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SUMMARY

Shoot apical meristems (SAMs) of higher plants harbor stem-cell niches. The cells of the stem-cell niche are

organized into spatial domains of distinct function and cell behaviors. A coordinated interplay between cell

growth dynamics and changes in gene expression is critical to ensure stem-cell homeostasis and organ

differentiation. Exploring the causal relationships between cell growth patterns and gene expression dynamics

requires quantitative methods to analyze cell behaviors from time-lapse imagery. Although technical

breakthroughs in live-imaging methods have revealed spatio-temporal dynamics of SAM-cell growth patterns,

robust computational methods for cell segmentation and automated tracking of cells have not been

developed. Here we present a local graph matching-based method for automated-tracking of cells and cell

divisions of SAMs of Arabidopsis thaliana. The cells of the SAM are tightly clustered in space which poses a

unique challenge in computing spatio-temporal correspondences of cells. The local graph-matching principle

efficiently exploits the geometric structure and topology of the relative positions of cells in obtaining spatio-

temporal correspondences. The tracker integrates information across multiple slices in which a cell may be

properly imaged, thus providing robustness to cell tracking in noisy live-imaging datasets. By relying on the

local geometry and topology, the method is able to track cells in areas of high curvature such as regions of

primordial outgrowth. The cell tracker not only computes the correspondences of cells across spatio-temporal

scale, but it also detects cell division events, and identifies daughter cells upon divisions, thus allowing

automated estimation of cell lineages from images captured over a period of 72 h. The method presented here

should enable quantitative analysis of cell growth patterns and thus facilitating the development of in silico

models for SAM growth.
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INTRODUCTION

A local spatio-temporal coordination of cell growth and cell

division plays a critical role in morphogenesis of both the

plant and the animal tissues. The subject of this study,

the shoot apical meristems (SAMs) also referred to as the

stem-cell niche, is the most important part of the plant body

plan because it supplies cells for all the above ground plant

parts such as leaves, branches and stem. Despite a contin-

uous displacement and diversion of cells into a differentia-

tion program, the size of stem-cell niche remains relatively

constant. Therefore, a tight spatio-temporal coordination

between stem-cell division dynamics and rates of differen-

tiation of stem-cell progeny is critical to maintain a stable

SAM. However, the causal link between cell growth and cell

division and how they, in turn, affect organ formation is not

well understood. This is mainly due to a lack of quantitative

understanding of cell growth patterns. Therefore, the

development of computational platforms that are capable of

identification of cellular coordinates, automated tracking

of cells and cell division events from fluorescent 4-D (3-D

image stack + time) images acquired by using laser
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scanning confocal microscopy is important. Such compu-

tational platforms would facilitate the quantification of cel-

lular parameters such as rates and patterns of cell

expansion, orientation and rates of cell division, and

extraction of such information may lead to the development

of growth models that can explain the causal relationships

between cell deformation dynamics, cell growth and cell

division patterns. This process is a computational challenge

that has universal application to all developmental fields,

both animals and plants. In this work, we present a method

to automatically register cell positions, and compute cell

lineages (i.e. cell tracks through cell divisions) from the 4-D

image stacks of SAMs.

SAMs of model plant Arabidopsis thaliana consist of

approximately 500 cells (at inflorescence stages) and they

are organized into distinct spatial domains as well as

multiple cell layers that are clonally distinct from each other.

The central zone (CZ) of the SAM harbours a set of stem-cells

that divide at a relatively slower rate. The progeny of stem-

cells enter the flanking peripheral zone (PZ) and also the Rib-

meristem (RM) which is located beneath the CZ where they

differentiate (Meyerowitz, 1997). Apart from this radial

organization, the SAM of Arabidopsis is a multilayered-

structure, organized into three clonally distinct layers of cells

(Figure 1). The cells in the outermost L1 layer and the sub-

epidermal L2 layer divide in anticlinal orientation (perpen-

dicular to the SAM surface), while the underlying corpus

forms a multi-layered structure where cells divide in random

planes. Thus, the SAM stem-cell niche represents a dynamic

and interacting network of functionally distinct cell types,

exhibiting coordination between cell division dynamics and

displacement of the progeny cells, both within and across

clonally distinct layers (Meyerowitz, 1997). Regulated pat-

terns of cell division is critical to ensure SAM function

because other mechanisms of tissue homeostasis such as

cell migration and cell death are not detected during SAM

development. Earlier genetic studies have revealed that the

cellular identities, their functions and growth patterns are

regulated by diverse positional and environmental signals.

The challenge for the future is to understand how diverse

signals impinge on varieties of cellular behaviors such as

cell division rates and cell expansion patterns to ensure

tissue homeostasis in SAMs.

