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Tracking and Activity Recognition Through
Consensus in Distributed Camera Networks

Bi Song,Member, IEEEAhmed T. Kamal,Student Member, IEEE ristian Soto, Chong Dindgstudent
Member, IEEE Amit K. Roy-Chowdhury,Senior Member, IEEEand Jay A. FarrellFellow, IEEE

Abstract—Camera networks are being deployed for various as autonomous agents making decisions in a decentralized
applications like security and surveillance, disaster response manner. At the same time, however, the decisions of the
and environmental modeling. However, there is little automated cameras need to be coordinated so that there is a consensus
processing of the data. Moreover, most methods for multi- " . .
camera analysis are centralized schemes that require the data on the sFatee(.g, position, activity) of the target even if ea(_:h
to be present at a central server. In many applications, this is Camera is an autonomous agent. Thus, the cameras, acting as
prohibitively expensive, both technically and economically. In this autonomous agents, analyze the raw data locally, exchange
paper, we investigate distributed scene analysis algorithms by only distilled information that is relevant to the collaboration,
leveraging upon concepts of consensus that have been studied inand reach a shared, global analysis of the scene.

the context of multi-agent systems, but have had little applications Alth h th b f thods in vid Vsi
in video analysis. Each camera estimates certain parameters oug . ere a_re a number o methods In video analysis
based on its own sensed data which is then shared locally with that deal with multiple cameras, and even camera networks,
the neighboring cameras in an iterative fashion, and a final distributed processing in camera networks has received very
estimate is arrived at in the network using consensus algorithms. Jittle attention. In Sec. Il, we will review the current state
We specifically focus on two basic problems - tracking and o the art in camera networks and will see that very few
activity recognition. For multi-target tracking in a distributed thod ble of distributed vsis of vid On th
camera network, we show how the Kalman-Consensus algorithm methods are ,CaPa e or distri u €d analysis ot vi .eo. n .e
can be adapted to take into account the directional nature Other hand, distributed processing has been extensively studied
of video sensors and the network topology. For the activity in the multi-agent systems and cooperative control literature
recognition problem, we derive a probabilistic consensus scheme [29]. Methods have been developed for reaching consensus on
that combines the similarity scores of neighboring cameras 10 5 state observed independently by multiple sensors. However
come up with a probability for each action at the network level. th . little stud th licability of th thod !
Thorough experimental results are shown on real data along with ere 1S very littie study on ine applicability of these methods

a quantitative analysis. in camera networks.

In this paper, we show how to develop methods for tracking
_ o _ and activity recognition in a camera network where process-

Networks of video cameras are being installed in mang is distributed across the cameras. For this purpose, we
applicationse.g, surveillance and security, disaster responsehow how consensus algorithms can be developed that are
environmental monitoring, etc. Currently, most of the datgapable of converging to a solution, i.e, target state, based
collected by such networks is analyzed manually, a task that local decision making and exchange of these decisions
is extremely tedious and reduces the potential of the installg(bt sensed data) among the cameras. We focus on two
networks. Therefore, it is essential to develop tools for angroblems. For distributed tracking, we show how the Kalman
lyzing the data collected from these cameras and summarizigighsensus algorithm [28] can be adapted to camera networks
the results in a manner that is meaningful to the end usgiking into account issues like network topology, handoff
Tracking and activity recognition are two fundamental tasksnd fault tolerance. For activity recognition, we derive a
in this regard. In this paper, we develop methods for trackingw consensus algorithm based on the recognized activity at
and activity recognition in a distributed network of cameraseach camera and the transition probabilities between various

For many applications, for a number of reasons it igctivities. Experimental results and quantitative evaluation for
desirable that the video analysis tasks be decentralized. bgth these methods are presented. Note that here we assume
example, there may be constraints of bandwidth, secure trajal communication between cameras which are connected,
mission, and difficulty in analyzing a huge amount of datge., communication is not a bottleneck. This proposed work
centrally. In such situations, the cameras would have to asta proof-of-concept study in using distributed processing
. . - _algorithms for video analysis. In the future, the practical
Copyright (c) 2010 IEEE. Personal use of this material is permitted. . f usi | ith . K
However, permission to use this material for any other purposes must §gNStraints of using consensus algorithms in camera networks
obtained from the IEEE by sending a request to pubs-permissions@ieee.slgould be considered.

The authors gratefully acknowledge support from NSF grants ECS-0622176\\/e start with a review of consensus aIgorithms for dis-
and CNS-0551741, ONR grant N00014-09-1-0666, and ARO grant W911N{3= . . . .
07-1-0485. ributed estimation. Thereafter, in Sec. IV, we present a variant

B. Song, A. T. Kamal, C. Ding, A. K. Roy-Chowdhury and J. A. Far-Of the Kalman-Consensus approach for distributed tracking
rell are with University of California, Riverside, CA, 92521 USA (e-mailijn the camera network and show experimental results. that
{bsong,akamal,amitrc,farr¢@ee.ucr.edu, cding@cs.ucr.edu). - :

are analyzed quantitatively. In Sec. V, we study the problem

C. Soto is with Digital Western, the work was done when the author w. < - ; g
at University of California, Riverside. of activity recognition in a consensus framework. For this

I. INTRODUCTION



purpose, we derive a completely new algorithm that showsportant in practice. Besides tracking through consensus, we
how local decisions at each camera node can be combirsdsbo address another fundamental task of distributed activity
to come up with a consensus on the state representing theognition, derive a probabilistic consensus scheme, and show
activity. Again, experimental results are shown and analyzeskperimental results on real data with a quantitative analysis.

Il. PAST WORK ON SCENE ANALYSIS IN CAMERA I1l. CONSENSUSALGORITHMS FORDISTRIBUTED
NETWORKS ESTIMATION

Our review of scene analysis algorithms will be Iimiteqhm the multi-agent systems literaturepnsensusneans that

to those directly related to the application domain of camer?e. agents reach an agreement regarding a certain quantity
networks. of interest that depends on the measurements of all sensors

. in .a network. The network may not be fully connected, so
There have been a few papers in the recent past thhat . .
) . . . there is no central unit that has access to all the data from the
deal with networks of video sensors. Particular interest has _ : .
. . sensors. Consequentlycansensus algorithiis an interaction
been focused on learning a network topology [21], [40], i.e,, . .
rile that specifies information exchange between a sensor

_conflg_urlng connections betwge_n cameras and entry/ e.X't POIRLY its neighbors that guarantees that all the nodes reach a
in their view. Some of the existing methods on tracking OVonsensus. The interaction topology of a network of sensors
the network, include [34], [37]. Other interesting problems in ' pology

camera networks, like object/behavior detection and matchiIS represented using a graph= (V, ) with the set of nodes

