was sponsored by the OUSD (R&E)/RT&L
and was accomplished under Cooperative Agreement
Number W911NF-20-2-0267. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the ONR, ARL
and OUSD(R&E)/RT&L or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright notation herein. This work was also partially
supported by gifts from Open Philanthropy, Amazon
Research, and Google Research.

References
[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:

Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018. 1, 3

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877–
1901, 2020. 1

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A
robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al., “Language models are unsupervised mul-
titask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the
limits of transfer learning with a unified text-to-text trans-
former,” The Journal of Machine Learning Research, vol. 21,
no. 1, pp. 5485–5551, 2020. 1

[6] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous
prompts for generation,” arXiv preprint arXiv:2101.00190,
2021. 1

[7] B. Lester, R. Al-Rfou, and N. Constant, “The power of
scale for parameter-efficient prompt tuning,” arXiv preprint
arXiv:2104.08691, 2021. 2

[8] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and
J. Tang, “GPT understands, too,” AI Open, 2023.

[9] T. Vu, B. Lester, N. Constant, R. Al-Rfou, and D. Cer, “Spot:
Better frozen model adaptation through soft prompt transfer,”
arXiv preprint arXiv:2110.07904, 2021. 1

[10] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone,
Q. De Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly,
“Parameter-efficient transfer learning for NLP,” in Interna-
tional Conference on Machine Learning, pp. 2790–2799,
PMLR, 2019. 1, 3

[11] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large
language models,” arXiv preprint arXiv:2106.09685, 2021. 1,
3

[12] X. Peng, C. Xing, P. K. Choubey, C.-S. Wu, and C. Xiong,
“Model ensemble instead of prompt fusion: a sample-specific
knowledge transfer method for few-shot prompt tuning,”
arXiv preprint arXiv:2210.12587, 2022. 1, 2, 3, 5, 6, 7

[13] E. L. Buehler and M. J. Buehler, “X-LoRA: Mixture of low-
rank adapter experts, a flexible framework for large language
models with applications in protein mechanics and molecular
design,” APL Machine Learning, vol. 2, no. 2, 2024. 1

[14] X. Wu, S. Huang, and F. Wei, “Mixture of LoRA experts,” in
The Twelfth International Conference on Learning Represen-
tations, 2024. 1, 2, 3

[15] S. M. Ahmed, F. F. Niloy, X. Chang, D. S. Raychaudhuri,
S. Oymak, and A. K. Roy-Chowdhury, “CONTRAST: Con-
tinual multi-source adaptation to dynamic distributions,” in
Advances in neural information processing systems, 2024. 1,
3, 4, 6, 7, 5

[16] C. Wu, T. Wang, Y. Ge, Z. Lu, R. Zhou, Y. Shan, and P. Luo,
“pi-tuning: Transferring multimodal foundation models with
optimal multi-task interpolation,” in International Conference
on Machine Learning, pp. 37713–37727, PMLR, 2023. 2, 3,
4, 5, 6, 7

[17] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and
A. Smola, “A kernel method for the two-sample-problem,”
Advances in neural information processing systems, vol. 19,
2006. 2

[18] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,
and A. Smola, “A kernel two-sample test,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 723–773,
2012. 2, 8, 9

[19] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The
cityscapes dataset for semantic urban scene understanding,”
in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3213–3223, 2016. 3, 4

[20] C. Sakaridis, D. Dai, and L. Van Gool, “ACDC: The adverse
conditions dataset with correspondences for semantic driving
scene understanding,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 10765–10775,
2021. 3, 4

[21] M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hari-
haran, and S.-N. Lim, “Visual prompt tuning,” in European
Conference on Computer Vision, pp. 709–727, Springer, 2022.
3

[22] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt
for vision-language models,” International Journal of Com-
puter Vision, vol. 130, no. 9, pp. 2337–2348, 2022. 3

[23] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Conditional prompt
learning for vision-language models,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pp. 16816–16825, 2022. 3

[24] P. Gao, S. Geng, R. Zhang, T. Ma, R. Fang, Y. Zhang, H. Li,
and Y. Qiao, “Clip-adapter: Better vision-language models
with feature adapters,” International Journal of Computer
Vision, vol. 132, no. 2, pp. 581–595, 2024. 3

[25] R. Zhang, R. Fang, W. Zhang, P. Gao, K. Li, J. Dai, Y. Qiao,
and H. Li, “Tip-adapter: Training-free clip-adapter for better
vision-language modeling,” arXiv preprint arXiv:2111.03930,
2021. 3

[26] J. M. J. Valanarasu, P. Guo, V. VS, and V. M. Patel, “On-
the-fly test-time adaptation for medical image segmentation,”
arXiv preprint arXiv:2203.05574, 2022. 3

[27] I. Shin, Y.-H. Tsai, B. Zhuang, S. Schulter, B. Liu, S. Garg,
I. S. Kweon, and K.-J. Yoon, “MM-TTA: multi-modal test-
time adaptation for 3d semantic segmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16928–16937, 2022.

[28] M. Hu, T. Song, Y. Gu, X. Luo, J. Chen, Y. Chen, Y. Zhang,
and S. Zhang, “Fully test-time adaptation for image segmen-
tation,” in Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceed-
ings, Part III 24, pp. 251–260, Springer, 2021. 3

[29] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch
normalization for practical domain adaptation,” arXiv preprint
arXiv:1603.04779, 2016. 3

[30] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell,
“Tent: Fully test-time adaptation by entropy minimization,”
arXiv preprint arXiv:2006.10726, 2020. 3, 6, 7, 4

[31] M. J. Mirza, J. Micorek, H. Possegger, and H. Bischof, “The
norm must go on: Dynamic unsupervised domain adaptation
by normalization,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 14765–
14775, 2022. 3

[32] Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-
time domain adaptation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7201–7211, 2022. 3

[33] D. Lee, J. Yoon, and S. J. Hwang, “BECoTTA: Input-
dependent online blending of experts for continual test-time
adaptation,” arXiv preprint arXiv:2402.08712, 2024. 3, 6, 7,
5

[34] S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and
M. Tan, “Efficient test-time model adaptation without for-
getting,” in International conference on machine learning,
pp. 16888–16905, PMLR, 2022. 3, 6

[35] L. K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE transactions on pattern analysis and machine intelli-
gence, vol. 12, no. 10, pp. 993–1001, 1990. 3

[36] S. M. Ahmed, D. S. Raychaudhuri, S. Paul, S. Oymak, and
A. K. Roy-Chowdhury, “Unsupervised multi-source domain
adaptation without access to source data,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10103–10112, 2021. 3, 4, 5, 7

[37] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur,
“Sharpness-aware minimization for efficiently improving gen-
eralization,” arXiv preprint arXiv:2010.01412, 2020. 4, 6,
1

[38] S. Niu, J. Wu, Y. Zhang, Z. Wen, Y. Chen, P. Zhao, and
M. Tan, “Towards stable test-time adaptation in dynamic wild
world,” arXiv preprint arXiv:2302.12400, 2023. 4, 6, 7, 1, 5

[39] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings

of the IEEE conference on computer vision and pattern recog-
nition, pp. 4700–4708, 2017. 4

[40] J. Mercer, “Functions of positive and negativetypeand their
connection with theory ofintegral equations,” Philosophical
Trinsoctions of Royal Society, pp. 4–415, 1909. 4, 6

[41] H. Daumé III, “From Zero to Reproducing Kernel Hilbert
Spaces in twelve pages or less,” Online: http://pub. hal3.
name/daume04rkhs. ps, 2004.

