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Abstract

In this paper, we develop a neurobiologically-
motivated statistical method for video analysis that si-
multaneously searches the combined motion and form
space in a concerted and efficient manner using well-
known Markov chain Monte Carlo (MCMC) techniques.
Specifically, we leverage upon an MCMC variant called
the Hamiltonian Monte Carlo (HMC), which we extend
to utilize data-based proposals rather than the blind
proposals in a traditional HMC, thus creating the Data-
Driven HMC (DDHMC). We demonstrate the efficacy of
our system on real-life video sequences.

1. Introduction

Recent work in Neurobiology [1, 2] suggests the brain
examines both the form aspects of motion (e.g., shape,
colour, orientation, etc.) as well as the motion energy
(the kinematics and dynamics) when it attempts motion
recognition. Visual processing in the brain, as shown
in Figure 1, bifurcates into two streams at V1: a Dor-
sal Motion Energy Pathway and a Ventral Form/Shape
Pathway [2, 3]. The Form Pathway gives the visual con-
text while the Motion Energy Pathway corresponds to
visual saliency [4].

Although the exact mechanism of the Integration of
these pathways is an open question in Neurobiology [1],
we create a computational equivalent for the neurobio-
logical model of Integration, with a focus on applica-
tions in complex video analysis. The need for integra-
tion is especially apparent in activity recognition which
involves both form and motion information.

2. Related Work

Some researchers [5, 6] suggest the two pathways’
integration is similar to object recognition; while
biologically-inspired approaches like those used by [3,

Figure 1. Feature extraction in V1.

7, 8] for image-based recognition have validated this ap-
proach, the success of non-biologically-motivated sys-
tems for extending object recognition descriptors to ac-
tions [9] also lend support to such a thrust. Building
upon this, we developed [10, 11] integration strategies
based upon hypothesis testing and the bootstrap.

However, searching the joint space of form and mo-
tion, or even the form or motion space individually,
is difficult because the distributions describing these
spaces are often very complex; thus, integrating these
two disparate forms of analysis is a significant problem
which we address in more detail in this work. Because
statistical sampling techniques have proven so effective
at analyzing such complex spaces, we turn to Markov
chain Monte Carlo (MCMC) techniques to sample this
joint space and develop a computational equivalent for
the neural integration.

MCMC is a way to generate a random sequence of
values for parameter x from a target probability dis-
tribution function (pdf), π(x); standard MCMC tech-
niques assume that you start off with some target dis-
tribution that you can evaluate but cannot sample from.
Monte Carlo is a sampling method for iteratively evalu-
ating a deterministic model using sets of random num-
bers as inputs where the samples are drawn from a prob-
ability distribution while a Markov chain is a stochastic
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process that consists of a finite number of states with
probabilities for transitions from each state to the next
and having the property that future states depend only
on the present state. Hamiltonian Monte Carlo (HMC),
also referred to as the Hybrid Monte Carlo, is an alterna-
tive MCMC technique in which an auxiliary (fictitious)
momentum variable is introduced for each parameter of
the target pdf. HMC tries to avoid the random walk be-
havior of regular MCMC and allows proposals to move
across the sample space in larger steps, thus allowing
the proposals to be less correlated and converge to the
target distribution more rapidly.

In general, the HMC is faster than classical stochas-
tic sampling-based (Gibbs sampling, Metropolis-
Hastings, etc.) MCMC optimization algorithms. By
following the dynamical path in phase-space, we can
propose candidate moves that are far away from the cur-
rent state but that still have a substantial chance of be-
ing accepted. This gives us a way to efficiently explore
large regions of phase-space by simulating Hamilto-
nian dynamics in fictitious time in the traditional HMC.
The benefit of following the trajectory of the system in
phase-space is that it eliminates the random walk aspect
of the chain while also improving mixing and produc-
ing more accurate estimates and allowing us to explore
quickly regions that are far away from the current state.

Besides the HMC, another recent innovation in the
development of MCMC was the Data-Driven MCMC
(DDMCMC), which uses data-driven proposals to make
the Markov chain efficient. DDMCMC has mainly been
applied to image segmentation and object recognition
[12]; similarly, although HMC has been applied to par-
ticle filters and tracking [13, 14, 15], these techniques
have never been applied to activity recognition to the
best of our knowledge. The ability of HMC to incor-
porate the underlying system dynamics in the MCMC
process makes it an ideal candidate for problems in ac-
tivity search and recognition.