= {1,2,....,n} and edgesZ C V x V. Each sensor node
across cameras, camera handoff and camera placement have {1,2,...n} g —

been addressed in [1], [10], [16], [39], [46]. There has aldo _ -7 Maintains an estimatg; € R™ of a quantity

been recent work on tracking people in a multi-camera setﬁ < R™. Consensus is achieved when = X; = ... = X,
9 peop V\g?ich is an n-dimensional subspace &f*". A thorough

[8], [17]. However, these methods do not address the issue of. . .
review of consensus in networked multi-agent systems can

distributed processing. . . be found in [29]. Here we briefly review some of the basic
In [22], a distributed target tracking approach using S‘%)roaches needed for this paper

cluster-based Kalman filter was proposed. Here, a camera
selected as a cluster head which aggregates all the measure-
ments of a target to estimate its position using a Kalman filtér Brief Review
and sends that estimate to a central base station. Our proposdd a network of agents, consensus can be defined as
tracking system differs from this method in that each camereaching an agreement through cooperation regarding a certain
has a consensus-based estimate of the target's state and djuasitity of interest that depends on the information available
there is no need for additional computation and communic@ measurements from all agents. An interaction rule that
tion to select a cluster head. As will be described in Section I'gpecifies the information exchange between an agent and all
we apply in a special way the distributed Kalman-Consensuosk its neighbors in the network and the method by which
filter [28] which has been shown to be more effective thathe information is used, is called a consensus algorithm (or
other distributed Kalman filter schemes. Consensus schemestocol). Cooperation means giving consent to providing
have been gaining popularity in computer vision applicatiorme’s state and following a common protocol that serves group
involving multiple cameras [41]. A related work that deals witlobjective.
tracking targets in a camera network with PTZ cameras is [33].For example, in a network of temperature sensor, the
Here, the authors proposed a mixture between a distributed artisors’ estimates of temperature could be different due to
a centralized scheme using both static and PTZ cameras igease noise and local variation. The sensors then interchange
virtual camera network environment. Our approach to trackirmgformation with their neighboring sensors, and use the infor-
in the camera network, however, is completely distributediation to refine their local estimates. Consensus is reached
using consensus algorithms. Another problem that has receivetgen all sensors agree on a single value.
some attention in this context is the development of distributedDistributed computing [20] has been a challenging field in
embedded smart cameras [3]. The focus of this paper, howewamputer science for the last few decades. A lot of work has
is on the algorithm side, rather than building a specific smdseen done on consensus algorithms which formed the baseline
camera architecture. for distributed computing. Formally the study of consensus
The problem of multi-view activity recognition have beeroriginated in management science and statistics in 1960s (see
addressed in many papers, e.g., [44], [45], but the informatif®]). The work in [42] on asynchronous asymptotic agreement
of multiple views is fused centrally. Our proposed frameproblems in distributed decision making systems and parallel
work is decentralized: each camera determines a probabilist@amputing [2] were the initial works in systems and control
measure of similarity of its own observed activities to a préheory on a distributed network. A theoretical framework
defined dictionary and information is dispersed to computefar defining and solving consensus problems for networked
consensus-based estimate. A preliminary framework for didynamic systems was introduced in [30] building on the earlier
tributed tracking and control in camera network was presenterk of [11]. Consensus algorithms for reaching an agreement
in [38]. However, instead of only considering target-basedithout computing any objective function appeared in the
network topology [38], in this paper we also define a netwonkork of [15]. Further theoretical extensions of this work were
topology based on communication constraints which is mopeesented in [35] with a focus towards treatment of directed



information flow in networks. In [15], a formal analysis was [ Possible view range of C;
provided for emergence of alignment. The setup in [30] was
originally created with the vision of designing agent-based
amorphous computers for collaborative information processing
in networks. Later, [30] was used in development of flocking
algorithms with guaranteed convergence and the capability to
deal with obstacles and adversarial agents [27]. Recent works
related to multi agent networked systems include consensus
[19], collective behavior of flocks and swarms [27], sensor
fusion [28], random networks [13], synchronization of coupled
oscillators [32], algebraic connectivity of complex networksig. 1. Conceptual illustration of camera network topologi€s.C C
[26], asynchronous distributed algorithms [23], formation corg the subset of all cameras viewing targétand the rest of the

. . ameras ar€;~ C C. C;" C C is the set ofneighboring cameras
trol for multi robot systems [9], dynamic graphs [24], an f C; and defined as all the cameras with whi€h is able to

M Current view of camera

<> Communication connection

complexity of coordinated tasks [14]. communicateCy C C is the set ofoverlapping camerasf C;, and

The goals of most consensus algorithms usually incluikedefined as all the cameras with whi€h can potentially have an
[12]: overlapping field of view.
1. Validity: The final answer that achieves consensus is a valid . . _ . _
answer. information of multiple views is fused centrally. In this paper,
2. Agreement: All processes agree as to what the agreed up¥f¢ Propose a framework for distributed activity recognition.
answer was by the end of the process. Each camera determines a probabilistic measure of similarity
3. Termination: The consensus process eventually ends wiff its own observed activities to a pre-defined dictionary, and
each process contributing. then disperses this information to compute a consensus-based
4. Integrity: Processes vote only once. estimate with only point-to-point communication between

Many consensus algorithms contain a series of events (48 cameras. We show mathematically how to compute this
related messages) during a decision-making round. Typi€&NSenNsus based on the similarity score computed at each
events include Proposal and Decision. Here, proposal typica#§mera and the transition probabilities between activities (can
means the communication of the state of each agent afyuniform if no prior information is available).
decision is the process of an agent deciding on proposals
received from its neighbors after which it is not going to
receive any proposal from the neighbors to come a differeniV. DISTRIBUTED TARGET TRACKING USING KALMAN
conclusion. In our application domain of camera networks, the CONSENSUSFILTERING
agents are the cameras and the state vector we are trying to
estimate are the position and velocity of a set of targets and than this section, we present the first major result of this paper

ID of an activity based on a learned dictionary of activities.- how to track multiple targets in a camera network using
a consensus algorithm that relies on the tracks obtained at

individual cameras. For this purpose, we leverage upon the
Kalman-Consensus algorithm in the distributed processing and
In distributed camera networks, the cameras act as amulti-agent systems literature [28], [29]. However, there are
tonomous agents. Each camera determines its own estimateashe major differences due to the nature of cameras, and we
the object’s stateg(g, position, activity label). The camerasshow how to handle them.
then share local estimates with their neighboring cameras inCameras are directional sensors and thus geographically
an iterative fashion, and a final estimate is arrived at in thighboring cameras may be viewing very different por-
network using consensus algorithms [29]. tions of the scene. On the other hand, cameras that are
1) Distributed Tracking:There have been recent attempts tgeographically far away may be observing the same target.
achieve dynamic state estimation in a consensus-like manriérerefore, we can define a target-based network topology,
In contrast to a central Kalman filter where state informatiowhere the neighborhood structure is defined with respect
coming from several sensors is fused in a central statian, each target. Since targets are dynamic, this target-based
Distributed Kalman Filters (DKF) compute a consensusepology changes over time. However, the communication
based estimate on the state of interest with only point-toenstraints due to bandwidth limitation or physical network
point communication between the sensors [28]. A distributednnection, which is most important in practice, naturally
Kalman filtering (DKF) strategy that obtains consensus afetermine the communication-based topology of network. The
state estimates was presented in [28].The overall performamoenmunication-based topology is somewhat static, since the
of this so-called Kalman-Consensus filter has been shownlandwidth limitation or physical connection won't change in
be superior to other distributed approaches. It is on this DK short time period. The distributed tracking is achieved by
strategy that we base our distributed tracking algorithm. Tlensidering both the communication and target-based network
mathematical details are presented in Section IV-A. topologies. In the next section, we will describe this process
2) Distributed Activity RecognitionThere have been meth-in more detail. Also, we will show how to take into account
ods on multi-view activity recognition [44], [45], but thethe handoff of targets as they move between cameras.