[42] A. Smola, A. Gretton, L. Song, and B. Schölkopf, “A hilbert
space embedding for distributions,” in International confer-
ence on algorithmic learning theory, pp. 13–31, Springer,
2007.

[43] B. Schölkopf and A. J. Smola, Learning with kernels: support
vector machines, regularization, optimization, and beyond.
MIT press, 2002. 4

[44] M. Balog, I. Tolstikhin, and B. Schölkopf, “Differentially
private database release via kernel mean embeddings,” in
International Conference on Machine Learning, pp. 414–422,
PMLR, 2018. 5, 2

[45] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being trans-
ferred in transfer learning?,” Advances in neural information
processing systems, vol. 33, pp. 512–523, 2020. 5

[46] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-
Lopes, A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon,
S. Kornblith, et al., “Model soups: averaging weights of mul-
tiple fine-tuned models improves accuracy without increasing
inference time,” in International conference on machine learn-
ing, pp. 23965–23998, PMLR, 2022. 6, 7, 5

[47] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang,
“Moment matching for multi-source domain adaptation,” in
Proceedings of the IEEE/CVF international conference on
computer vision, pp. 1406–1415, 2019. 6, 8

[48] D. Hendrycks and T. Dietterich, “Benchmarking neural net-
work robustness to common corruptions and perturbations,”
arXiv preprint arXiv:1903.12261, 2019. 6

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255, Ieee, 2009. 6

[50] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers
of features from tiny images,” Scientific Research Publishing,
2009. 6

[51] A. Baevski and M. Auli, “Adaptive input representations for
neural language modeling,” arXiv preprint arXiv:1809.10853,
2018. 3

[52] C. Sakaridis, D. Dai, S. Hecker, and L. Van Gool, “Model
adaptation with synthetic and real data for semantic dense
foggy scene understanding,” in Proceedings of the european
conference on computer vision (ECCV), pp. 687–704, 2018.
4

[53] X. Hu, C.-W. Fu, L. Zhu, and P.-A. Heng, “Depth-attentional
features for single-image rain removal,” in Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition, pp. 8022–8031, 2019. 4

[54] J. Gu, H. Kwon, D. Wang, W. Ye, M. Li, Y.-H. Chen, L. Lai,
V. Chandra, and D. Z. Pan, “Multi-scale high-resolution vision
transformer for semantic segmentation,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12094–12103, 2022. 4

[55] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020. 4

[56] C. McDiarmid et al., “On the method of bounded differences,”
Surveys in combinatorics, vol. 141, no. 1, pp. 148–188, 1989.
8

[57] J. Wellner et al., Weak convergence and empirical processes:
with applications to statistics. Springer Science & Business
Media, 2013. 8

[58] D. Lopez-Paz, K. Muandet, B. Schölkopf, and I. Tolstikhin,
“Towards a learning theory of cause-effect inference,” in Inter-
national Conference on Machine Learning, pp. 1452–1461,
PMLR, 2015. 9

Appendix Contents

A. Sharpness-aware Optimization 1

B. Synthetic data generation 1

C. Efficiency of AdMiT 2
C.1. Parameter Efficiency 2
C.2. Computational Efficiency 2

D. Additional results 3
D.1. Details on different PET methods 3

E. Semantic Segmentation 4
E.1. Datasets . 4
E.2. Experimental Setup 4
E.3. Results . 4

F. Implementation details 4

G. Details of dataset corruptions 5

H. Theoretical Insights 5
H.1. Maximum Mean Discrepancy as distribution

similarity metric 5
H.2. w-convergence bound 8
H.3. Loss bound 9

H.3.1. Assumptions 9

A. Sharpness-aware Optimization
In order to properly finetune the new module θ(t) with the
pseudo-label entropy minimization, we seek to make the
model insensitive to large gradients by encouraging the
model to converge to a flat area of the entropy loss sur-
face, since a flat minimum leads to good generalization and
robustness to large gradients [37, 38]:

min
λ
LSA(t)({x(t)i }

B
i=1;λ), (A)

where LSA(t) ≜ max
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ+ ϵ) (B)

in which L(t) is defined in (5) in the main paper. In this con-
text, the inner optimization aims to discover a perturbation
ϵ of the module parameter θ(t) within a Euclidean ball of
radius ρ that maximizes entropy. The degree of sharpness
is measured by the maximum change in the Euclidean ball
neighbourhood Nρ(λ). This bi-level problem incentivizes
the optimization process to locate flat minima. Following
SAM [37], we can approximately solve the inner optimiza-
tion via a first-order Taylor expansion:

ϵ∗(λ) ≜ argmax
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ+ ϵ)

≈ argmax
∥ϵ∥2≤ρ

L(t)({x(t)i }
B
i=1;λ) + ϵ⊺∇λL(t)({x(t)i }

B
i=1;λ)

= argmax
∥ϵ∥2≤ρ

ϵ⊺∇λL(t)({x(t)i }
B
i=1;λ)

Let v = ∇λL(t)({x(t)i }Bi=1;λ). Hölder’s inequality implies
that ϵ⊤v ≤ ∥ϵ∥p∥v∥q ≤ ρ∥v∥q (1/p+ 1/q = 1). For p =
q = 2, the linear function achieves that bound ϵ∗(λ)⊺v =

ρ∥v∥2, where ϵ∗(λ) = ρ · sgn(v) · |v|
∥v∥2

.