Relying upon a data-driven component to make more
informed proposals than the blind proposals generated
within a traditional HMC, we form the logical next step
in HMC development by introducing the Data-Driven
HMC (DDHMC), which use these data-driven propos-
als to make the HMC search more efficient. In addi-
tion, we apply the HMC framework, via the DDHMC,
to activity recognition for the first time. Almost all ac-
tivity recognition methods use some variant of context
(form; e.g., appearance) and saliency (motion) analysis
but utilize different heuristics to conduct that analysis.
Thus, the integration afforded by DDHMC provides a
stochastic search framework that is especially suited for
activity recognition.

Figure 2. Motion-Proposal Generation.

3. Integration via DDHMC

Starting with tracks for an object, we calculate the mo-
tion and form features for each object and use them to
compute similarities between the video obtained from
a query track and all the database test tracks. We then
convert the similarities to probability density functions
by casting them as a kernel density or Gibbs estimator.

However, this results in a potentially complex
and difficult-to-sample joint distribution: π(τ, f) =
π(τ |f)π(f) = π(f |τ)π(τ), where π(f) is the pdf for
the Form pathway and π(τ) is the pdf for the Mo-
tion pathway. Our goal is to sample this joint space,
π(τ, f), and we employ our DDHMC to do exactly this
since the HMC has proved so successful in analyzing
high-dimensional spaces in phase space. We expect
the peaks to be highest in our joint distribution where
both individual distributions exhibit higher values and
we use the data-driven proposals to narrow in on those
areas specifically. We are thus exploring the joint space
by drawing proposals from one dimension/distribution
and then searching in that vicinity in the other dimen-
sion/distribution. Because we expect the peaks in the
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joint distribution to correspond to areas where peaks of
the motion and form distributions maximally overlap,
we can use the DDHMC to sample from just the π(τ) or
the π(f) instead of the π(τ, f), as well. In the motion-
based DDHMC, we sample from the distribution of mo-
tion similarities, π(τ).

Our integration affords a hierarchical classification
scheme in which the data-driven proposal does an ini-
tial, gross classification. Thus, we use the Hamil-
tonian analysis we developed in [10, 11] to generate
the motion-based proposals whereas the mean shape
method we developed in [16] is used for the form
pathway and confirms the acceptance, as seen in Al-
gorithm 1. In Algorithm 1, τo is the initial trajec-
tory from the gallery/database, τq is the trajectory of
the query, nsamples is the number of samples in the
gallery/database, andDMotion (τo, τq) is the motion en-
ergy distance measure for the trajectory τo from τq and
DForm (τo, τq) is its shape/form-based distance. H(τq)

is the Acceptance Hamiltonian and H
′
(τi) is the Pro-

posal/Guide Hamiltonian and H(τ ; t) = H(q(t), p(t))
for the trajectory τ(q, p).

We form a pseudo-Hamiltonian, where the image-
based and motion-based similarities are cast into a
Hamiltonian function and we use the distance measures
for the form and motion as the generalized coordinates
and momenta, respectively, in lines 12-16, in order to
create the Proposal Hamiltonian and the Acceptance
Hamiltonian. In particular, we form the Acceptance
Hamiltonian,H(qo, po), by using the motion-based dis-
tance measure to determine the po and the image-based
distance measure to determine the qo. We also form the
Proposal Hamiltonian, H

′
(qo, po), by using the image-

based distance measure to determine the qo and by sam-
pling a normal distribution to determine the po.

This Proposal Hamiltonian is then subjected to a
perturbation via Dynamic Transitions using Leapfrog
in phase space because we assume the Shape/Form
method is not perfect and the perturbation, just like the
Dynamic Transitions in the Traditional HMC, accounts
for such errors.

In Step 3, a normal HMC Metropolis-Hastings is
used on the difference between the Acceptance and Pro-
posal/Guide Hamiltonians. We finally accept the pro-
posed trajectory if δH ≤ 0 because it penetrates the Ac-
ceptance Hamiltonian’s trajectory in phase space then
(and so, we conclude the Guide Hamiltonian’s trajec-
tory is the same); but if δH > 0, we only accept with
probability α. The penetration of one Hamiltonian tra-
jectory by the other means they intersect which implies
they are the same, as per [17].