Our current knowledge of cell division patterns is derived

from earlier studies carried out on several different plant

species by employing varieties of analytical methods

(Steeves and Sussex, 1989; Meyerowitz, 1997; Lyndon,

1998). Cytological studies and analysis of distribution of

mitotic cells have revealed that the CZ cells divide more

infrequently than cells in the PZ. The serial replica method

has been employed to generate developmental time series

of SAM surface and these studies have produced quantita-

tive description of cell expansion behavior and associated

changes in SAM shape (Hernandez et al., 1991; Dumais and

Kwiatkowska, 2002; Kwiatkowska and Dumais, 2003; Kwiat-

kowska, 2004). A careful and comprehensive morphometric

analysis involving counting of mitotic figures from a large

number of SAMs in Arabidopsis thaliana has yielded a

composite view of mitotic activity (Laufs et al., 1998). The

development of live-imaging methods and suitable fluores-

cent markers has facilitated continuous visualization of

given SAMs for several days (Grandjean et al., 2004; Reddy

et al., 2004). Though these studies have yielded a dynamic

description of mitotic activity, these data sets are under-

utilized in obtaining quantitative measurements of cell

behaviors. Therefore it is necessary to develop new compu-

tational tools for automatic detection and tracking of cells for

extracting the cellular positions of all cells of SAMs from

time-lapse datasets. In this study we report the development

of cell tracking algorithm which has been implemented on

SAM cells of Arabidopsis thaliana.

We have used confocal laser scanning microscopy to

observe given set of Sams labeled with plasma membrane-

localized yellow fluorescent protein (YFP), repeatedly for

about 3 days by taking serial images at every 3-h intervals

(Figure 1). The images obtained from live-imaging study can

be noisy due to the poor signal to noise ratio; thus, the

tracking method has to be robust enough to account for this

noise. This apart, the cells are highly clustered together in

space which presents a significant challenge in maintaining

the correspondences of individual cells over extended

periods of time.

One of the well known approaches in tracking cells is

based on level-sets. A level-set is a collection of points

over which a function takes on a constant value. The

multiple-level-set approach is an active-contour based

algorithm, which simultaneously segment cells and also

tracks them (Li and Kanade, 2007). In this case, every cell is

represented by a separate level-set function, wherein every

level set function behaves like an active contour which

gradually evolves toward the boundary of cells Therefore it

has been adopted for obtaining cell segmentation (Chan

and Vese, 2001). However, the level set method is not

suitable for tracking of SAM cells because of several

reasons. First, the cells are in close contact with each

other. Second, the SAM cells share similar features with

respect to their shapes and sizes. Third, large parts of

images may be noisy at a particular time instant due to a

low signal to noise ratio.

Given sets of segmented cells from the time lapse

imagery, tracking of cells over time is essentially a point

matching problem. One of the most popular solutions to

point matching problem has been the Softassign Procrustes

algorithm, which has been applied to compute cell lineages,

and it has been improved further to detect cell divisions

(Chui, 2000; Gor et al., 2005; Rangarajan et al., 2005). The

Softassign method uses the information on point location to

simultaneously solve both the problem of global correspon-
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dence as well as the problem of affine transformation

between two time instants iteratively. Although this method

can be applied in aligning global features, it can produce

errors in finding the local correspondences of individual

cells. Therefore, calculation of local neighborhood struc-

tures of cells is crucial in tracking cells of similar shapes that

lie in close proximity as in the case of SAMs (Figure 1). In the

proposed approach, we consider information about the

geometrical and topological inter-relationships between

local neighborhood structures of cells that exist in clusters/

groups, and this approach is expected to improve the

stability of tracks, especially in the case of noisy time lapse

images and also the anticipated errors in segmentation

process (Zheng and Doermann, 2006).

In this paper, we present a heuristic graph matching

method, wherein the matching problem is solved in a

progressive manner (i.e. cell by cell), by obtaining corre-

spondences from local graphs generated at different time

instants (Gold and Rangarajan, 1996; Fazl-Ersi et al., 2007).

We have exploited the local geometrical and topological

features of cells to generate graphs of the local neighbor-

hood of each cell (Figure 3a,b). This process is followed by

matching of the relative positional information of cells,

such as the length and orientation of the edges with
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Figure 1. Time-lapse imagery of SAMs labeled with plasma membrane localized YFP.

Examples of three image slices (vertical columns) at three time instants (horizontal column).

(a–c) Arrow show same set of cells at time points noted on each panel. Cross-sectional images of SAMs depicted in the vertical columns are separated by 1.5 lm,

while the size of a single cell is about 5 lm in diameter. Therefore each cell is represented in two or three consecutive slices.

(a, d, g) Arrows correspond to the optical sections of same cells located in different depths.

(a–c) Belong to slice 5; (d–f) belong to slice 6; and (g–i) belong to slice 7. Note the representation of several cells in three consecutive sections (arrows). The fusion of

tracking outputs from three consecutive slices will account for cells that may not be imaged properly in one of the slices and also accounts for manual errors of

imaging that contribute to misrepresentation of same cells in different optical slices across time points.

Automated tracking of stem cell lineages 137

ª 2010 The Authors
Journal compilation ª 2010 Blackwell Publishing Ltd, The Plant Journal, (2010), 62, 135–147



respect to their nearest neighbors to find the most similar

local graph pair between two time instants. This process

provides a seed (initial) cell pair and the seed pair is used

as a starting point to calculate similarities between local

regions in the graph by progressively moving outwards

(from this seed pair) to obtain correspondences of neigh-

boring cells (Reuille et al., 2005). This process is continued

recursively to find correspondences of all cells (see

Figure 3). We demonstrate that the method presented here

has greater robustness over the global matching methods

(Gor et al., 2005), especially in cases where the images are

noisy and which in turn results in poor segmentation. We

have also used integration or fusion of tracking results

over the entire four-dimensional (4D) image stack to

improve the tracking efficiency, unlike earlier methods

which have employed tracking on single-layer of cells or

3D-reconstructed surface-layer (Gor et al., 2005; Reuille

et al., 2005). As every cell in the image stack is usually

represented in three consecutive optical slices obtained

along Z-dimension, it provides an opportunity to track the

same cell thrice. We show that the integration or fusion of

tracks from three consecutive slices greatly improves the

tracking efficiency by accounting for cells that were not

properly segmented in one of the three slices due to poor

image quality. We have also applied the fusion idea in the

cell lineage computation process, wherein we have inte-

grated the cell lineages computed along different paths to

track most of the cells in the entire L1 layer over a

substantial period of time.