By substituting ϵ∗(λ) back into Eqn. 7 and differentiating
both sides, the final gradient approximation is:

∇λLSA(t) ≈ ∇λL(t)({x(t)i }
B
i=1;λ)|λ+ϵ∗(λ). (C)

B. Synthetic data generation
The procedure is outlined in Alg. A. In the first two steps,
synthetic data points z1, . . . , zM are selected independently
of the private dataset, relying solely on the database size N .
In the main paper, we use q ∼ N (0, 1). Steps 3 and 4 involve
constructing the linear subspace HM of H spanned by the
feature maps of these synthetic points and computing a finite
basis for this subspace. The private data is then accessed
to calculate the empirical KME µ̂X (step 5), which is sub-
sequently projected onto the subspaceHM and represented
using the precomputed basis (step 6-7). The algorithm en-
sures that the number of synthetic data pointsM increases to
infinity as N approaches infinity (step 1), guaranteeing that
Algorithm 1 yields a consistent estimator of the true KME

Algorithm A Synthetic Data Subspace of the RKHS

Require: Dataset D = {x1, . . . , xN} ⊂ X , kernel k on X ,
number of synthetic data points M

Ensure: Weighted synthetic dataset (representing an esti-
mate of µX in the RKHSH of k)

1: Initialize z1, . . . , zM deterministically or randomly from
some distribution q on X

2: HM ← Span({k(z1, ·), . . . , k(zM , ·)}) ⊆ H
3: b1, . . . , bF form an orthonormal basis ofHM (obtained

using Gram-Schmidt process)
4: µ̂X ← 1

N

∑N
n=1 k(xn, ·), empirical KME of X inH

5: µ̄X ←
∑F

f=1⟨bf , µ̂X⟩bf =
∑F

f=1 αfbf , projection of
µ̂X ontoHM

6: Re-express µ̄X ←
∑F

f=1 βfbf =
∑M

m=1 wmk(zm, ·)
in terms of k(zm, ·)

7: return (z1, w1), . . . , (zM , wM)

µX , provided that the synthetic data points are sampled from
a distribution with sufficiently large support.

Lemma B.1. ([44], Lemma 10) Let X be a compact metric
space and k : X × X → R a continuous kernel on X .
Suppose that the synthetic data points z1, z2, . . . are sampled
i.i.d. from a probability distribution q on X . If the support
supp(X) of X is included in the support of q, then

∥µ̄X − µ̂X∥H
p−→ 0 as N →∞. (D)

Proof Sketch. Let ϵ > 0. Since k is continuous on the com-
pact space X × X , it is uniformly continuous. Therefore,
there exists δ > 0 such that

|k(x, x′)−k(y, y′)| < ϵ2 whenever ∥x−y∥+∥x′−y′∥ < δ.

The compactness of X implies it is totally bounded; thus,
supp(X) can be covered by finitely many balls B1, . . . , BK

of radius δ/2. Since supp(X) ⊆ supp(q) and each q(Bk) >
0, with high probability, eachBk contains at least one sample
point zm as M →∞.

For each xn, select zm(n) within distance δ (possible due
to the coverage). Then,

∥µ̂X − µ̄X∥H ≤
1

N

N∑
n=1

∥∥k(xn, ·)− k(zm(n), ·)
∥∥
H

=
1

N

N∑
n=1

(
k(xn, xn)− 2k(xn, zm(n)) + k(zm(n), zm(n))

)1/2
< ϵ.

The last inequality follows from the uniform continuity of
k and the choice of δ. Therefore, as N → ∞, we have
∥µ̂X − µ̄X∥H

p−→ 0.

C. Efficiency of AdMiT
C.1. Parameter Efficiency

Table A. Number of parameters for different models’ scales and
their corresponding PET module size. ViT-T/S/B/L stands for
"Tiny, Small, Base, Large", corresponding to different pretrained
ViT sizes. The bolded number is the size of the PET modules we
applied in our main paper experiments.

ViT-T ViT-S ViT-B ViT-L
Full model 5,543,716 21,704,164 85,875,556 303,404,132
Adapter 58,564 116,932 233,668 417,984
LoRA 93,028 185,956 371,812 888,932
VPT 37,732 75,364 150,628 299,108
Header 19,300 38,500 76,900 102,500

Table B. Computational cost. We evaluate the computational cost
and adaptation accuracy of multi-source adaptation for the baseline
methods compared to AdMiT on ViT-B/16, using a batch size of
128 and LoRA PET modules (as detailed in the main paper), under
both static (S) and dynamic (D) adaptation settings.

Tuning Method Avg. Tuned Params GFLOPs Image Classification Avg. Acc.(BS=128)
(PET module: LoRA) During Adaptation (M) (Avg.) ImageNet-C (S) Digits (S) CIFAR-100 (D)

Full - 85.87 17.58 61.9 84.1 45.3

Multi

π-tuning 0.25 18.24 62.4 85.8 64.5
SESoM 1.16 18.32 62.6 86.0 60.5

CONTRAST 0.25 19.21 63.1 86.1 72.5
Model soup 0.23 22.14 53.4 69.7 57.2

AdMiT 0.23 17.62 63.7 86.8 73.3
AdMiT-ZeroShot 0 17.62 59.6 82.2 59.1

Table C. Latency from KME matching. We evaluate the adapta-
tion speed on ViT-B/16 backbone for Static adaptation on ImageNet-
C among different PET methods, to demonstrate the latency brought
by KME matching. The inference speed is defined by images per
second (imgs/sec). All results are the average of 5 runs.

Method GFLOPs Adaptation speed (img/sec) Slowdown Percentage (%)
(Avg across BS) BS=1 BS=32 BS=128 BS=1 BS=32 BS=128

Full fine-tuning 17.58 123.4 305.3 308.2 - - -
LoRA 17.58 95.7 291.3 283.1 - - -

LoRA-AdMiT 17.62 94.5 289.5 282.6 1.26 0.62 0.18
Adapter 17.81 104.2 285.6 296.3 - - -

Adapter-AdMiT 17.85 102.5 285.1 295.9 1.63 0.18 0.13
VPT 18.32 117.3 248.3 251.4 - - -

VPT-AdMiT 18.38 116.6 247.5 250.7 0.60 0.32 0.28

Parameter-efficient tuning (PET) methods align naturally
with model ensemble techniques[7], particularly in terms
of parameter efficiency. In contrast to other models where
an ensemble of N models results in N times more module
parameters, the additional module parameters introduced by
the module integration in Alg. 1 is only of the size of one
PET module. This represents less than 0.4% of a pretrained
ViT-base model (≈ 86M, w.r.t. Table. A).

C.2. Computational Efficiency
In Table B, Table C, and Table D, we present a comprehen-
sive comparison of inference speeds and adaptation perfor-
mance across various benchmarks. As shown in Table D, we

Table D. Edge device performance evaluation: Adaptation per-
formance and inference speed comparison on Raspberry Pi 5 using
Digit-5 dataset (N = 4) and ImageNet-C (N = 14), with the
same experiment setting as the Figure 2 of the main paper. Existing
PET methods exhibit slower adaptation speed than full fine-tuning
despite tuning fewer parameters, as they require extra gradient prop-
agation through the PET modules. Different source-target matching
approaches further introduce varying computational overhead.

Tuning method Num of Adaptation Speed Avg. Acc. (BS=128)
PET module: LoRA Tuned Prams (M) (img/100 second) Digit-5 ImageNet-C

Full model 85.87 42 83.5 61.4
π-tuning 0.25 34 83.2 62.1
SESoM 1.16 25 84.1 62.3

CONTRAST 0.25 37 84.4 62.8
AdMiT 0.23 40 85.3 63.5

AdMiT-ZeroShot 0 145 81.5 58.2

evaluate the computational efficiency of different methods
on edge devices (Raspberry Pi 5) using Digit-5 (N = 4) and
ImageNet-C (N = 14) datasets.