B. Consensus in Distributed Camera Networks



A. Problem Formulation 4 to represent this case, i.e.,

Let C be the set of all cameras in the network. We can (Z)4(k) = (F)gx! (k) + (V)4 (k)
then define the subset of all cameras viewing tarfietas ’ 100 0
C} C C and the rest of the cameras@$ C C. Each camera and (F), = { 010 0 } . (3)
C; will also have its set ofeighboring camerag€ C C.

Based on the communication constraints due to bandwidth _ ) - |
limitation and network connection, we define the Ggtas all Case 2: 3(k) is the observed target position on the image
the cameras with whicl@; is able to communicate directly. Plane ofC;. To differentiate with Case 1, we use a subscript

In other words,C; can assume that no other cameras other'-€-

than its neighbor€? exist as no information flows directly (Z)e(k) = (F) Xt (k) + (VD) e(k)

from non-neighboring cameras ;. Note that the set of ’ (F)i (f )z_ 0 0

neighbors need not be geographical neighbors. We also defirnd ~ (F;). = [ (f”)’ (f”)Z 0 o } =[F o],
21)4 22)4

the set ofoverlapping camerasf C; asC; C C; since all the )
cameras can change their PTZ parameters and have therefore
several possible fields of view, we define the Ggtas all the - i i -
cameras with whichC; can potentially have an overlapping where F; = 2231 Eg;gl Foe {F: R — R%}
field of view. By definition, it becomes clear then that fodenotes the mapping from ground plane to the image plane
eachC; € CP, it is true thatCy C {C? U C;}. We define of C; ™. O
C¢ C C as the connected component tidatis in. We assume o i ]
Co C C¢, that is to sayC; is able to exchange information _Our speC|a_I mplemgntan_on of the KaIr_‘nan—Cor_lsensus dis-
with its overlapping cameras directly or via other camerddPuted tracking algorithm is presented in Algorithm 1. We
(Assumption *). An example of the camera network is Showﬁiescrlbg it for .the general system mpdel of Equathns (1) and
in Figure 1. (2)_ and is gpphgable for the tvyo spe_C|a_I cases des_cnbed above.
As mentioned earlier, we propose a special application This algorithm is performt_'-.\d in a distributed fashion by each
the Kalman-Consensus Filter presented in [28] to solve thBMera node’;. At each time step: and for each target;,
problem of finding a consensus on the state vectors of multipl§ aSSume we are given Fhle prior estimated target sjaad
targets in a camera network. We consider the situation whdf§ €rTor covariance matri; at k using measurements up to
targets are moving on a ground plane and a homogragyd including time(k — 1). At time ?tepk =0, ths Kalnl1an-
between each camera’s image plane and the ground plan&fg1Sensus 1;|Iter is initialized with; = Py andx; = X, =
known. We will show how the state vector estimation for eaci€rage ofiz),(0)'s of cameras viewind/;. _ ,
target by each camera (i.e., each camera’s estimates baséaomparmg with the Kalman f|lter with centralized fusion
on its individual measurements) can be combined togettbf- @ll the cameras send their measurements to a central
through the consensus scheme. This method is independd€essor. and tracking is preformed centrally, see Appendix
of the tracking scheme employed in each camera, which mfa} W€ can see the fundamentals of Kalman-Consensus track-
Br ajrmot-BersseslsTthekiiaiman filter. ing algorlt.hm described in Algorithm 1. If; is viewing a
target 7}, it obtains7;'s measurement. and computes the

To model the motion of a targéf; on the ground plane coresponding information vectar: and matrixUL. Similar
as observed by cameid;, we consider a linear dynamicaly, [31], we define the information matrix and vector of

system with time propagation and observation models: C; € ¢/ as Ul = 0 andul = 0 by assuming that their

X(k+1) = Al(k)X(k)+B'(k)w! (k); x'(0) (1) output matrice; are zero, ek, = 0 forall C; € ¢/~ to _
(k) FL (k)X (k) + VL (k) @ avoid any ambiguity arising from the lack of mgasurements in
v ! ' these cameras. If’; € C and the communication graph for
where w!(k) and vi(k) are zero mean white Gaus-C; is fully connected, such thaf; can receive information
sian noise {'(k) ~ N(0,Q"),vi(k) ~ N(0, Rﬁ,)) and from all the other cameras viewing the same target, by fusing
x'(0) ~ N(x4,Po) is the initial state of the target.information vectors and matrixes, the local state estimation at
We define the state of the target at time stépas C; is the same as central estimation. However, in the more
X (k) = (21 (k), vt (k), &' (k), 5t (k)T where(z! (k), y'(k)) and typical situation, the neighbors of each cameras are different;
(#'(k), 9! (k)) are the position and velocity of targétin thez  therefore, at each time instant the information each camera
andy directions respectively. The vectelris the state of target receives to fuse may also be different. There is no guarantee
T; by C; based on the measurements(f only. The vector that the state estimates at different cameras remain cohesive.
ZL(k) is the noisy measurement at caméra z.(k) can be Thus a consensus step is implemented right as part of the
measured on either ground plane or image plane. We consigstimation step. By comparing the fusion step (5) and Kalman-
both cases and can show that it doesn't affect the performamesmsensus state estimation step (6) in Algorithm 1 with the
of distributed Kalman-Consensus tracking algorithm, i.e., thesentralized state estimation (26) in Appendix A, it can be seen
two different cases of(k) give equivalent tracking results. that our Kalman-consensus filter is essentially a distributed
Case 1: z(k) is the sensed target positigm!(k), yi(k)) on o _ _

As homography is applied on homogeneous coordinates, the mapping from

the grour.]d plane based on the pre-computed homogra round plane to the image plane is nonlinear, &his a linear approximation.
between image plane and ground plane. We use a subscsipte " € {F : R2 — R2}, F is invertible.