RESULTS

Collection of time-lapse imagery of actively developing

SAMs

We have used plasma membrane-localized Yellow fluores-

cent protein (YFP), 35S::YFP29–1 expressed over ubiquitous

promoter to visualize cell outlines or boundaries of all cells

to follow cell division and expansion patterns (Figure 1)

(Cutler et al., 2000; Reddy et al., 2004). We have used con-

focal laser scanning microscopy-based live-imaging set up

to acquire a series of time-lapse images of 4-D stacks. Each

3-D stack was taken at every 3 h and it consists of a series of

images of optical cross-sections of SAMs that are separated

by approximately 1.5 lm. The sectioning of individual cells

of 5 lm into 1.5 lm thick slices resulted in a given cell being

represented in three consecutive slices (Figure 1). We have

used all three sections of a given cell, at a given time point,

for tracking purposes. Obtaining correspondence of a given

cell across slices is referred to as spatial correspondence and

obtaining correspondence of cells across time instances is

referred to as temporal correspondence (Figure 2). For

experiments described in this paper, we have used a 4D

image stack of SAMs observed along 24 consecutive time

instants, with the time interval of 3 h between two consec-

utive instants. The image stacks were registered prior to the

tracking by using the alignment method of maximization of

mutual information (Viola and Wells, 1995; Maes et al.,

1997). Image registration was applied to obtain global

alignment of the images and it is achieved by optimizing

a matching criterion between images (i.e. the mutual

information).

From cells to graphs

As an initial step, we segmented SAM cells that are la-

beled with plasma membrane-localized YFP by employing

existing level set segmentation methods (Figure 3a–h)

(Chan and Vese, 2001). Upon obtaining a collection of

segmented cells from time-lapse imagery, we created a

graphical abstraction of segmented cells. This process

involved representing every cell by a vertex and con-

necting neighboring vertices by an edge (Figure 3a,b). The

Delaunay neighbors of cell c (i.e. the ones that share an

edge of the Delaunay triangles with cell c) were consid-

ered as its neighboring cells and they were denoted by

the neighborhood cell set N(c) (Figure 3a,b). The structure

of these graphs automatically includes the relative posi-

tional information of cells, such as the distance between

two neighboring cells (the edge length) and the edge

orientation. The topology and the geometry of the local

graphs are not expected to change dramatically between

two consecutive time instants separated by approximately

3 h unless the cells divide or the images are noisy. With

these conditions satisfied, the corresponding cells across

time were identified by matching the respective local

Figure 2. Diagrammatic representation of local graph-matching and spatio-

temporal fusion based cell tracking for image stacks taken at two consecutive

time points.

The level set segmentation will provide information on cellular parameters

such as the centroids of cells, their area, and orientation of cell division to the

tracker. This information is essential to find the seed cell pair by local graph

matching method. Starting from this seed pair, we grow correspondences

among neighboring cells by computing the similarity of local regions in the

graph, and at the same time detect cell divisions by examining changes in the

topology of the graph. This method allows us to compute correspondences of

given cells both across slices taken at a give time point (spatial correspon-

dence) and also across different time instants (temporal correspondence). The

fusion of tracking output from both the temporal correspondence and spatial

correspondence resulted in improved tracking efficiency.
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graphs with a similarity (distance) measure, as described

in the following section.

Local graph matching

Given two local graphs G1 and G2 corresponding to cell ci at

time t and cj at time t + 1, respectively (see Figure 3a,b), the

distance measure DL (ci, cj) for these two graphs consists of

three parts: the normalized difference of the edge lengths at

consecutive time instants t and t + 1, the difference of the

orientation angles between the edges, and normalized

location difference information of cells. This distance mea-

sure can then be expressed mathematically as follows in

equation 1:

DLðci ; cjÞ ¼
k1

M
�

X

cm2Nðci Þ; cn2Nðcj Þ

lcm ; ci
ðtÞ � lcn ; cj

ðt þ 1Þ
�� ��

lcm ; ci
ðtÞ

þ k2 �
Aci
ðtÞ � Acj

ðt þ 1Þ
�� ��

Acj
ðtÞ þ k3

M
�

X

cm2Nðci Þ; cn2Nðcj Þ

hcm ; ci
ðtÞ � hcn ; cj

ðt þ 1Þ
�� ��

hcm ; cj
ðtÞ

þ k4 �
Pci
ðtÞ � Pcj

ðt þ 1Þ
�� ��

D
ðm ¼ n ¼ 1; . . . ;MÞ;