The results reveal that existing PET methods exhibit
slower adaptation speeds than full fine-tuning despite tuning
fewer parameters, as they require extra gradient propagation
through the PET modules. Our method, AdMiT, demon-
strates (Table C) superior computational efficiency during
deployment with only a minimal slowdown (less than 2%)
compared to standard PET methods due to the empirical
KME calculation for module matching.

Notably, AdMiT achieves the highest accuracy on both
benchmarks (85.3% on Digit-5 and 63.5% on ImageNet-
C) while maintaining competitive adaptation speed (40
img/100 second). For scenarios where fine-tuning is not fea-
sible, AdMiT-ZeroShot enables remarkably efficient adap-
tation through direct weighted combination of stored mod-
ules, achieving 81.5% and 58.2% accuracy on Digit-5 and
ImageNet-C respectively, while offering the fastest inference
speed (145 img/100 second) with zero tunable parameters.

Unlike existing methods that require extra tuning param-
eters or routing network optimization, AdMiT’s matching
and weight assignment rely solely on empirical KME calcu-
lations, making our method more computationally efficient
during deployment while achieving superior adaptation per-
formance.

D. Additional results
As shown in table. A, we use LoRA in the main paper as
PET modules. We provide the results for other PET modules
in this sections.

D.1. Details on different PET methods
Visual-Prompt Tuning (VPT). With a pre-trained Trans-
former (ViT) model as our starting point, we introduce a
set of p continuous embeddings in the input space, each of
dimension d, referred to as "prompts." During fine-tuning,
only the prompts specific to the task are updated, while the

Table E. Results on Digits, same setup as for Fig 2.We train the
source modules using 4 digits datasets to perform adaptation on the
remaining dataset. All the results are the average of 5 runs. Best
performance is bolded, and second-best performance is underlined.
(M = N = 4).

PET Module Source Method MM MT UP SV SY Avg

LoRA

Single GT-Tuning 70.4 99.6 93.1 90.5 97.2 90.2

Multi

π-tuning-PL 61.3 98.2 89.1 86.2 94.6 85.9
SESoM-PL 62.1 98.3 88.6 87.1 94.5 86.1
Model soup 52.3 83.2 71.5 66.4 75.2 69.7

AdMiT 63.2 98.9 89.3 86.5 96.2 86.8

Adapter

Single GT-Tuning 71.3 99.8 94.1 89.9 97.0 90.4

Multi

π-tuning-PL 62.0 97.5 88.8 86.0 94.5 85.8
SESoM-PL 61.2 97.5 89.4 85.3 94.7 85.6
Model soup 53.3 83.2 70.0 65.1 74.9 69.3

AdMiT 63.9 97.8 88.9 85.0 94.4 86.0

VPT

Single GT-Tuning 71.6 99.7 92.5 92.6 97.9 90.9

Multi

π-tuning-PL 63.5 98.8 88.6 85.4 96.1 86.5
SESoM-PL 64.2 98.3 88.3 88.7 93.8 86.7
Model soup 51.8 82.5 71.9 66.4 75.4 69.6

AdMiT 65.7 99.4 89.9 88.5 97.2 88.1

Transformer backbone remains frozen. We applied VPT-
Shallow[21] as follows:

VPT-Shallow. Prompts are inserted into the first Trans-
former layer only. Each prompt token is a learnable d−
dimensional vector. A module, which is a collection of
p (which is the prompt length) prompts is denoted as
P = {v ∈ Rd|k ∈ N, 1 ≤ k ≤ p}, the shallow-prompted
ViT is:

[x1,Z1,E1] = L1([x0,P,E0]) (E)
[xi,Zi,Ei] = Li([xi−1,Zi−1,Ei−1]), i = 2, · · · , l (F)
y = Head(xl), (G)

where Zi ∈ Rp×d represents the features computed by the
i-th Transformer layer, and [xi,Zi,Ei] ∈ R(1+p+P)×d (P
is the number of patches that a 2D image input is divided
into). The colors above indicate learnable and frozen param-
eters. For ViTs, xi is invariant to the location of prompts
since they are inserted after positional encoding. The overall
parameter count for Adapters in an l-layer Transformer can
be calculated as |θ| = p× d.

Adapter. In the conventional configuration, a trans-
former model incorporates two Adapters per layer [51]. Each
Adapter layer is composed of 2× k× d parameters, account-
ing for both the down and up-projection matrices. Here, k
represents the input dimension size, while d refers to the
bottleneck dimension of the Adapter. The overall param-
eter count for Adapters in an l-layer Transformer can be
calculated as |θ| = 2× l × 2× k × d.

Results for different PET modules. Following the
setup in main paper, we replace LoRA with Adapters,VPTs
as the PET module, and demonstrate the stationary distri-
bution adaptation results in Table. E. In can be concluded
that our method, AdMiT, retains good performance across
different PET modules.

E. Semantic Segmentation
AdMiT is not limited to image classification tasks and can be
seamlessly extended to tasks like semantic segmentation. In
this setting, we assume access to a collection of pre-trained
PET modules {θj}Nj=1, where each module is fine-tuned on
a distinct source distribution for pixel-wise classification.
Specifically, each module outputs per-pixel probabilities for
K classes, formulated as fθj : RH×W → RH×W×K . To
adapt AdMiT for semantic segmentation, the entropy term
in Eqn. 5 of the main paper is updated as follows:

L(t)
w (w) = −ED(t)

T

H∑
h=1

W∑
w=1

K∑
c=1

ŷ
(t)
hwc log(ŷ

(t)
hwc) (H)

Here, ŷ(t)hwc represents the weighted probability output
corresponding to class c for the pixel at location (h,w) at
time-step t. The rest of the framework remains unchanged,
ensuring consistency across tasks.

E.1. Datasets
Our experiments involve the following datasets:
• Cityscapes: The Cityscapes dataset [19] provides large-
scale, densely annotated pixel-level data for 30 classes,
grouped into 8 categories: flat surfaces, humans, vehicles,
constructions, objects, nature, sky, and void. Simulated vari-
ants of this dataset include fog and rain conditions [52, 53].
• ACDC: The Adverse Conditions Dataset (ACDC) [20]
includes pixel-level annotations for images captured under
adverse conditions such as fog, nighttime, rain, and snow.
The class structure aligns with the 19 semantic labels used
in the Cityscapes evaluation, excluding the void class.

E.2. Experimental Setup
For all experiments, we use HRViT-b1 [54] as the segmenta-
tion model. We evaluate performance on 19 semantic labels,
excluding the void label.

