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Abstract

In this paper, we propose a novel Non-Overlapping Cam-
era Network Tracking Dataset (CamNeT) for evaluating
multi-target tracking algorithms. The dataset is composed
of five to eight cameras covering both indoor and outdoor
scenes at a university. This dataset consists of six sce-
narios. Within each scenario are challenges relevant to
lighting changes, complex topographies, crowded scenes,
and changing grouping dynamics. Persons with predefined
trajectories are combined with persons with random tra-
jectories. Ground truth data for predefined trajectories is
provided for each camera. Also, a baseline multi-target
tracking system is presented. The tracking results using the
baseline system are provided, which can be compared with
future works. The work provides a comprehensive multi-
camera dataset for performance evaluation in this challeng-
ing application domain, as well as an initial set of results.

1. Introduction

The problem of multi-target tracking remains challeng-
ing, yet is a fundamental task for higher level automated
video content analysis. Wide-area camera networks pose
challenges that are unique to their application domain.
These challenges include large blind areas between cam-
eras, significant changes in the pose of targets, and differ-
ences in scene illumination between cameras. Moreover,
single camera issues, like occlusion and appropriate feature
selection, carry-over into the multi-camera domain and af-
fect the overall performance. Though there are some ex-
isting multi-camera tracking works, they all use their own
datasets lacking any standardization.

In this paper, we present a camera network tracking
(CamNeT) dataset, specially designed for the problem of

multi-target tracking. Differing from highly cited works
[8, 9] where three cameras are used for testing tracking
algorithms, five to eight cameras are used in this dataset.
These cameras comprise part of an actual surveillance sys-
tem distributed along the corridors and open courtyard of a
building. Three different camera configurations are used in
the proposed dataset. The layout of each configuration can
be seen in Fig. 1 (a), (b) and (c). Lighting conditions vary
from indoor scenes to outdoor scenes and cause appearance
information to be more volatile than in other multi-camera
datasets. The proposed dataset consists of six scenarios, one
performed in the configuration in Fig. 1 (a), three performed
in the configuration in Fig. 1 (b), and two performed in the
configuration in Fig. 1 (c). Since temporal information is
very important for tracking, a UTC time stamp is provided
for every frame in each camera to compensate for the oc-
currence of frame loss.

To the best of our knowledge, there are no public multi-
camera surveillance videos with non-overlapping views,
especially for the purpose of tracking. Though multiple
works report their tracking results with multi-camera non-
overlapping views, none of them reported their results on
a publicly available dataset. This makes a comparison be-
tween different tracking algorithms very difficult.

There do exist some datasets with overlapping camera
views. The Videoweb Activities dataset [5] is a dataset
that has been widely used. It has multiple activities among
more than 10 cameras. However, it does not contain a non-
overlapping view scenario. Similarly, the Multiple Cam-
eras Fall dataset [1] has 8 cameras monitoring one meeting
room with overlapping views. In this case, the purpose of
the dataset is totally different from the one we are propos-
ing. MuHAVi [12] uses 8 cameras with overlapping views
to collect 17 action classes which are performed by 14 ac-
tors. All these datasets are not specifically designed for
tracking purposes; instead they are more suitable for ac-
tivity analysis. The PETS 2009 dataset [15] is one of the



Figure 1. Camera configurations and an example of every camera view. (a)(d) are from scenario 1, (b)(e) are from scenario 2, and (c)(f) are
from scenario 6. (a) (b) and (c) are camera configurations for scenario 1, scenarios 2-4 and scenarios 5-6 respectively. Note that the camera
in the middle of (f) is only used in scenario 6 while scenario 5 leaves a larger blind area between cameras. The black regions indicate
that there is no path through these regions, while the white regions represent available paths. Each camera view is represented by a blue
triangle. The camera numbers are listed using a red circle. (c) and (d) are examples, where two persons are shown in 8 different indoor
and outdoor cameras, highlighting the challenges of working with such networks. These two persons have widely differing appearances in
different camera views. The dotted lines represent possible path connections between two camera views.

most popular multi-view datasets for tracking. 8 cameras
with overlapping views are used to monitor persons’ walk-
ing behaviors. There are only three scenes in the tracking
subset of the dataset, where each scene only lasts for around
40 seconds. Other datasets are designed for the problem of
object re-identification. The Dana36 dataset [11] contains
more than 23,000 images depicting 15 persons and 9 ve-
hicles. Both overlapping and non-overlapping scenarios are
provided in this dataset. However, as stated in the paper, this
dataset is not suitable for tracking because of the specifics
of data acquisition (multiple passes). The 3DPeS dataset [2]
is another collection designed for the problem of person re-
identification. Both of these two datasets lack temporal in-
formation, because of which they cannot be used for track-
ing. There are some multi-camera datasets that are more
suited to the CamNeT use-case. The GRID dataset [10]
contains 250 pedestrian image pairs taken from 8 disjoint
camera views. However, such a multi-camera dataset does
not fit into the problem of multi-target tracking since no full
video is provided. Instead, only person re-identification can
be performed.