where M is the number of neighboring cells in the two local

graphs (they must be the same for the graphs to match), cm

is the mth neighboring cell of ci, and cn is the nth neigh-

boring cell of cj, lcm ; ci
ðtÞ and lcn ; cj

ðtþ 1Þ are the edge lengths,

hcm ; ci
ðtÞ and hcn ; cj

ðtþ 1Þ are the orientation angles in radians of

the edges measured relative to a horizontal axis, Aci
ðtÞ and

Acj
ðtþ 1Þ are the size of the central cells’ (ci and cj) area,

Pci
ðtÞand Pcj

ðtþ 1Þare the cell position vectors (here they are

the central cells’ coordinates in the registered image plane),

and D is the average distance between two neighboring

cells. The neighboring cells in the two graphs are ordered by

orientation and distances are computed between the central

cell and a neighboring cell having the same ordering num-

ber, i.e. m = n = {1,…,M}. |.| represents the magnitude of the

difference between two scalars, while ||.|| represents the

Euclidean distance between two vectors. In practice, M can

be set at a value lower than the total number of neighboring

cells in order to account for segmentation errors.

If two local graphs match (i.e. the distance measure is

small), the central cells (i.e. ci and cj) in those two local

graphs are corresponding cells (a cell pair) (Figure 3a,b).

This method was applied to two images (at two time instants

or two slices at the same time instant) to identify the

corresponding cells.

Finding the seed/initial cell(s) and recursive matching

of neighboring cells

The above distance computation finds the similarity

between two local graphs through the distance function

based on the assumption that the topology of local graphs
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Figure 3. Growing correspondence from seed-pair.

(a, b) The matched local graphs G1 at time instant t and G2 at time instant t + 1,

the correspondence of the seed cell pair (1, 1¢), as well as the correspondences

of the neighboring cells, such as (2, 2¢) and (4, 4¢). (c–h) The output from the

procedure of growing correspondences among neighboring cells from a

given seed pair (1, 1¢).
(c, d) The seed cell pair.

(e, f) The tracking output after the first step of the recursion for growing the

correspondences (the matched cells are numbered from 2 to 8).

(g, h) The tracking output after the second step of the recursion (the matched

cell pairs are numbered 9–21). Note how the matching is progressing locally

and radially outwards.
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does not change between two consecutive time instants and

the changes in geometry of the local graphs are minimal.

However, this fact may not always be true with SAM cells

that show continuous growth and also every cell in the

image field may not be imaged properly. Therefore, we

devised a two part tracking strategy which involves finding

the most similar cell pair as the seed pair, and then

employing a slightly different distance measure to grow the

matching process radially among the neighboring cells of

the seed pair (see Equation 3 in supplementary section of

Data S1 and Figure 3c–h). The main difference is that while

the seed pair is computed from the neighborhood structure

using local graph matching, tracks of other cells are found by

computing the similarities along different paths of the graph

(Reuille et al., 2005). Mathematically, this means that in the

seed computation (Equation 1) the distances are summed

over the neighborhood, while in the Equation 3 of supple-

mentary data, we only consider the distance between two

neighbors without summation over the neighborhood set.

This process ensures that as long as a single feasible path

exists from the seed to the target cell, i.e. all cells in this path

are imaged and segmented properly, we can compute the

correspondences (Figure 3c–h).

As an example, Figure 4(d,f) show the tracking of cells

across two consecutive time instants including seven cell

division events (the corresponding cells are denoted by the

same color). This example also demonstrates the robust-

ness of the tracking method in finding the corresponding cell

pairs despite noisy images, poor segmentation and also cell

division events (Figure 4d,f). This robustness is attributable

to the local graph matching method which has the capability

to grow the correspondences to the neighborhood starting

from a seed pair. In Figure 4, three such paths for growing

the correspondences between two representative cells (‘a’

(a) (b) t+1t

M
M’
A

Q
P

B

T
S

15 h 15 h

18 h 18 h

(c) (d)

(e) (f)

Figure 4. Detecting cell divisions and robustness

of tracker by considering multiple correspon-

dence paths.

(a, b) A conceptual description of the relative

positions of a parent cell and its daughters. Here

a parent cell M, M¢ at time point t divides into two

sibling cells A and B at time point t + 1.

(d, f) represent tracking output including 8-cell

division events, where the corresponding,

non-dividing cells are denoted by the same color.

For a dividing cell, the parent cells and corre-

sponding sibling cells are denoted by red color.

The three paths in red color, yellow color and

green color demonstrate the feature of this

algorithm that it can automatically grow cell

correspondences from one pair to another pair

by multiple paths. We show three such paths

between cell ‘a’ and cell ‘b’ for two time points.

(c, e) Are the original image frames of (d, f)

before segmentation.
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and ‘b’) across two time instants have been shown which

reveal that as long as the right seed pairs are chosen, the

tracking algorithm will automatically identify a right path

from the seed pair to any other cell pairs in the neighbor-

hood. Therefore, even if some parts of the image are noisy,

the correspondences among given cell pairs can be found

with the availability of at least one feasible path (Figures S2,

S3).

Detecting cell divisions

Based on the location, the cells of the SAMs divide at dif-

ferent rates (Grandjean et al., 2004; Reddy et al., 2004). It is

expected that the topology of a given local graph will change

upon cell division. Therefore, the changes in topology of

local graphs act as good indicators of cell division events.