We consider a static target distribution setting for evalua-
tion. Specifically, we train three source PET modules using
the clean, fog, and rain splits of the Cityscapes dataset.
After training, these modules are tested on the respective
weather condition splits of the ACDC dataset. Using AdMiT,
we dynamically integrate the source modules for each target
condition and compare the results with baseline methods.

E.3. Results
Results on Cityscapes to ACDC: Table F shows the per-
formance of AdMiT and baseline methods on ACDC test
data under different weather conditions (static target distri-
butions). The source modules are trained on Cityscapes and
its simulated noisy variants. AdMiT significantly outper-
forms baseline adaptation methods, with results reported in

Table F. Semantic segmentation results.

Source Method Fog Rain Snow Night Avg

Single
TENT-Best 25.4 21.7 19.7 13.5 20.0

BECoTTA-Best 26.3 22.4 21.3 14.5 21.1
SAR-Best 25.8 22.2 20.1 15.5 20.9

Multi

π-tuning-PL 28.3 23.0 24.2 17.4 23.2
SESoM-PL 29.2 25.3 25.4 18.2 24.5

CONTRAST 32.4 29.4 25.2 18.7 26.4
Model soup 25.4 25.5 21.4 14.7 21.8

AdMiT 32.5 29.9 25.4 19.1 26.7
AdMiT-ZeroShot 27.5 22.3 19.9 14.7 21.1

terms of % mIoU, highlighting its effectiveness in leveraging
multi-source knowledge for target adaptation.

F. Implementation details
We perform all the experiment on a single A100 GPU. We
use ViT-Base-16 [55] model in all our experiments. For all
experiments without extra clarification, we use a target batch
size of |T | = 128, as used by TENT [30]. The experimental
setup for tuning the integrated module is listed as in Table. G
summarizing the optimization configurations we used. Im-
plementation details for each tuning method apply to both
source and target distributions.

In this problem setting, we propose to adaptively com-
bine multiple pre-trained parameter-efficient tuning (PET)
modules during deployment through suitable combination
weights, which are determined based on a limited number
of target samples. Consider the scenario where we have
a collection of N pre-trained PET modules, denoted as
{θj}Nj=1, which are fine-tuned on distinct source distribu-
tions. During deployment, target data arrives in an online
fashion as a sequence of batches {x(1)i }Bi=1 → {x

(2)
i }Bi=1 →

. . . {x(t)i }Bi=1 → . . ., where t represents the time-stamp and
B is the number of samples in each target batch. The target
distribution at time-stamp t is denoted as D(t)

T , implying
{x(t)i }Bi=1 ∼ D

(t)
T .

Motivated by the multi-source adaptation framework, we
model the target distribution at each time-stamp t as a lin-
ear combination of source distributions, with combination
weights denoted as {w(t)

j }Nj=1. Using these weights, AdMiT
integrates the pre-trained PET modules to form an adaptive
module for the current target batch. Thus, the inference
model for test batch t can be expressed as f (t)T = fθ(t),
where θ(t) =

∑N
j=1 w

(t)
j θj is the dynamically integrated

PET module for time-stamp t.
We implement the baselines as follows:

• TENT. TENT [30] adapts transformers by modifying
only the LayerNorm statistics during test-time adaptation
while keeping the PET modules and backbone weights
unchanged. It minimizes the entropy of predictions for
target batches, encouraging confident predictions. The
LayerNorm parameters (mean and variance) are updated

Table G. Hyperparameters for tuning AdMiT

Full, Adapter, LoRA VPT
Optimizer AdamW SGD
Optimizer momentum N/A 0.9
base_lr search range {0.001, 0.0001, 0.0005, 0.005} {50., 25., 10., 5., 2.5, 1.,0.5, 0.25, 0.1, 0.05}
Weight decay range {0.01, 0.001, 0.0001, 0.0}
LR schedule cosine decay
Warm up epochs 10
Total epochs 100

iteratively using gradients computed from the entropy loss.
Key hyperparameters include the learning rate for updat-
ing LayerNorm statistics (1× 10−4) and the batch size for
target adaptation (B = 64).

• BECoTTA. BECoTTA(-M) [33] integrates multiple PET
modules using a MoDE (Mixture of Domain Experts)
module, which applies a Top-K routing strategy to se-
lect the K = 2 most relevant PET modules based on
input features. During pretraining, BECoTTA initializes
with D = 3 proxy domains (source domain, darkness,
and brightness) and trains the MoDE module alongside
a domain discriminator and a synergy loss, freezing the
backbone. In deployment, PET modules are activated for
online adaptation, with entropy-based filtering used to re-
fine pseudo-labels. The primary hyperparameters include
the number of proxy domains (D = 3) and the Top-K
selection parameter (K = 2).

• SAR. SAR [38] adapts transformers by restricting up-
dates to LayerNorm statistics during test-time adaptation
while freezing PET modules and backbone weights. Un-
like TENT, SAR selectively filters high-entropy (low-
confidence) samples, focusing on reliable predictions.
Sharpness-aware optimization is applied to smooth the
entropy loss, improving robustness against noisy target dis-
tributions. The key hyperparameters include the entropy
threshold for filtering (E0 = 0.4× ln(K), where K is the
number of classes) and the sharpness radius (ρ = 0.05)
for optimization.

• π-Tuning. π-Tuning [16] combines knowledge from mul-
tiple pre-trained PET modules by interpolating their out-
puts based on task similarity. Task embeddings are com-
puted using the Fisher Information Matrix (FIM), with sim-
ilarity calculated as cosine similarity between the embed-
dings of target and source tasks. The top k PET modules
are selected for interpolation, and weights are optimized
via pseudo-label entropy minimization. Key hyperparame-
ters include the number of selected PET modules (k = 3),
learning rate for fine-tuning (1× 10−4).

• SESoM. SESoM [12] integrates the outputs of multiple
source models through the utilization of an additional
attention-based routing network. Within our experimental
framework, each PET module operates as a source-specific

unit. The logits derived from these modules are trans-
mitted to an attention-based routing network tasked with
computing sample-specific weights. The routing network
undergoes fine-tuning via pseudo-label entropy minimiza-
tion, employing few-shot pseudo-labeled target data while
maintaining the PET modules and backbone architecture in
a fixed state. Key hyperparameters comprise the learning
rate for the attention module (3×10−4) and a dropout rate
set at 0.1. An attentionn-based routing network of approxi-
mately d×d′x+d′x×d′+v×d′l+d′l×d′+4d′ = 0.85M
size (as defined in [12]) is employed to derive the attention
weights.

• CONTRAST. CONTRAST [15] adapts to evolving tar-
get distributions by dynamically combining pre-trained
source models and selectively updating the most relevant
model. For ViT-based architectures, CONTRAST com-
putes weights for PET modules based on LayerNorm statis-
tics or feature embeddings and updates the PET module
with the highest weight for each target batch. Key hy-
perparameters include learning rate for weight updates
(1× 10−4), and test batch size (B = 128).