z



Algorithm 1 Distributed Kalman-Consensus tracking algorithngg the information vector and matrix are
performed by evenC; at discrete time stefp. The state estimate .
of T; by C; is represented by. with error covariance matriR: (see (Uj)e = (Flb)C Ré)c (Zé)c
Sec. IV-A). - T - - -
l l -
= (Fi(Fi)g) (Fi(RY)F) ™ Fi(2))g

] TR - -
Input: X; andP; valid atk using measurements from time step- 1

T(

for eachT; that is being viewed by{C{ U C;} do
Obtain measuremenzf, with covarianceR!
Compute information vector and matrix

l 1T ply—1,1
up =F (R) 'z

T _
U = FT (R

Send messages! = (ul, U, x!) to neighboring camerasy
Receive messages; = (u, U’,%!) from all cameras’; € CJ*
Fuse information matrices and vectors

yi= > uw, Si= Y U ®)
JE(C;uct) JE(CuCT)
Compute the Kalman-Consensus state estimate
Mi= (P~ +8)7!
% =%+ MY, — Six) +yME D (% — %)) ®)
jecy

v =1/(IMY[ + 1), IX]] = (tr(XTX)) %

— substituting (8) and (9)

= (F), EF(ED)'\(RY, F'E(Z),  (10)
= (F), RY, @),
= (ui)g
and

(Ui)e = (FD). (R (Fh).

= (Fi(F)y) (F(RD,FT) ™ FulFl),
— substituting (8) and (9)

= (F), EN(ED)\(RY, FUE(FY, A1)
= (F), (R, ' (FY,
= (Ui)sr

Since the information message exchanged between cameras

are the same for both casesz)f whether the measuremezjt
is measured on ground plane or image plane does not affect
the tracking algorithm; these two cases give the same result.

Propagate the state and error covariance matrix from timeksteg + 1
[ IialT I
P; — A'M;A"” +B'Q'B
%t — Algt )

end for

C. Handoff and Fault Tolerance

Through this algorithm, eacld’; has a consensus-based
ground plane state estimate of each target that is being viewed

. . . . . .bx the cameras with whiclC; can exchange information
implementation of the centralized case with the ConS'derat'%wectly or indirectly, even ifC; has never seen some of the
L 7/

of communication constraint by adding a consensus term in

(6). It is proved in [28] that all estimators asymptotically reachargets. Smce We are assuming tha_t IS NEWork ot cameras as
an unbiased CONSENSUS, i®,— -+ = &, — X a whole is always covering the entire area under surveillance,
’ by - M T .

each target will always be seen by at least one camera. Also,
As shown in Algorithm 1, the information vectar, and PY our definition of overlapping cameras, a targét will
U, exchanged between camera nodes are computed vitlyays move from one camefd’s FOV to the FOV of an
measurement!, covariance matribR! and output matrix,. ©verlapping camerd’; € C7. Moreover, byAssumption *,
Consider the two cases of measurem@y, and (z.). as in C; can exchange information with its overlapping cameras,
(3) and (4). We denote their corresponding information vectgr» directly or via other cameras. Therefor€; can take over
and matrix as(u;),, (U;), and (u;)., (U;). respectively. The the tracking ofﬂ anq find the target correspondence in a
following shows that(u;), = (u;). and (U;), = (U;).. sea_n_ﬂess way since it had knowled_gei@fs gro_und plane
’ position through the consensus-tracking before it even entered
Recall that(zé)g and (zé)c are the measurements on grounas FOV. Additional target features could be used to find the
plane and on the image plane ©f respectively and”; is the target correspondences in a cluttered scene.
mapping from ground plane to the image plane. It is obvious Another advantage of the fact that cameras have knowledge
that of all the targets in their neighborhood is that in the event
of a sudden failure of camera nodg, the targets that were
viewed by(C; are not suddenly lost by the camera network.
We have also considered the fact that a camera may take a
short amount of time to change its parameters to a new position
in a non-static camera network. If no camera is viewing the
target for the short amount of time it takes for the cameras to
come to a new set of parameters to cover the entire area, the
target state estimate and covariance continue to propagate by
(7). This does not translate to a significant decrease in tracking
performance as seen in our experiments.

(Z)g ®)
(F)gX' + Ey(V)),-
— from (3) and (4)

(z)

Zi‘ c Fi
JF(Vé)c — i

= (Fi)CX

Then
(Fi)c = }?i(F)g» (9)

— from (8) and definition of covariance matrix



D. Experimental Results the fully connected one, direct communication does not exist

. . between camera 1 and camera 3, neither between camera 4
We tested our approach for tracking in a real camers

{hd camera 8. Figure 3(c) shows the KCF tracking results
network composed of 10 PTZ cameras looking over an outdo, Camera 1 for tﬁis cas(e) which is denoted as KCgFZ It is
area of approximately 10000 sq. feet. In the area under survejl: ' ’

: htly different with KCF1, due to the difference of fused
lance, there were 8 targets in total that were to be tracked US|A rmation. The consensus method is guaranteed to have the
our distributed Kalman-Consensus filtering approach. In o X

: t th s (ie. the ob q ii gé\ge result as centralized case if there are no limitations on the
experiment, the measurements (i.¢., the observed posi 10NZ Shmunication capabilities. In the case of partial connection

targets) are obtained using histogram of gradient (HOG) hffj'étween cameras, KCF will converge to the same estimate

man detector [5]. The association of measureme_nts_to targe_tééﬁtralized result as the number of consensus iterations goes
achieved based on appearance (color) and motion mformatl? “infinity [28]. However, the limited communication wil

F;g;rt? 2 S.hO\tNS tthe tracking results as viewed by each CamEL&ult in differences from the centralized result for finite steps
at 2 time Instants. i as shown in Figure 3(c)). However, even in this case, the
The results are shown on a non-static camera network. sensus result is better than that obtained at each individual

cameras are controlled to always cover the entire area undgf ara as shown in Figure 3(d) and explained below,
surveillance through a game theoretic control framework We . order to measure tracking performance, we compare

Eé?tri)lsssegolgs[ii]t. gfseci)iﬂflns)(iea:jbuor\éec’)ft:]hi iha?g%er]-zzﬁzgnniﬁ%s tracking results with the groundtruth trajectory, which is
9 P SHown in Figure 3(c). In the table at the bottom, we show the

filter. Figure 2 (a) shows the initial settings of the camerg; imum, maximum and average distances to the groundtruth

network that covers the entire area. As the targets are obsery N
L ; . . g of CF1, KCF2 and individual camera tracks. It can be seen
in this area, the single-view tracking module in each camera . L
. Iy . that KCF1 performs best and KCF2 is better than individual
determines the ground plane position of each target in IS :
. . camera tracks. We also look at the output error covariance
FOV and sends that information to the Kalman-Consensas , : ; :
i . . . . . . “matrix P of the Kalman filter. The higher the trace &f
filter which processes it together with the information receive ) . :
) . . IS, the lower the tracking accuracy is. Figure 3(d) shows the
from the Kalman-Consensus filters of neighboring cameras as : : ;
. ; : traces of the covariance matrix of the tracking error for the
described in Section IV.
Figure 2(b) shows the instant when a cam€gais focused

same target as in Figure 3(b) and (c). The colored lines with
: : symbols correspond to tracking results from different cameras
on a targef’!. Figures 2(b) and (c) show the dynamics of th y P 9
targets in the camera network. All targets are tracked usi