Some research papers report multi-target tracking results
[3, 4, 7, 8, 9, 13]. None of these papers use the same dataset
to evaluate their algorithms. That lack of consistency ex-
poses a clear need for a dataset that can serve as a suitable
platform for each of these and future tracking algorithms
to be tested for a non-overlapping use-cases. In addition,

a common dataset would need to provide a collection of
challenges that lie at the frontier of robust tracking system
capabilities.

This dataset is more challenging than other non-
overlapping multi-camera datasets used in the literature be-
cause

1). The number of cameras in the tracking literature is
usually between 2 and 5, while we use 5 to 8.

2). Every pair of cameras has more than one path from
one to the other as shown in Fig. 1 (d)-(f).

3). Our dataset has both indoor and outdoor scenarios.
The lighting conditions and features of each target are sig-
nificantly different in each camera.

4). The number of targets in each camera can vary from
1 to 10 per frame, often making tracking difficult. In sce-
nario 1 to 4, there are around 10 persons in every scenario
that walk a predefined path. A minimum of 20 additional
people walk uncontrolled, adding to scene clutter. In sce-
nario 5 to 6, there are around 25 persons in every scenario
with significant occlusions. More activities are introduced
in scenario 5 to 6, i.e., people talking, group merging, group
splitting, long-term occlusion, and etc.

Our contributions are as follows.
(1) This is the first public multi-camera dataset with non-

overlapping views which is specially designed for multi-
target tracking. Cameras are synchronized across all cam-
era views, and global time information is provided to detect



frame loss.
(2) There are 6 scenarios in which every scenario lasts

at least five minutes with 5 to 8 cameras. The videos are
rich with person activities. This is different from the dataset
used in existing work [7], in which the dataset used is sparse
with respect to person activities.

(3) The CamNeT dataset provides single person and
group walking behavior across different cameras under both
indoor and outdoor scenarios. In each scenario, the paths
of around 10 - 25 people are predefined while several un-
known persons move through the scene and make multi-
target tracking extremely hard.

(4) The detailed annotations for subjects walking prede-
fined paths are provided.

(5) We provide detailed preliminary results with a base-
line tracking algorithm.

2. Camera Network Tracking

2.1. Database collection

In the CamNeT data collection procedure, several per-
sons (8-25) in different subsets were asked to follow specific
paths in the camera network. These persons either walked
alone or in a group. In some cases, subjects would split
from one group and join another group. In addition, mul-
tiple unknown persons trafficked the data collection areas.
The total number of persons in each scenario varied from
25 to 50.

In scenario 1, four indoor cameras and four outdoor cam-
eras were used on a sunny day. The indoor cameras covered
most of the corridors as shown in Fig. 1. All the indoor
cameras had front/back views of the persons. Thus the per-
sons who were not close to the camera were small within the
camera frame. In the outdoor scenarios, there were strong
shadows on the ground. Four cameras covered a small part
of the courtyard. Different from the indoor camera views,
which had one-to-one path connections, the courtyard is
large and a person could have different walking choices
from one camera view to another. The outdoor cameras
had both front/back views and side views of each person.
It is noted that sometimes the view of one person could be
blocked by another person who was walking together with
him/her. In scenarios 2-4, 5 indoor cameras and 3 outdoor
cameras were used. We changed some of the camera con-
figurations so that different scenarios could be explored. In
scenarios 5 and 6, around 25 persons walked along different
paths. We varied the number of cameras; 5 cameras were
used in scenario 5 and 6 were used in scenario 6. There
are more areas which are not covered by the cameras. Rich
person activities are considered in these two scenarios. Per-
sons can walk together, stay together while talking to each
other, merge to/split from a group within or outside a cam-
era view, etc. The large amount of unknown behaviors in

Figure 2. Entry and exit points for each camera for one setup.

the blind areas between cameras, the large number of per-
sons, and the heavily cluttered scenes make the provided
tracking problem extremely challenging. In each setup ap-
proximately 20% to 30% of the open area is covered by
active cameras.

Each scenario lasted from 5 to 7 minutes. Though the
frame rate for every scenario was 25 frames per second,
problems with network communication caused frame loss in
one or more cameras. Network communication issues and
slightly different start times for video recording between
cameras resulted in the problem that every video has dif-
ferent lengths. To solve this problem, our dataset includes
global time information. Each frame of every video has
a corresponding UTC timestamp. This means that tempo-
ral correspondences between cameras can be relied upon,
which is required for tracking in multiple cameras. The se-
lected frames can be found in Fig. 3.