• Model Soup. Model Soup [46] improves performance by
averaging the weights of multiple fine-tuned PET modules
without additional inference cost. We adapt Model Soup
by sequentially adding PET modules to the soup using
the Greedy Soup strategy, retaining only modules that
improve validation accuracy. Hyperparameters include
learning rates ({10−4, 10−5}) and using 10% of training
data for validation.

G. Details of dataset corruptions

We summarize these corruptions types by example in Fig. A.
The order of these corruptions is the same as the order in
Table. 2 and Figure. 3.

H. Theoretical Insights

H.1. Maximum Mean Discrepancy as distribution
similarity metric

The objective of module selection in AdMiT is to quan-
tify the similarity between the source distribution DS and

Published as a conference paper at ICLR 2021

APPENDIX

This supplement summarizes the image corruptions used in our experiments, highlights a qualitative example of
instance-wise adaptation for semantic segmentation, and visualizes feature shifts across more layers.

A ROBUSTNESS TO CORRUPTIONS

In Section 4.1 we evaluate methods on a common image corruptions benchmark. Table 2 reports errors on the
most severe level of corruption, level 5, and Figure 5 reports errors for each corruption type averaged across
each of the levels 1–5. We summarize these corruptions types by example in Figure 8.

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog

Brightness Contrast Elastic Pixelate JPEG

Figure 8: Examples of each corruption type in the image corruptions benchmark. While synthetic,
this set of corruptions aims to represent natural factors of variation like noise, blur, weather, and
digital imaging effects. This figure is reproduced from Hendrycks & Dietterich (2019).

B SOURCE-FREE ADAPTATION FOR SEMANTIC SEGMENTATION

Figure 9 shows a qualitative result on source-free adaptation for semantic segmentation (pixel-wise classification)
with simulation-to-real (sim-to-real) shift.

For this sim-to-real condition, the source data is simulated while the target data is real. Our source data is GTA
Richter et al. (2017), a visually-sophisticated video game set in an urban environment, and our target data is
Cityscapes Cordts et al. (2016), an urban autonomous driving dataset. The supervised model is HRnet-W18, a
fully convolutional network Shelhamer et al. (2017) in the high-resolution network family Wang et al. (2020).
For this qualitative example, we run tent on a single image for multiple iterations, because an image is in effect
a batch of pixels. This demonstrates adaptation to a target instance, without any further access to the target
domain through usage of multiple images from the target distribution.

13

Figure A. Examples of each corruption type in the image corruptions benchmark. While synthetic, this set of corruptions aims to represent
natural factors of variation like noise, blur, weather, and digital imaging effects.

the target distribution DT without access to the raw data.
Rather than comparing moments of different orders, such
as Ex∼D(x

n), we adopt a more comprehensive metric,
Ex∼D(f(x)), to universally characterize the properties of
distributions.

The discrepancy between the expected function values
across two distributions,DT andDS , is captured by the Max-
imum Mean Discrepancy (MMD). Mathematically, MMD is
defined in a reproducing kernel Hilbert space (RKHS)H as:

MMD(F ,DT ,DS) = sup
f∈F

(Ex∼DS (f(x))−Ex∼DT (f(x))) .

Without loss of generality, f is assumed to reside within a
unit ball , i.e., ||f ||H ≤ 1. The RKHS is structured using
an orthogonal basis derived from the decomposition of a
symmetric and positive semi-definite kernel function k(x,y).
In the main paper, we employ a Gaussian radial basis kernel
k(x,y) = exp(−||x− y||2).

A symmetric and positive semi-definite kernel function
k(x,y) can be decomposed [40] into a set of eigenval-
ues {λi}∞i=1 and corresponding orthogonal eigenfunctions
{ψi(·)}∞i=1:

k(x,y) =

∞∑
i=1

λiψi(x)ψi(y).

These eigenfunctions form an orthogonal basis {
√
λiψi(·)}

used to construct the Hilbert spaceH. Any function f within
this space can be expressed either as a linear combination of
these basis functions:

f(·) =
∞∑
i=1

fi
√
λiψi(·),

or represented as an infinite-dimensional vector inH: f =
(f1, f2, . . .)

⊤
H. When one parameter of the kernel function is

fixed to x, it behaves like a function with a single variable
or an infinite vector:

k(x, ·) =
∞∑
i=1

λiψi(x)ψi(·) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .)

⊤
H.

This leads to the following computation for the inner product
of these two functions, illustrating the reproducing property
of RKHS:

⟨f, k(x, ·)⟩H = (f1, f2, . . .)H · (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .)

⊤
H

=

∞∑
i=1

fi
√
λiψi(x) = f(x),

which effectively captures the essence of the reproducing
property within the RKHS framework.

Furthermore, for a given distribution D, we introduce the
kernel mean embedding (KME), defined as:

µD = Ex∼D[k(x, ·)].

This allows the expressions within the Maximum Mean Dis-
crepancy (MMD) to be rewritten in terms of inner products
in the RKHS:

Ex∼D(f(x)) = Ex∼D⟨f, k(x, ·)⟩H = ⟨f,Ex∼Dk(x, ·)⟩H
= ⟨f, µD⟩H.

In the context of MMD, we assess the supremum with

these inner products:

MMD(F ,DT ,DS) = sup
||f ||H≤1

(Ex∼DS (f(x))−Ex∼DT (f(x)))

= sup
||f ||H≤1

⟨µDT , f⟩H − ⟨µDS , f⟩H

= sup
||f ||H≤1

⟨µDT − µDS , f⟩H ≤ sup
||f ||H≤1

||µDT − µDS ||H · ||f ||H

= ||µDT − µDS ||H.

We work with several source datasets Sj = {(xi, yi)}
|Sj |
i=1 ∼

DS j , j ∈ [N] in the pretraining stage, and an unlabeled
target batch T = {(xi, ·)}|T |

i=1 ∼ DT in the deployment
stage. The empirical KME at these phases can be estimated
as:

µ̂(T) =
1

|T |
∑
xn∈T

k(xn, ·), µ̂(Sj) =
1

|Sj |
∑

xn∈Sj

k(xn, ·).

(I)

We can also compute the squared Maximum Mean Dis-
crepancy (MMD2) by expanding the definition:

MMD2(DT ,DS j) = ||µDT − µDSj
||2H

= ||µDT ||2H − 2⟨µDT , µDSj
⟩H + ||µDSj

||2H
= Ex,y∼DT k(x,y)− 2Ex∼DT ,y∼DSj

k(x,y)

+Ex,y∼DSj
k(x,y),

which results in the following empirical estimate:

M̂MD
2
(T, Sj)

=
1

|T |2
∑

xn,xm∈T

k(xn, xm)− 2

|T ||Sj |
∑

xn∈T,xm∈Sj

k(xn, xm)

+
1

|Sj |2
∑

xn,xm∈Sj

k(xn, xm). (J)

We provide proofs for the following properties:
• If the kernel k(·, ·) is universal, the mapping from D to
µ(D) via KME is injective.