Esing their own measurements only (as each camera runs an
the Kalman-consensus scheme, although we show the mar

pendent Kalman filter), while the solid black line is the
. It of consensus-based estimate for the fully connected
.trac.k for only one target. The_ handoff @f is clearly Shf""’” case (which will be the same for the centralize()j/ case) and
in Figure 2(d) fromC’ to Cs. It ,'S to be.noted that every time 84ashed purple line is for the partially connected one. As can be
target goes from one cameras FOV into another one, or'wh Sen clearly, the Kalman-Consensus filter with full connection
a camera changes Its pgrameters, the network topologies 8fforms the best, and partially connected one does better than
the targets, i.e; andC; ™, also change.

, P individual Kalman filters without consensus.
Figure 3(a) shows the distributed Kalman-Consensus tracks

for the 8 targets. The measurements of the different cameras
are shown in a light gray color. As can be seen, the Kalman-
Consensus filter in each camera comes to a smooth estimateV. DISTRIBUTED ACTIVITY RECOGNITION TROUGH
of the actual state for each target. CONSENSUS
Figure 3(b) shows the distributed tracking results on the
ground plane for one of the targets;. The dots correspond In this section, we consider the problem of activity recogni-
to the ground plane measurements from different cametisn in a camera network where processing power is distributed
viewing the target while the solid line is the consensus-basagross the network and there is no central processor accu-
estimate. As can be expected, the individual positions afulating and analyzing all the data. Each camera computes
different for each camera due to calibration and single-viesv similarity measure of the observed activities in its views
tracking inaccuracies. As can be seen clearly, even thougfainst a dictionary of pre-defined activities. Also, the transi-
C¢ is time varying, the Kalman-Consensus filter estimates tfien probability between activities is known. This is a common
target’s position seamlessly at all times. assumption used in many activity recognition approaches and
In Figure 3(a) and (b), the cameras that are viewing the sacen be learnech priori from training data [4], [7], [18],
target can communicate with each other directly, ¥&.C/ is  [25], [36]. If no such information is available, the transition
a fully connected graph. As shown in Sec. IV-B, the resultsatrix can be assumed to be uniform. Based on the computed
are exactly the same as a centralized case similar to eadhilarities at each camera node and the learned transition
cluster of [22]. We denote the results of this fully connecteghatrices, we show how to compute the consensus estimate
case as KCF1. In order to show the effect of the netwoik a probabilistic framework. Essentially, the consensus is a
communication topology on the Kalman-consensus trackingrobability of similarity of the observed activity against the
we consider an example of a partially connected networdtictionary taking into account the decisions of the individual
which is shown on the right-top of Figure 3(c). Compared tcameras.



]

(d) k = 138

Fig. 2. Each sub-figure shows 10 cameras at one of four time instants denoktedrbg track of one target, marked with a box, is shown. All targets are
tracked using the Kalman-Consensus filtering approach, but are not marked for clarity.
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Fig. 3. Tracking results. (a): Distributed Kalman-Consensus tracking trajectories for 8 targets. Measurements from all cameras are shown in a light gray
color. (b): Tracking results on the ground plane for one of the targgtsin (a) and (b), the cameras that are viewing the same target can communicate

with each other directly, i.e¥l,C} is a fully connected graph. The results are exactly same as centralized case. We denote the results of this full connection
as KCF1. (c): KCF tracking results at Camera 1 given an example of a partially connected camera network, which is shown on the top-right. This case is
denoted as KCF2. We can see that Cam (1,3) and Cam (4,8) cannot communicate. The groundtruth trajectory is also marked. The comparison of tracking
performances (minimum, maximum and average distances to the groundtruth) of KCF1, KCF2 and individual camera tracks are shown in the table at the
bottom. (d): Trace of the error covariance of the tracking results for the same target shown in (b) and (c).

A. Problem Formulation and Main Result information is available, the transition matrix can be assumed

o to be uniform. Giveny(k), observationO(k) is assumed to
Let us assume that' there ah& cameras ViIewing a personpe jndependent of other observations and states, i.e.,
performing some actions. The observation of cam@rain
(13)

the k" time interval is denoted a®);(k),i = 1,...,N,. P(O(k)|Y*, 0 1) = P(O(k)|y(k)).
Let O(k) be the collection of observations from all the Based on Bayes’ rule and above Markov chain assumption,
cameras, i.e.0(k) = {O1(k),...,On.(k)}. Its history is we can show that the following relationship holds (see Ap-
OF = {O(1),...,0(k)}. The problem of activity recognition pendix B for proof):

can be formulated so as to estimate the conditional probabiliggsult 1.

P(y(k)|O%), wherey(k) € {1,...,Y} is the label of the i 1
class of activity in a dictionary ol” activities with history P(y(k)|O") = P(O(k)|Ok-1)
YE={y(1),...,y(k)}. N,
It is a somewhat general assumption that the state transitions : H P(O;(k)|y(k))
of activity classy are governed by the transition matrix for a j=1
1%t order Markov chain [36]:
P(y(k) = aly(k — 1) =, Y*~2) 2 P(y(k)ly(k — 1)) P(y(k — 1)|0*)
(ki

= P(y(k) = aly(k — 1) = d')
=m(d,a).

(14)

12 .
(12) where }° ) mean summing over all values gfk) =

m(a’,a) can be learned priori from training data; if no such 1,...,Y. O



Ana|ys|s of Result 1: By Observ|ng the r|ghthand side OfAlgorlthm 2 Distributed Consensus based activity recognition

equation (14), we notice tha®(0O,(k)|y(k)),j = 1,..., N,

is the likelihood of camerd’;’s observatlon The f|rst term of

the righthand side is a constant with respecyb), so that it
can be treated as a normalization factor and denoted(by;
ie.,

1
A
"= pomorTy
So we rewrite (14) as
P(y(k)|O") = HP
> Py(k)y(k —1)P(y(k — 1)|0*)
y(k—1)
(15)
We define the state of the activity at camera asw; =
[w}, w?, .- m}ﬂT, where

w® 2 P(y(k) = a|O%),a=1,...,Y.

The likelihood of camer#&’;'s observation is denoted by =

[0}, 02, ,UiY]T, where
v & P(O;(k)|y(k) =a),a=1,...,Y.
Thus,
Nc
wi (k) = ~v(k) | | P(O;(K)|y(k) = a)
j=1

~ ( S Ply(k) = aly(k — 1) = ) Py(k — 1) = a'|o“>)

e Y
= (k) [ o5 %) <Z m(a’, a)ywf (k 1)) (16)

a’=1

Based on the above argument, we have the activity recog-
nition algorithm described in Algorithm 2 for each camera in

the network.