Initial step in the process of cell division detection is finding

the corresponding cell pair (M, A) across two time instants (t,

t + 1) and it was accomplished through the correspondence

growing procedure described in earlier section (Figure 3c–

h). This was followed by examination of the differences in

the areas of cells M and A (Figure 4). If the area difference of

M and A is about half of the area of a parent cell, then we

allow for the possibility that there maybe a cell division

event resulting in two sibling cells. In this case, cell M may

be the parent cell and cell A may be one of the daughter cells.

If there is a cell division event, we should be able to find the

other sibling cell among the neighboring cells of A. Specif-

ically, we can search in the neighborhood around the origi-

nal location M¢ of the parent cell at time t + 1 and the cell B

with the shortest distance from M¢ should be the candidate

for the other sibling cell. Furthermore, this distance should

be within about half of the average distance between two

neighboring undivided cells. Figure 4(a,b) illustrates this

basic idea discussed above, where the parent cell is M and

its two daughter cells are A and B.

In a more formal way, we are looking for the local graph

structure (includes both topological and geometrical prop-

erties) to change in a particular way, as shown in Figure 4.

This test for detecting possible cell division was carried out

for each corresponding cell pair identified through the local

graph matching process and it can automatically identify cell

division events (Figure 4d,f). In order to evaluate the effec-

tiveness of the cell tracking algorithm in identifying cell

division events, the cell division events obtained from

manual counting were compared with the events identified

through the automatic method (Table 1). This analysis

reveals that the local graph matching method can detect

100% of the cell divisions that are properly segmented and

96% in the unsegmented image data suggesting that the

small percentage of error is due to the improper segmen-

tation. A small fraction of over representation of cell division

events has also been observed and these false positives that

appear in the automatic method are due to the improper

segmentation of cells (Table 1). Although our method is

robust to some amount of noise in imaging and errors in

segmentation, a consistently poor segmentation across all

the slices and consecutive time instants may lead to poor

performance, and we do need a reasonable quality of the

data (the lowest signal-to-noise ratio in our experiment is

13.5 dB).

Fusion of spatial and temporal correspondence

The relative positions of SAM cells not only have temporal

consistency, but they also have spatial consistency because

every cell, in most cases, is represented in three consecutive

optical slices (Figure 1a–i). This feature was exploited by

the local graph matching method to find the spatial

correspondence of cells across consecutive slices taken at

different depths. Subsequently, the spatial and temporal

correspondences were fused together to obtain a single

unified track. This situation allowed us to track those cells

that may have been poorly imaged in one slice, but are of a

higher quality in a neighboring slice. In order to estimate the

effectiveness of fusion of spatial and temporal tracks of cells

in increasing the robustness of tracking, we compared the

number of cells that are correctly tracked across two

consecutive time instants with or without the fusion process

(Table 2). The number of the cells obtained from manual

counting both in the unsegmented image data and

the automatically segmented data were used as ground

truth to calculate the efficiency of the fusion process. The

number of cells identified from three consecutive slices

across two time instants from both the manual counting and

automated tracking are also listed for comparison. This

analysis reveals that fusion of the tracking output obtained

from three independent consecutive slices of a given set of

cells improves the tracking efficiency by increasing the

robustness in obtaining temporal correspondence of cells

(Table 2).

The shape of the SAM and the imaging method used for

obtaining thin cross sections will result in sequential distri-

Table 1 Comparison of the number of cell division events between
manual tracking (both in the unsegmented data and the segmented
data, the latter being in parenthesis), and the automated method
used in this study

Slice
number
in Z-stack

Time
interval
(h)

Number of cell
divisions by
manual detection

Number of cell
divisions by
automated method

Slice 2 0–30 14 (14) 14
Slice 3 0–39 21 (20) 20
Slice 4 0–42 34 (32) 32
Slice 5 0–57 48 (49) 49
Slice 6 0–63 55 (56) 56
Slice 7 0–72 55 (53) 53
Slice 8 30–72 38 (38) 38
Slice 9 30–72 54 (54) 54

The data for different slices are shown.
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bution of cells along different optical slices. Therefore

obtaining correspondences among consecutive slices

(Z-sections) will be crucial not only to introduce robustness

to the tracking process but also to account for all cells of

SAMs. However, maintaining the stability of tracks of cells

located at different depths along the Z-axis of image stack

can be challenging. Therefore, we tested the stability of

tracks obtained for the topmost 12 slices of a Z-stack which

account for all cells located within the CZ and the PZ of the L1

layer (Table 3). The comparison of tracking output for any

two time instants with manual counting revealed that up to

95% of the correctly segmented cells could be tracked and up

to 93% of cell division events could be detected (Table 3).

Computing cell lineages

The cell cycle lengths of cells located in distinct regions of

SAMs vary from 18 to 90 h and plastochron length which

reflects the time of initiation of successive organ primordia

varies from 14 to 20 h (Callos et al., 1994; Reddy et al., 2004).

Therefore understanding the cellular basis of morphogene-

sis requires tracking of cell lineages over longer periods of

time. Computing cell lineages just by repeating the two-

frame tracking process over the entire time series will result

in a gradual loss of cells in the later time instants due to

imaging noise, improper segmentation and tracking errors.