• MMD(DT ,DS) = 0 if and only if DT = DS .
These properties enable the measurement of distribution
similarity through MMD and KME.

Theorem H.1. If the kernel k is universal, then the mean
map µ : PX → H is injective.

Proof. We will use a proof by contradiction to establish the
theorem.

Assume that µ : PX → H is not injective. Then, there
exist two different probability measures p and q such that
µ[p] = µ[q], i.e.,

µ[p] = µ[q].

The mean map µ[p] is represented as:

µ[p](·) =
∫
X

k(x, ·) dp(x),

and similarly,

µ[q](·) =
∫
X

k(x, ·) dq(x).

For any f ∈ H, we have:

⟨f, µ[p]⟩H = ⟨f, µ[q]⟩H.

The inner product ⟨f, µ[p]⟩H can be written as:

⟨f, µ[p]⟩H = EX∼p[f(X)],

and similarly,

⟨f, µ[q]⟩H = EX∼q[f(X)].

Since µ[p] = µ[q], it follows that:

EX∼p[f(X)] = EX∼q[f(X)] ∀f ∈ H.

By the universality of the kernel k, the RKHSH is dense
in C(X). This means that the above equality holds for all
continuous functions f ∈ C(X).

By the uniqueness theorem for measures, if two measures
p and q agree on all continuous functions, then p = q. This
contradicts our assumption that p and q are different.

Therefore, the assumption that µ is not injective must be
false, and hence µ is injective.

Theorem H.2. Let F be a unit ball in a universal RKHS
H, defined on the compact metric space X , with associated
continuous kernel k(·, ·). Then MMD {F , p, q} = 0 if and
only if p = q.

Proof. First, it is clear that p = q implies MMD {F , p, q}
is zero. We now prove the converse.

By the universality of H, for any given ϵ > 0 and f ∈
C(X), there exists a g ∈ H such that

∥f − g∥∞ ≤ ϵ.

We next make the expansion

|Exf(x)− Eyf(y)| ≤ |Exf(x)− Exg(x)|+
|Exg(x)− Eyg(y)|+ |Eyg(y)− Eyf(y)|.

The first and third terms satisfy

|Exf(x)− Exg(x)| ≤ Ex|f(x)− g(x)| ≤ ϵ.

Next, write

Exg(x)− Eyg(y) = ⟨g, µp − µq⟩H = 0,

since MMD {F , p, q} = 0 implies µp = µq . Hence

|Exf(x)− Eyf(y)| ≤ 2ϵ

for all f ∈ C(X) and ϵ > 0, which implies p = q.

H.2. w-convergence bound
For a bounded kernel 0 ≤ k(·, ·) ≤ K, the biased empirical
estimator of MMD is

MMDb[F , X, Y] = sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
,

where X,Y are random variables from distribution p, q, and
{xi}mi=1, {yi}ni=1 are samples drawn from these two distri-
butions.

We want to show that the absolute difference between
MMD(F , p, q) and MMDb(F , X, Y) is close to its expected
value, independent of the distributions p and q. To this end,
we prove three intermediate results, which we then combine.
The first result we need is an upper bound on the absolute dif-
ference between MMD(F , p, q) and MMDb(F , X, Y). We
have

|MMD(F , p, q)−MMDb(F , X, Y)|
= | sup

f∈F
(Ex(f)− Ey(f))

− sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
|

≤ sup
f∈F

∣∣∣∣∣Ex(f)− Ey(f)−
1

m

m∑
i=1

f(xi) +
1

n

n∑
i=1

f(yi)

∣∣∣∣∣︸ ︷︷ ︸
∆(p,q,X,Y)

(K)

Then, we provide an upper bound on the difference be-
tween ∆(p, q,X, Y) and its expectation. Changing either of
xi or yi in ∆(p, q,X, Y) results in changes in magnitude of
at most 2K1/2/m or 2K1/2/n, respectively. We can then
apply McDiarmid’s theorem [56], given a denominator in
the exponent of

m

(
2K1/2

m

)2

+ n

(
2K1/2

n

)2

= 4K

(
1

m
+

1

n

)
=

4K(m+ n)

mn
,

to obtain

Pr
X,Y

(∆(p, q,X, Y)− EX,Y [∆(p, q,X, Y)] > ϵ) ≤

exp

(
− ϵ2mn

2K(m+ n)

)
. (L)

Next, we exploit symmetrisation, following [57], to upper
bound the expectation of ∆(p, q,X, Y). Denoting by X ′

an i.i.d sample of size m drawn independently of X (and
likewise for Y ′), we have

EX,Y [∆(p, q,X, Y)] ≤

EX,Y sup
f∈F

∣∣∣∣∣Ex(f)−
1

m

m∑
i=1

f(xi)− Ey(f) +
1

n

n∑
i=1

f(yi)

∣∣∣∣∣
= EX,Y sup

f∈F

∣∣EX′

(
1

m

m∑
i=1

f(x′i)

)
− 1

m

m∑
i=1

f(xi)

− Ey(f) +
1

n

n∑
i=1

f(yi)
∣∣

= EX,Y sup
f∈F

∣∣∣∣∣EX′

(
1

m

m∑
i=1

f(x′i)−
1

m

m∑
i=1

f(xi)

)

+
1

n

n∑
i=1

f(yi)− Ey(f)

∣∣∣∣∣
≤ EX,Y,X′,Y ′ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

f(x′i)−
1

m

m∑
i=1

f(xi)

∣∣∣∣∣
+ EY,Y ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(y′i)− Ey(f)

∣∣∣∣∣
= EX,Y,X′,Y ′ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

σi (f(x
′
i)− f(xi))

∣∣∣∣∣+
EY,Y ′,σ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

σ′
i (f(y

′
i)− f(yi))

∣∣∣∣∣
≤ EX,X′,σ sup

f∈F

∣∣∣∣∣ 1m
m∑
i=1

σi (f(x
′
i)− f(xi))

∣∣∣∣∣+
EY,Y ′,σ′ sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

σ′
i (f(y

′
i)− f(yi))

∣∣∣∣∣
≤ 2 [Rm(F , p) +Rn(F , q)]

≤ 2

[(
K

m

)1/2

+

(
K

n

)1/2
]

(M)

The first step applies Jensen’s inequality to simplify the
expression. Next, the triangle inequality is used to separate
the terms, followed by substituting the Rademacher aver-
age to connect the empirical and expected values. Finally,
the Rademacher averages are bounded as defined in Defini-
tion 30 of [18]. Combining Eqn. L with the bounded term

EX,Y [∆(p, q,X, Y)] derived from Eqn. M, we can obtain

Pr
X,Y

(
∆(p, q,X, Y)− 2

[(
K

m

)1/2

+

(
K

n

)1/2
]
> ϵ

)
≤

exp

(
− ϵ2mn

2K(m+ n)

)
. (N)

Combining Eqn. N with Theorem 7 in [18], leads to the
following Corollary:

Corollary H.3. If p = q, then with probability at least
1− δ, the (biased) empirical MMD (obtained by drawing m
samples from p and n samples from q) is bounded by:

1

2
MMDb(p̂, q̂) <

√
K

m
+

√
K

n
+

√
K(m+ n) log 1

δ

2mn

for any arbitrarily small δ > 0.