Regarding the normalization factet(k), we have the fol-
lowing result (see Appendix C for details).

Result 2.

- lz T1 P(O;(h)ly(k)

y(k) =1

: ( > Plyk)ly(k -

y(k—1)
O

Result 3. The local activity recognition procedure for node

algorithm performed by everg’; at stepk.

Input: w; (k — 1)
for each person that is being viewed bgs U C;} do

Obtain observation®; (k)
Compute local likelihood

v (k)
vi(k) = |: ] = :
oY (k) P(O;(k)ly(k) = Y)

Sendv; (k) to neighboring cameras]®
Receivev; (k) from all cameras”; € CI*
Fuse |nformat|on to estimate acnvny state

(k)

L w) (k)

7

P(Oi(k)|y(k) = 1)

[ 90 e ccuem vh ) (Voo mia, og (k= 1))

|0 eqcpuem v ) (X3 2y mia, Yol (k= 1))
vk T A (R)MTW(k 1),

je(cuey)

Y Y , -1
y(k) = (Z IO (Z m(a/,a)af’ (k - 1)))
=1je(C;u a

uer)

-1
=% JI AveMIwE-1)|
je(cuer)
whereM is aY x Y matrix with (i, j)*" element to ben(, 5),
vj (k)
A(v;(k)) =
vY (k)
1
: } with Y elements.

1

andly =

repeat
Sendw; (k) to neighboring cameras!*
Receivew; (k) from all camerag’; € CI*
Compute the Consensus state estimate

w; (k) +e > (wy(k) —w;(k))

JECY

Wi (k) =

until  either a predefined iteration number is reached or
Zjecn(w](k:) — w;(k)) is smaller than a predefined small
value

end for

<0

1) Py(k — 1>|o“>)] o

j=1 a'=1
a=1 Y,
Y N. Y -1
2w = (S Tew (z (e, a)ut ( — 1>)
a=1j=1 a’=1

O

based on fusion of the recognition results in all the camerahe proof of Result 3 follows directly from Results 1 and 2.
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Extracted Shape

Based on the network topology defined in Section IV-A, rraining pata 2 Projection Sequence
each camera can only communicate with its neighbors. Ac Y :
B P

Mean Shape

cording to this local activity recognition algorithm, there is nc il b
guarantee that the estimates remain cohesive among nodes."

use an ad hoc approach by implementing a consensus step right
after the estimation step to reduce the disagreement regarding

Calculate
Distance

Similarity
Measure

the estimates obtained in Result 3, from which Algorithm 2 Y »: »
can be inferred. This consensus approach is similar to the one a3
proposed in [28] for the Kalman-Consensus filtering. However, Fest Data Bxtracced Shape Mean Shape
a number of iterations are done in each time segment so as to Simtlarty Measure «
. Distance
converge to a consensus estimate. Fig. 4. Block diagram of the activity recognition process. For training

The cameras that exchange information in the consensigig the 3d action models, orthographic projections were taken for different
stage are defined based on the communication constraiigving angles. From the projections, shape sequences were extracte_d frqm
th f iti ible that . lved in th which the mean shape was calculated for each viewing angle. For testing, in

ereiore, ' IS possi _e_ ata C_amera involved in the Consen§}f'r§|ar way the mean shape were extracted. The Euclidean distance between
does not view the activity. In this case, such a camera transmiiks mean shapes were computed by comparing the test mean shape to all

a value ofv; = %1% i.e., by assuming equal likelihood forthe rt{aini_ng meetihn sg_a[i_es. TheToE_es v;/ri1th the_loweslt dfisttﬁ';m%g \t/vas selected for
: : each action in the dictionary. Taking the reciprocal of the distance measure
all possible action classes.

and normalizing it so that the sum of all the similarities is 1 gave the similarity
measure of the actions.
B. Experimental Evaluation (@) Camod (&) Cami.

To validate our proposed consensus approach for activity *
recognition, we carried out an experimental evaluation. Wemz
did activity recognition using multiple cameras and came to a§j .
consensus about the actions taking place using the theory f s
Section V-A. s

For this, we used the IXMAS dataset [45]. In the dataset, -’
there are sequences of images of different people doing several ' ° ranngscions PP Saining Actons
actions. The extracted silhouettes of the people in those actions (© cam @ Cams
are also given in the dataset. Five cameras were used to capture
the whole activity which were placed at pan and tilt angles of
(120°,10°), (90°,10°), (30°,30°), (0°,10°) and 60°,90°),
where( ° pan angle means looking at a person from the front
and 90 ° means to look at him from the left. A 3-dimensional
motion-model of each person doing the actions is also given
which has approximately 3500 voxels on a person. PR i © Y ancions

We used the 3-dimensional motion-model as our training
data and the silhouettes extracted from each camera as our test
data. To build our training database, we took the orthographic -
projection of the 3-dimensional voxels on an image plane by *
rotating our virtual camera around the model with pan angles: *
from 0° to 330° in increments o880 ° and for each pan angle
we used tilt angles ofi0° and 30°. The actions we used
in our experiments from the dataset are: looking at watch, —+ 2 3 ¢ < 2 o
scratching head, sit, wave hand, punch, kick and pointing a
gun. These are later referred to as Actions 1 through 7. Fdg- 5. (a-e) Similarity matrices of the activities for the cameras
each action and each camera viewpoint, we extracted the Sh.C2mLcam2cams and camé; () Simarly malr of the actvies for,
silhouette using 40 landmarks, i.e. 40 uniformly distributegtratching head, sit, wave hand, punch, kick and pointing a gun, respectively,
contour points per shape in each frame. In a similar fashighfrom the IXMAS dataset.
we extracted the shape sequences of the test data, i.e. the
silhouettes from different camera views. The activity recognition is performed individually in each

For matching two shape sequences, we used a shapkethe cameras depending on its own current observation. In
based activity recognition algorithm based on work in [43pbur experiment, we have five cameras, i.e. cam0, cam1, cam2,
The distance between two shape sequences is measureddm3 and cam4. We consider a network topology where the
comparing the mean shapes of the two sequence. Then neéwork is not a full mesh, rather each camera is connected to
took the reciprocal of the distance measure to get a similarityo other cameras only. So, after the activity recognition stage,
measure between two shape sequences and normalizedetheh camera shares the detection result with its immediate
similarity measures to convert them to probabilities. A blockeighbor. Each camera fuses the detection results of itself and
diagram of the overall activity recognition process is given iits neighbors, final detection result from the previous time step
Figure 4. k—1, and the transition probabilities between different actions,