In order to maintain the consistency of the cell lineages for

long time periods, we have developed a method to integrate

the tracks from multiple slices at a given time instant with

that of tracks obtained across time periods. The idea here is

that the lineage may be computed through multiple tem-

poral paths (not to be confused with the spatial paths of

Figure 4) as shown in Figure 8 and then fused together. Thus

a cell that may not have been tracked along a particular path

can still be part of final lineage computation if it was tracked

in any of the other paths. Although this method introduces a

delay in the system, this is not a major concern in this

application domain as it will lead to higher accuracy in

tracking and real-time performance is not necessary for this

application domain (Figure 8 and discussed in detail in the

methods section).

We have quantified the performance of our long-term cell-

tracking algorithm in maintaining consistency of the cell

lineages in time lapse series taken at 3-h intervals and

extending up to a total of 72 h (Figure 7b). We considered

cells located in the top eight slices of each image stack for

this analysis. This analysis reveals that about 90% of the cells

that were identified in the first time instant could be found

36 h later (Figure 7b). The sudden and a small decrease in

the number of correctly tracked cells at 36 h is mostly due to

the displacement of PZ cells into actively developing organ

primordia (Figure 7b). We have also noticed that certain cells

that were undetected from tracked output at 21 h could be

recovered at 27 h indicating the usefulness of the method in

long-term tracking (Figures 8 and 7b). The consistency of

tracked output was maintained over 72 h despite repeated

divisions of corresponding cells at different time intervals

(Figures 5 and 7a). The frequency of cell division events at

different time intervals reported by the tracker revealed

temporal fluctuations in mitotic activity of SAM cells that is

consistent with results obtained from manual tracking

methods described earlier (Figure 7a) (Reddy et al., 2004).

Because cells are represented in more than one consecutive

slice, there is a possibility that they may be tracked several

times. In order avoid this redundancy in cell lineage

estimation process, care was taken not to count a given cell

Table 3 Total numbers of cells and cell divisions tracked in the stack
of the top 12 slices in different time intervals

Time
interval (h)

Number of automatically
tracked cells

Number of automatically
tracked cell divisions

3–6 219/228 1/1
6–9 251/261 6/7
9–12 263/274 8/8
12–15 231/240 20/21
15–18 185/196 28/30

The denominator is the ground truth in the segmented data (the
number of cells tracked manually or the number of cells divisions
identified manually); the numerator is the tracking result obtained
from the algorithm developed in this study.

Table 2 Number of cells tracked manually (in the unsegmented data and in the segmented data) and automatically by the proposed tracking
method (without the fusion process and with the fusion process)

Slice no.
in Z-stack

Time
interval (h)

Number of cells
from manual tracking
in unsegmented data

Number of cells
from manual tracking
in segmented data

Number of cells
from automatic
tracking without fusion

Number of cells
from automatic
tracking with fusion

Slice 4 3–6 87 68; 86; 85 63; 83; 80 86
Slice 4 6–9 86 85; 85; 91 83; 83; 80 84
Slice 5 18–21 102 99; 98; 94 94; 94; 86 95
Slice 5 21–24 75 81; 74; 80 75; 72; 77 74
Slice 7 3–6 100 96; 98; 105 89; 91; 94 95
Slice 7 6–9 122 113; 118; 116 103; 106; 94 115

For every slice, we also show the tracking results of the previous slice and that of the next slice before the fusion process.

142 Min Liu et al.

ª 2010 The Authors
Journal compilation ª 2010 Blackwell Publishing Ltd, The Plant Journal, (2010), 62, 135–147



more than once by finding correspondences of given cells in

the pervious and the subsequent slices of the image stack.

Similarly, when computing the final track for each cell, we

provide only one track that was obtained from fusing the

spatial and temporal correspondences.

Summary of the proposed algorithm for lineage

computation

Input: A series of time-lapse images of Z-Stacks consisting

of optical cross sections of SAMs (Figure 1).

Step 1: Segmentation of cells in Z-stacks using level-sets

(Figures 3 and 4).

Step 2: Obtain correspondences of cells for a given slice

between two time instants (this is done over a window of

four consecutive time instants leading to six pairings). For

every corresponding cell pair, check for cell division (refer

to sections on local graph matching, recursive matching,

and cell division detection).

Step 3: Obtain spatial correspondences of cells across

slices of a given time instant (refer to Data S1, Correspon-

dence across image slices).

Step 4: For every slice, fuse the spatial and temporal

correspondences together for every two frames (six

possible pairings) in the time window of four consecutive

(a) (b)

(c) (d)

(e) 57 h 72 h

27 h 42 h

3 h 15 h

(f)

Figure 5. Computed cell lineages of SAM cells.

(a–f) The cell lineages across 24 time instants (a

total of 72 h of time-lapse data) were computed

(only six frames are shown here, and only some

cells’ lineage are represented in this example),

where the cell lineages are denoted by different

colors. A complete version of the lineage in this

example is shown in Figure S4. After 72 h of

tracking, most of cells have divided at least once,

while several of them divided twice or thrice.
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frames (refer to Data S1, Fusion of spatial and temporal

correspondences, Figure 6 and Table 2).

Step 5: Compute final cell lineages by fusing the tracking

results over the time window (refer Data S1, Final cell

lineages computation).

Output: Lineages of all cells along all time instants (shown

in Figures 5 and S4).

The code is available online at http://www.ee.ucr.edu/~ami-

trc/cell-dynamics.php.