An overview of the proposal generation is shown in
Figure 2: here we see that the motion-based proposal

Figure 3. Proposals in Trajectory Space.

suggests a fictitious momentum, p, and the image-based
method is used within the HMC framework to get the
fictitious position coordinate, q; finally, both the q and
the p are used to create the Hamiltonian,H(q, p), which
is then analyzed via the HMC framework to make the fi-
nal acceptance decision. Please note that our Hamiltoni-
ans are based on real data, unlike the traditional HMC.
In Figure 2, where we see that the motion-based pro-
posal suggests an artificial momentum, p, and the form-
based method is used within the HMC framework to
get the artificial position coordinate, q; finally, both the
q and the p are used to create the Proposal Hamiltonian,
H
′
(qo, po) and the Acceptance Hamiltonian,H(qo, po),

which are then analyzed via the HMC framework to
make the final acceptance decision.

A diagrammatic representation of the overall evolu-
tion and eventual matching approach of the algorithm
in trajectory space is shown in Figure 3. Figure 3(a)
shows seven trajectories in trajectory space (represented
as yellow circles). The DDHMC Algorithm starts off in
Figure 3(b), where we enter Step 1 of the algorithm and
find a proposal trajectory. This Proposal Hamiltonian is
then compared with the Acceptance Hamiltonian and, if
it is accepted, the algorithm continues with the loop by
finding a new Proposal Hamiltonian in (c). In this way,
the algorithm maneuvers through trajectory-space, only
picking out those trajectories whose Proposal Hamilto-
nians are confirmed by the Acceptance Hamiltonian of
the query clip in (c)-(e).

4. Experiments

Experiments on the well-known Weizmann dataset
demonstrate how the Integration afforded by the
DDHMC helps reduce the search space using the data-
driven portion, as well as the hierarchical scheme for
recognition, as shown in Figure 5. For all of these ex-
periments, tracking and basic object-detection was al-
ready available and we utilized these (x,y,t) tracks to
compute the Hamiltonian, as shown in [10, 11].

The Weizmann dataset (http://www.wisdom.weizmann.ac.il/
~vision/SpaceTimeActions.html) consists of a database of 90 low-
resolution (180 x 144, deinterlaced 50 fps) video se-
quences showing nine different people, each performing
10 natural actions. We analyze these using shape meth-
ods for the image component, using mean shape [16], as
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a) b)

c) d)

Figure 4. Weizmann Similarity Matrices.

Figure 5. Grouping of Bend Activity.

well as via the Hamiltonian Energy Signature for mo-
tion [10, 11], by computing the tracks of the points on
the contour and constructing the Hamiltonian.

We show the clustering of activities by the various
algorithms where at least three people doing the same
activity with an acceptance ratio of at least 0.75 are
grouped together. Using this analysis, we see in Figure
5 how the Bend activity is confused with four others by
just the Motion Energy examination and Image exami-
nation; the HMC narrows it down to just three others,
but the DDHMC does the best.

Similar results are seen for the other activities. This
dataset shows the potential to significantly reduce the
search space in video database search problems. Since
activity search in video is becoming a very important
problem, we expect the DDHMC to be an important
contribution in this direction.

In Figure 4, we see similarity matrices using using
the Weizmann dataset for a) Motion only, b) Form only,
c) HMC Integration, and d) Integration using DDHMC.
The rows and columns represent 10 activities by people
and are organized according to activity. The plots show
the clarification of matches using the different meth-
ods: in (a), Motion confuses most activities and does
a gross classification; in (b), Image/Form tends to do
a little finer granularity of classification; in (c) tradi-
tional HMC tends to have slightly better matching; but
(d) DDHMC shows the finest granularity and distinc-

tion of matches and classification.

5. Conclusion

We present a DDHMC framework in which we first an-
alyze motion-based information and then integrate in
the form information via the HMC framework. The
DDHMC thus uses motion energy-based data-driven
proposals to make more informed proposals than the
blind proposals generated within a Traditional HMC.
These informed proposals are then used as the data-
driven portion of the HMC to do an initial classification
of the activities. Our proposed approach, using mo-
tion plus form information, thereby provides a natural
framework for the integration of image and motion in-
formation, and brings the robustness of statistical meth-
ods to activity recognition.

Acknowledgement: The authors were partially sup-
ported by NSF grant IIS-0712253 and the DARPA VI-
RAT program.
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