Test Actions
I R I S R SR

6

7

Test Actions

Test Actions

2
3
4
5
6
7

(e) Cam4 (f) Consensus of five cameras

S|

Test Actions

Tes

5
6
7

=3
~
-

6 7



11

1 T T
—e—looking at watch

£ 00| = B =scratching hes i ) looking at | scratching - wave ) )
5091 = B =scratching head
é i :::' ching heac action watch head sit hand punch kick point
E 08 i 1
£ 98] —4=wave hand .
2 |- e =punch A looking at | 1504 0.1854 0.1790 0.1825 0.0871 0.1033 0.0823
= o7 A i watch
= kick l' ‘\
£ oo ~¥pointing a gun ’ * , scratehing | 5745 0.1758 0.1896 0.1736 0.0991 0.0908 0.0969
g A . . head
s s ‘ K
Z 05 G . . Ny 4 i
E ,o . K s sit 0.1914 0.1889 01118 0.1949 0.0992 0.1066 0.1071
£ ‘ . E . ]
g% . *y S * wave hand | 0.2172 0.1055 0.1151 0.2050 0.1093 01212 0.1266
s o punch 0.0807 0.0943 0.0801 0.0984 0.2500 0.2396 0.1569
E “':’ Kick 0.0810 0.0842 0.0818 0.0865 0.2485 0.2481 0.1699
<
]
&0 point 0.1480 0.1483 0.1387 0.1364 0.1500 01317 0.1469

0 1 2 3 4

time step, 'k’
(a) (b)

Fig. 6. (a): Graphical representation of the final detection result, i.e. the result of the consensus stage in each time step, for the sequence punch-kick-punch-
kick. The vertices in each line at each time step represent the probability of a particular action. It was assumed that in kimeOstejb the activities were

equally likely. We use a non-uniform transition matrix, as shown in (b), where there are high transition probability between the punch and kick, and there is
also some moderately high transition probability between looking at watch, scratch, sit, wave hand and point.

1

and gets a new probability distribution of the actions. After this
stage, the cameras initiate the consensus algorithm and try t
converge to the same detection results.

In Figure 5, we show the similarity matrices, i.e. the = 7 ]
probability of match for each test activity (the row of a = | i
matrix). The more white the cell block is, the test data it  os
refers to is detected with more probability as that action. 2 oz ]
Five of the images represent the similarity matrix for the test = |
data captured by each camera and the sixth image shows the O kg s st vaernd e Kk poming
similarity matrix of the consensus for all of these cameras. The _“
similarity scores of correct matching are the diagonal values B Comsensus o sl S camerss oot outot s cameras
of the similarity matrix. Comparing with other values in the I ra0e Consnus o o combinatons f 3 ut o1 camerss
matrix, the higher the diagonal values (brighter in the imagﬁag. 7. Comparison of average probability of correct match for individual
are, the less confusing the recognition result is. By comparingmera and their consensus for all the activities. Their are seven sets of bars

the similarity matrix of consensus with the test data capturﬂ seven different actions and in each set, there are five bars where the
eftmost one (blue) is the average probability of correct match for individual

by each camera (compare (f) with (a)-(e)), it is clegr th@hmeras and the next four bars the average probability of correct match of
the recognition result after consensus has less confusion tlt@nconsensus over all the combinations of cameras taking respectively five,
others. four, three and two out of five cameras.

091 -

atch

0.8F

S

erage Probability of Correct @:
o

Next, in Figure 6(a), we show a graphical representation of

the final detection result for a sequence of punch-kick-punchac' &> by considering five, four, three and two cameras to

kick, by plotting the result of the consensus stage in each tirﬂgtermlne their consensus and show that the consensus result

step. The vertices in each line at each time step, repres@ﬂ etter than an individual camera, on average. This result
the probability of a particular action in the dictionary. It wa$"OWs the fault tolerance aspect of the consensus process. The

assumed that in time stdp= 0, all the activities were equally "€SUlt IS shown in Figure 7.
likely. As an example, we use a non-uniform transition matrix
where there is high transition probability between puncB. Discussion

and kiCk, and there iS aISO some moderately h|gh transitiqrExperimental Setup’\/e d|d the experiments by running the
probability between looking at watch, scratch, sit, wave harglgorithms on independent threads, one for each camera, and
and point. The transition matrix between different actions {gmmunication between the threads using existing protocols.
shown in Figure 6(b). In practice, if some prior knowledge igve assume here that communication is not a bottleneck. This
available, the transition matrices can be learned/manually SSoposed work is a proof-of-concept study in using distributed
As the transition probability between punch and kick is high, grocessing algorithms for video analysis. Future work should
can be seen that the recognition result (after consensus) kegfissider the practical constraints of using consensus algo-
on improving. rithms in camera networks.

Finally, we generate a statistics to observe the performancelemporal Segmentation for Activity Recognitidn our
of the probability of correct match for individual cameraslistributed activity recognition procedure, the video sequence
versus their consensus. We use every possible subset of theifivdivided into segments, where each segment is treated as
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a observed variable (image features) and associated with a APPENDIXA

hidden variable (activity state). In our experiments, in order KALMAN FILTER WITH CENTRALIZED INFORMATION

to provide a clear comparison of our results with ground FusionN

truth, the observed sequence from each camera is temporally

segmented based on the ground truth. In practice, such &onsider a Kalman filter with centralized information fu-
precise segmentation is not required; the observed sequesiom, i.e., each camera sends its observation to a central
can be uniformly divided into short segments (e.g., 4 secongi®cessor, and tracking (i.e. state estimation) is performed
each). Since our activity recognition results are representedcéntrally. As in (2), the sensing model at camétaof target

the form of probabilities, the non-dominant recognition results, is z: = Fix'4-v!. Thus the central measurement, observation
on the segments where activity transitions happen won't affaglise and observation matrix are defined as

the recognition on their subsequent segments. /1 y =
e SynchronizationThe cameras in the network have been pre- le Vll 1
synchronized, however, the frame synchronization may not be , _ 2 V= .2 F = _ . (18)
perfect due to slight frame rate difference between cameras. : : :

So the transmitted information between cameras includes a zy. Vi =

time stamp. In the distributed tracking framework, when a
camera fuses the information (e.g., state estimations) from
neighboring cameras, it will do interpolation of the information Z = Fix + V!, (19)
vectoru (in Algorithm 1) as necessary. This will ensure that
the information being fused is synchronized. While the activit!
recognition is done on each segment, unlike the frame ba
Kalman-consensus tracking, a precise synchronization of the'S
cameras is not needed; precision of pre-synchronization is
enough. Thus, the Kalman filter iterations in the information form are
e Selection of Parameter¥Ve can see that the consensus step

in Algorithm 2 is a gradient descent algorithm that minimizes  M!(k) = [(Pl(k:))*1 +F (k) R (k) Fl(k)}
the cost functiory(w;) = 3 Z ecr (w; —w;)2. The step-size 1
€ > 0 should be a smaII number The ch0|ce eofs based . 1 LT o1 =1

on reasoning similar to what is used for gradient descent. The (k)™ + Z Filk) Ri(k) Fi(k)|
simplest way is to set a fixed small number, while some (21)
suggest using an adaptive step-size. In our experiments, the . . .
step-sizee is fixed at 0.01. K'(k) = M (k)F (k)
e Integration of tracking and activity recognitiorSince the f(l(k) = )‘(l(k) 4 Kl(k)(z (k) — Fl(k)xl(k;))
distributed tracking and activity recognition can be achieved

through analogous frameworks (though the detailed fundamen- = )‘(l(k) 4 Ml(k)
tals are different) by estimating locally and fusing through

consensus, it is possible to integrate these two by designing T
integrated local estimation and fusion schemes. We address — F'(k) RY(k)
the integration as a future work.