DISCUSSION

In this paper, we have presented a local graph matching-

based method to track cells and cell divisions from 4-D (3-D

space + time) confocal microscopy images of SAMs. The

main challenge in tracking cells of SAMs is that the cells that

exist in clusters and they share very similar features. We

have addressed this problem by exploiting the geometric

structure and topology of the relative positions of cells. By

matching the local graphs of related cells, we have com-

puted spatio-temporal correspondences of both dividing

and non-dividing cells. Finally we show that integration of

outputs from spatial and temporal tracks increased the

efficiency of the tracker in computing cell lineages over

extended periods of time.

Our method is robust to imaging noise as it was able to

maintain stability of the tracks which is a challenge in any

visual tracking problem. The method requires input images

to be approximately aligned, which can be achieved either

by carefully placing the plant on the microscope platform or

by using a suitable registration algorithm to globally align

the images. The ability to maintain the stability of the tracks

is also dependent on the imaging interval. If the imaging

intervals are too long, the multiple divisions within a

neighborhood between two consecutive time-lapse images

can change the neighborhood topology significantly that

makes it difficult to compute similarities.

Pattern formation in SAMs requires precise spatio-

temporal coordination of cell growth and cell division

patterns with that of gene expression patterns, mediated

by cell–cell communication networks. The distinct spatial

domains of gene expression of SAMs are maintained

despite the continuous flux of cells from undifferentiated

stem-cells into differentiating organs. The molecular mech-

anisms regulating the process of stem-cell maintenance and

also the process by which regular arrangement of lateral

organs is achieved in well understood. The gene expression

and growth dynamics underlying these processes are

beginning to be unraveled mainly due to the development

of live-imaging methods (Grandjean et al., 2004; Heisler

et al., 2005; Reddy and Meyerowitz, 2005; Reddy et al.,

2004). However, quantitative description of the relationship

between cell expansion and cell division orientation, and the

causal relationship between cell division patterns and the

gene expression patterns, have not been understood.

Moreover, a quantitative determination of the spatiotempo-

ral parameters of signaling components of cell–cell commu-

Figure 6. Diagrammatic representation of the process of fusion of the spatial

and temporal correspondences of cells.

We consider three consecutive slices Sk)1, Sk and Sk+1 to compute the final cell

correspondence for slice Sk. As shown in Figure 1, every cell usually occupies

three slices, so the integration of the tracking results from each one of the

three consecutive slices improves the tracking performance. With this fusion

process, we can obtain new cell pairs, which were not identified by single slice

(Sk) tracking, but may be found through the tracking in the adjacent slices Sk)1

or Sk+1.

(b)

(a)

Figure 7. Stability of long-term tracking through multiple cell divisions.

(a) Total number of computationally-detected cell divisions in a time lapse

series of 72 h (data from top eight slices have been integrated).

(b) Total number of computationally-tracked cells across different time

instants measuring up to 72 h. Note the stability of tracking algorithm as

most of the cells identified at first time instant could be detected at later time

instants. The sudden decrease in the number of correctly tracked cells at 36 h

is mostly due to the incorporation of cells located at the edge of the PZ and

subsequent displacement of cells into actively growing organ primordia.
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nication networks can be challenging considering the com-

plex topology of SAM surface and limited intracellular-

spatial resolution because of the smaller cell size. However,

most of our quantitative understanding of SAM growth

comes from studies either derived from tedious manual

analysis of live-imaging data or from the reconstructed

replicas of SAMs (Dumais and Kwiatkowska, 2002;

Kwiatkowska and Dumais, 2003; Reddy et al., 2004;

Kwiatkowska, 2006; Szczesny et al., 2009). Therefore, a

quantitative understanding of pattern formation process

requires development of computational models of cell

growth and cell division. While there is significant work in

tracking cells in video, most of the methods concentrate on

tracking in 2-D. However, a major task in quantifying gene

t-3 t-2 tt-1

L(t1,t-3)

C*(t-1,t)

C*(t-3,t)
C*(t-2,t)

t1

L(t1,t-2)
L(t1,t-1)

Path1 Path3Path2

(b)

(a)

(c)3 h 15 h

27 h 42 h

57 h 72 h

(d) (e)

(f) (g)

Figure 8. Final cell lineage computation.

(a) Cell lineage (from time t1 to t) computation

process by fusing along multiple tracking paths

(Path 1, Path 2 and Path 3).

(b, c) Cell lineages from time 6 to 18 h, computed

by Path 1.

(d, e) Cell lineages computed by Path 2.

(f, g) Cell lineages computed by the combination

of Path 1 and Path 2. Note that the system may

lose correspondence of some cells along a

particular path, but maintained their correspon-

dences in an alternate tracking path. Compare

(b), (d) and (f), cells in green circles were lost in

(b) and (c) while cells in red circles were lost in

(d) and (e), but all of them were gained back in

(f) and (g) due to the fusion process.
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expression dynamics is to estimate the dynamics of 3-D cell

volumes, which would require tracking in 3-D. The main

challenges in 3-D tracking are: (i) developing a robust

method for extracting/isolating 3-D cells across layers; (ii)

representing the cell shape using a suitable shape descrip-

tor; (iii) 3-D tracking methods that are able to maintain the

correlations across the layers, as well as in time; and (iv)

learning deformation models to describe cell shape changes

which can then be used for volume estimation. The new cell

tracking method introduced in this study should allow us to

quantify the 3-D cell growth dynamics over longer periods of

time and this can be combined in the future with gene

expression dynamics to understand the mutual regulation

with an ultimate aim of developing dynamic developmental

atlas of SAMs.