Setting p = DT , q =
∑N

j=1 wjDS j ,
∑N

j=1 wj = 1 leads
to:

1

2

∥∥∥∥∥∥µ̂(T)−
N∑
j=1

wj µ̂(Sj)

∥∥∥∥∥∥
H

<

√
K

m
+

√
K

n

+

√
K(m+ n) log 1

δ

2mn
.

The above result upper-bounds the error of estimating
empirical target KME with weighted average of empirical
source KME in the optimization in 4 of the main paper. Note
that n is the number of samples from q, i.e. the number
of samples from the involved source datasets, thus as the
number of modules N increases, n also increases.

Similarly, we can derive the following estimation error
bound for KME and empirical KME:

Corollary H.4. ([58], Theorem 1) With probability at least
1− δ we have

∥µ(p)− µ̂(p)∥H ≤ 2

√
K

n
+

√
2 log 1

δ

n
.

Proof. Proof can be found in [58], section B.1.

H.3. Loss bound
H.3.1. Assumptions
Suppose we are given a pretrained frozen backbone trans-
former model f , and there are N source domains in the
upload phase. We build PET modules on their own domains
and upload them to the module store for future users. Each

source domain has a corresponding dataset {Sj}Nj=1 , re-
flecting the distribution DS j . The source datasets will be
inaccessible after the pretraining stage.

We also assume that a global optimal rule function g :
X → Y exists for the domain adaptation problem,

∀j ∈ [N],∀(x, y) ∈ Sj , g(x) = y.

We assume that all sources are competent, and the source
datasets are sufficient to solve their domains. Formally speak-
ing, the modules θ̂j can help the pretrained model to reach a
small error rate ϵ > 0 with respect to a certain loss function
L (upper-bounded by |L|) on their domain distribution DS j

when applied with the pretrained backbone model f :

∀j ∈ [N],L(DS j , fθ̂j) = Ex∼DSj
[L(fθ̂j (x), y)] ≤ ϵ. (O)

In this context, the loss function L : Y × Y → R+ can
be either a regression loss or classification loss. Since the
domains {Sj}Nj=1 are equipped with low-error pre-trained
modules, they are referred to as solved domains.

In the deployment phase, a new user wants the model to
solve the current domain with only unlabeled testing data
x ∼ DT . Thus the target is to learn a good model f̂t which
minimizes L(DT , f̂t), utilizing the information contained in
pre-trained modules {θ̂j}Nj=1.

Theorem H.5 (Zero-shot adaptation loss bound). Assume
that the assumptions in corollary H.3 hold. The module θj
from each source dataset satisfies ∀j ∈ [N],L(DS j , fθ̂j) =

Ex∼DSj
[L(fθ̂j (x), y)] ≤ ϵ. Assume that the loss function

L(fθ̂j (x), f(x)) ∈ Hk. The empirical MMD between distri-

bution mixture
∑N

j=1 wjDS j and current distribution DT
can be estimated from

MMDb =

∥∥∥∥∥∥µ̂(T)−
N∑
j=1

wj µ̂(Sj)

∥∥∥∥∥∥
H

Then the finite sample loss satisfies:

L(DT , g, f∑wj θ̂j
) =

∑
xi∼DT

[
L(f∑wj θ̂j

(xi), g(xi))
]

≤ ϵ+O(

√
1

m
+

√
1

n
)

Proof. By the reproducing property, the loss function can be
written as:

L(f∑wj θ̂j
, g(x)) = L∑

wj θ̂j
(x) = ⟨L∑

wj θ̂j
, k(x, ·)⟩.

We then can represent the error of each model in the form of
KME. For the current mixture:

Ex∼DT [L∑
wj θ̂j

(x)] = ⟨L∑
wj θ̂j

, µDT ⟩

The empirical loss can also be represented by:∣∣∣〈L∑
wj θ̂j

, µ̂(T)
〉∣∣∣ ≤∣∣∣∣∣∣

〈
L∑

wj θ̂j
, µ̂(T)

〉
−

〈
L∑

wj θ̂j
,
∑
j

wj µ̂(Sj)

〉∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣∣
〈
L∑

wj θ̂j
,
∑
j

wj µ̂(Sj)

〉∣∣∣∣∣∣︸ ︷︷ ︸
(B)

(P)

We then bound (A) and (B) separately.
By the convergence rate for empirical MMD,

(A) =

∣∣∣∣∣∣⟨L∑
wj θ̂j

, µ̂(T)−
N∑
j=1

wj µ̂(Sj)⟩

∣∣∣∣∣∣
≤ ∥L∑

wj θ̂j
∥∥µ̂(T)−

N∑
j=1

wj µ̂(Sj)∥

≤ O(m,n) (Q)

(B) ≤
∣∣∣⟨L∑

wj θ̂j
,
∑

wjµDSj
⟩
∣∣∣

+

∣∣∣∣∣∣⟨L∑
wj θ̂j

,
∑
j

wj µ̂(Sj)−
∑

wjµDSj
⟩

∣∣∣∣∣∣
≤

N∑
j=1

wj

∣∣∣⟨Lθ̂j
, µDSj

⟩
∣∣∣

+ |L| ∥
∑
j

wj µ̂(Sj)−
∑

wjµDSj
∥

≤ ϵ+ 2

√
K

m
+

√
2 log 1

δ

m
(R)

The last steps of the estimation (A) and (B) can be ob-
tained directly from corollary H.4 and corollary H.3, and
this completes the proof.

Theorem H.5 estimates the loss in directly applying the
integrated module θ(t) to the target domain without any
tuning on the target dataset, i.e. the zero-shot performance.
It ensures a good initialization of the tuning in Sec. 3.2,
leading to a good adaptation performance.

	Introduction
	Related Works
	Proposed Method: AdMiT
	Module Matching using KME
	Module Integration and Adaptation

	Evaluations
	Baseline Methods

	Conclusion
	Sharpness-aware Optimization
	Synthetic data generation
	Efficiency of AdMiT
	Parameter Efficiency
	Computational Efficiency

	Additional results
	Details on different PET methods

	Semantic Segmentation
	Datasets
	Experimental Setup
	Results

	Implementation details
	Details of dataset corruptions
	Theoretical Insights
	Maximum Mean Discrepancy as distribution similarity metric
	w-convergence bound
	Loss bound
	Assumptions