\A{hereN is the total number of cameras. Then we get

herex! = (2!, 4!, 3!, y")T is the same as in Sec. IV-B.
assumingv!’s are uncorrelated, the covariance matrix of

R’ :diag(RllaRlQa"' vRé\TC)' (20)
—1

—1

=1

N.
- (Z Fé(k)TRé<k>1Fé<k>> xl(k)] :
We investigated in this paper distributed scene analy5|s =t

algorithms by leveraging upon concepts of consensus. W& (k + 1) = AM'(k)A!" +B'Q'B!, (24)
addressed two fundamental tasks - tracking and activity recoge (1, + 1) = A'%! (k). (25)
nition in a distributed camera network. We proposed a robust

approach to distributed multi-target tracking in a network dpenoting the information vector and matrix at camera
cameras. A distributed Kalman-Consensus filtering approah as ul(k) = Fi(k) Ri(k) 'Zi(k) and Ui(k) =
was used together with a dynamic network topology for peF (k) Rl(k)_lFé(k), (23) can be rewritten as

sistently tracking multiple targets across several camera views. N, N.

A probabilistic consensus scheme for activity recognition wasg! k) = % Z ul(k) — <Z Ul-(k)> <L (ke
provided, which combines the similarity scores of neighboring — —

cameras to come up with a probability for each action at the (26)
network level. In the future, we will look at the integration oBy comparing (26) with Algorithm 1 where each camera
tracking and activity recognition into a single framework antluses its information vector and matrix and those from its
more complex activities that span a larger area. neighbors, it is clearly shown that Kalman-consensus filter is

VI. CONCLUSION AND FUTURE WORK
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a distributed implementation. ¥{,C; is a fully connected = P(O(k)|y(k))
graph, i.e., all cameras that are viewing the same target can P(OF)/P(OF1)

communicate with each other directly, the Kalman-consensus
filter will provide exactly the same result as the Kalman filter - Z P(y(k — 1)|O* Y P(y(k)|y(k — 1))
with centralized fusion. y(k—1)
_ PO®)ly(k)
APPENDIX B P(O(k), Ok=1)/P(O+~1)
PROOF OFRESULT 1
Assuming there areN, cameras viewing a person per- > Plylk— 1|0 Py(k)|y(k — 1))
forming some actions, the observations of cam@an k'" y(k—1)
time interval are denoted a3;(k),i = 1,..., N.. Let O(k) - expandingP(0*)
be the collection of observations from all the cameras, i.e., P(O(k)|y(k))
O(k) = {Oy(k),...,On, (k)} and its history isOF = ~ P(O(k)|OF—1)P(OF-1)/P(Ok—1)
{O(1),...,0(k)}. Then the statement
Ne > Plylk = 10" M) P(y(k)ly(k - 1))
Py(k)|0¥) = sz T] PIOS(R)lu(k) o
PO T PomorT) Y N o Bayes
Jj=1 — from Bayes’ rule
1
_ = —————P(O(k)|y(k
- ( S Plk)ly(k - 1)Ply(k - 10" 1)) Pogmor M)
y(k—1)
holds VN, > 1. | D0 Pu®lyk - D)Py(k - 10| (30)
Proof: y(k—=1)
P(y(k),O%) ’ The observation of Camer@;, O,(k), is determined by the
P(y(k)|O") = PN - from Bayes' rule  (27)  activity being performed and the view point @f,. If the

activity is known, i.e.;y(k) is given,O;(k) only depends on

We notice thatP(y(k), O*) is the forward variable in hidden the view point ofC; and is mdependent of observations of
Markov model. According to the recursion of the Forwar@ther cameras, i.e.,

Aaorim. e P(O(k)[y(k)) = P(O1(k), ..., On,(K)|y(k))
Py(k).O) = | 37 Ply(k - 1>,o“>P<y<k>|y<k—1>>] T POswIs). 1)
y(k—1) L
P(O(K)ly(K)), (28) 5o we get
(27) becomes N.
P(y(k), 0") PO0IOY) = gt j11ro
_ POW)ly(k))
k
ey - ( > Ply(k)ly(k = 1) P(y(k - 1)I<9’“‘1)> ;
ST Plylk = 1), 05 ) Ply(R)ly(k — 1)) .
y(k—1) 7 which is the statement of Result 1. ]

— substituting (28)

P(OF)
APPENDIXC
{ P(y(k — 1)|O* Y P(O* 1 P(y(k)|y(k — 1))] PROOF OFRESULT 2
y(k—1)
— from Bayes’ rule )
_ P(Ok_l)P(O(k)|y(k)) Given that .
k c
o PUIIOY) = 5o LT PO Mk
: [ 3" Py(k — 10" ) P(y(k)ly(k - >>] =

e 29) ( > P(y(kﬂy(k—1>>P<y<k—1>|ok-1>) ()

y(k—1)



wherey(k) € {1,...,Y}, then

(7]

s 1 [8]
" PomorT)
e [9]
= | > I PO;k)ly(k))
(k) 3=1 [10]
-1
Y Ply(R)ly(k = 1)P(y(k - 1)]O" ) [
y(k—1)
Proof: Sincey(k) € {1,...,Y}, it can be inferred that [12]
Y
> P(y(k)|0%) = 1. [13]
a=1

By substituting (*), we have

1= 3 | et L ORIk

(14]

(15]
N

[16]
y(k) =1
k-1 (7]
> Plyk)ly(k — 1)P(y(k - 1)|0* )
y(k—1)
18
=1= L e
~ P(O(k)|OF-1)
[19]
Ne
1 T PO;(R)ly(k)) 20]
y(k)3=1
[21]
k—1
> Plyk)ly(k — 1)P(y(k - 1)|0*) [22]
y(k—1)
e [23]
=1=7(k) | > [T PO;®)y(k)
y(k) j=1
[24]
k—1
> Plyk)ly(k - D)PEk - DO ) | g
y(k—1)
Ak [26]
=y(k) = | Y T[] PO;k)ly(k))
y(k) j=1 [27]
- 1 28]
> Plyk)ly(k — 1)P(y(k - 1)|0* ) :
[29]
y(k—1)
" o)
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