A major challenge, however, in developing a dynamic

gene expression atlas is to transform static transcriptome

maps into dynamic spatial-temporal maps (atlas), represent-

ing gene expression dynamics on realistic cellular templates

(Yadav et al., 2009). The live-imaging studies have revealed

variability in size and shapes of SAMs, and also total number

of cells/SAM within a population of Arabidopsis plants.

Given the fact that it is not possible to label and visualize

more than a few (may be up to 3 or 4/SAM) genes or proteins

in a single SAM, it is necessary to develop computational

platforms which will facilitate comparisons of corresponding

gene expression domains from different SAMs with differing

sizes and shapes. Therefore, new computational thinking is

required; first, to map corresponding regions/gene expres-

sion patterns from several different SAMs into a single

composite template, and second, to obtain temporal corre-

spondences between different SAMs. The primary step in

addressing this issue is to learn the mathematical models

that can capture the similarities and variations in the growth

patterns of cells and expression patterns of corresponding

genes across different SAMs through recognition and spatio-

temporal modeling of inherent dynamical patterns. The

image analysis tools, introduced in this study, for obtaining

cell segmentation, detecting cell divisions and tools for long-

term tracking of cell lineages would facilitate both learning

dynamical models of growth and modeling the variations in

the growth patterns across SAMs.

EXPERIMENTAL PROCEDURES

Transgenic lines, growth conditions and live-imaging

The development of stable transgenic plants ubiquitously express-
ing a plasma membrane marker (35S::29–1 YFP) have been de-
scribed earlier (Reddy et al., 2004). All plants grown either on soil or
on plates are maintained in continuous light and at 20–22�C. For live
imaging, plants were grown on MS-agar plates for 10 days before
they were transferred into the clear plastic boxes containing MS-
agar. Upon bolting, the plants were prepared for time-lapse imaging
by removing the older floral buds to expose the shoot apical meri-
stem surface and by stabilizing the rosette by applying 1.5% molten
agarose onto the stem. Plants were imaged on Zeiss510 up-right

confocal microscope by using a · 63 water dipping achroplan lens
with an argon laser at 515 nm. The confocal Z-stacks of 1.5 lm step
size were collected across time points and they were aligned by
using an image registration software, MIRIT (Maes et al., 1997). The
registered four-dimensional Z-stacks were used in subsequent
analysis described below.

Selection of computational parameters

All measurements here are represented in the image plane. Based
on the confocal imaging geometry, these can be translated to the
real-world measurements and adapted for a different imaging set-
up. We make an assumption here that two cells across two time
instants are considered corresponding cells if these conditions are
satisfied: the normalized difference in length of the edge is less than
0.1, the orientation difference of the same edge is within 0.17 radi-
ans (10�) the normalized difference of cells’ location is within 0.2,
and the normalized difference of cell area is within 0.2. So in order to
normalize the distance measures for different physical parameters,
we set k1 = 2 and k2 = k3 = k4 = 1 and then the typical threshold for
DL and DS would be 0.8 while DN would be 0.6. Since all the dis-
tances are normalized, we do not need to translate them to the real-
world values. Here, in different cases we can set different weights.
Generally, in the well registered image data, we can set a bigger
weight to k4 for the normalized difference of cells’ location, while in
those data that are not well registered, we can set bigger weights to
k1, k2 and k3, because the associated differences are translation
invariant. If there are no rotation and scaling effects in the imaging
process, we can just discard the location difference (i.e. k4 = 0),
without any appreciable decrease in performance. Moreover, if the
normalized area difference of a corresponding cell pair is beyond
0.5, it was considered that there may be a cell division event. For a
cell division event, the distance between the two daughter cells
should be half of the average distance between two neighboring
parent cells.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online
version of this article:
Figure S1. Segmentation of SAM cells.
Figure S2. Tracking output (right panel) showing 2-cell division
events (shown in red color) on a data set from second SAM.
Figure S3. Tracking output (b and d) on a noisy confocal cross
sections of SAMs (a and c) (some cells within the red circle are not
imaged properly).
Figure S4. A complete time series showing consistency in cell
tracking.
Figure S5. Cell lineage tree. The cell lineages along four time
instants are denoted for different cells denoted by color-coded lines.
Every cell has been denoted with a number and the divided
daughter cells are denoted by the same number.
Figure S6. Representation of a 3-D cell lineage tree.
Figure S7. Cell growth dynamics of representative examples of three
cells prior to and after cell division events.
Figure S8. A histogram showing variation in cell size of parent cells
at the time of cell division.
Figure S9. Performance of cell tracker in high curvature regions.

146 Min Liu et al.

ª 2010 The Authors
Journal compilation ª 2010 Blackwell Publishing Ltd, The Plant Journal, (2010), 62, 135–147



Figure S10. Tracking output for cells of the L2 layer denoted by
yellow circles.
Figure S11. Cell tracking results for time interval of 9 and 12 h.
Data S1. Experimental procedures.
Please note: As a service to our authors and readers, this journal
provides supporting information supplied by the authors. Such
materials are peer-reviewed and may be re-organized for online
delivery, but are not copy-edited or typeset. Technical support
issues arising from supporting information (other than missing
files) should be addressed to the authors.
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