2.2. Dataset Characteristics

Compared to existing datasets, CamNeT represents sig-
nificant challenges. One of the main challenges is varying
lighting conditions. Fig. 1 shows the appearance variations
under different camera views. Lighting was also subject to
change within camera views. The courtyard contained ar-
eas of shadow and bright sunlit illumination. Furthermore,
persons whose paths were predefined entered each camera’s
field of view at least twice for scenarios 1-4. However, the
direction they faced was not necessarily fixed for each cam-
era. Such wide variations in appearance makes appearance-
only tracking methods fail.

The dotted line in Fig. 1 shows possible paths from one
camera to another. The camera network represents a com-
plex topology where there exists more than one path be-
tween cameras. Therefore, the spatial information between
tracklets is relevant, but not necessarily predictive. With
this information, typical time gaps between camera views
can be estimated, but not solely relied upon for movement
prediction. Some representative entry and exit points for
every camera are shown in Fig. 2.

Grouping patterns are also variable for this dataset. In
scenarios 1-3, persons with planned trajectories stayed in
one group or walked alone. However, in scenario 4 there
were instances of a person leaving one group and join-
ing another. This is further muddled by the presence of



Table 1. Comparison between different datasets. OV represents overlapping views and NOV denotes non-overlapping views.
# of Max # of Highest Pers Height Indoor or Max # of

camera OV/NOV persons per camera Resolution (pixels) Outdoor persons per scenario
VideoWeb 4-8 OV 8 640 x 480 50-350 outdoor 12

Dana36 36 both 3 2048 x 1536 200-600 both 15
3DPeS 2-8 NOV ≤ 5 704 x 576 50-100 outdoor unknown

PETS09 4-8 OV 8 768 x 576 80-100 outdoor 30
CamNeT 5-8 NOV 10 640 x 480 50-350 both 39

crowds. In scenarios 5-6, group merge and split events
could happen in the blind area between cameras. In each
scenario of our dataset, more than 20 persons pass through
the scene. In some instances up to 10 persons appear at the
same time in one camera view. Since grouping information
can change, these scenarios represent the most challenging
tracking problems.

To better explain the characteristics of CamNeT, Table
1 is provided to compare our dataset to other camera net-
work datasets. Note that the first three datasets in Table
1 do not suit the purpose of tracking because of the non-
availability of temporal information or time synchroniza-
tion across cameras. The fourth dataset is used for tracking;
however it is not designed for non-overlapping views. The
proposed dataset is much more suitable for tracking in an
non-overlapping camera network.

The resolution for each frame is 640 by 480 pixels. This
is nowhere near the best resolution available, however it is
not uncommon. The purpose of this dataset is to provide a
challenging group of videos that require advanced tracking
algorithms to correctly track across cameras. The resolution
and consequent size of tracked objects, being 50 to 350 pix-
els in height, is seen as following the spirit of the challenge.
As well, the appearance information for a person can vary
greatly within a camera view falling off dramatically at the
edges. The lack of detail combined with the other factors
present in this dataset requires advanced context models to
fill in the gaps where direct observations will fail.

2.3. Annotations

To better test and compare results with this dataset, the
annotations of the ground truth of the persons whose walk-
ing paths were predefined are provided. The ground truth of
a person is expressed by the camera number, the frame num-
ber, the person’s upper left corner image coordinate (hori-
zontal and vertical coordinates) and the size of the target
(width and height). We save every person’s ground truth in
a text file with the name as the ID of this person. The exact
UTC time can be obtained by looking for the timestamps
for every frame in every camera. Only when a viable full
body appears in the scene do we label the ground truth of
this person.

We show a thorough experimental evaluation of the sys-

tem. We also show how the overall performance decreases
when some aspects of the algorithm are removed.

3. Baseline Algorithm
To evaluate the effectiveness of each proposed algorithm,

we provide a baseline algorithm considering the spatio-
temporal relationships between tracklets. Input to the multi-
target tracking system was the collection of recorded videos
for a particular time period. We used the detector [6] to
generate detection responses for every person and then a
basic tracker with particle filter to remove false positives
and associate the remaining detections into tracklets for ev-
ery camera. The problem of how to associate these sets of
tracklets and find out the best subset of associations was
then broached. Our camera network tracking framework
was invoked where a camera to camera feature transforma-
tion scheme and the proposed social group model (SGM)
across cameras are used. An overview of the system is given
in Fig. 4 where the details of each part of the system are
given in the sections below.

3.1. Inter- and Intra-Camera Tracking

The tracklets generated from a basic tracker in every
camera are assumed to be a set of short, reliable tracks.
To reduce the high dimension of associations, the first task
in a multi-camera tracking framework is to create long, ro-
bust single camera tracks (SCTs) for each camera. To real-
ize this goal, features of each tracklet were generated first,
and the Bhattacharyya distance was used to calculate the
appearance-distance between each feature. We used both
appearance and motion information to group tracklets into
SCTs for every person in every camera.

The input of the inter-camera tracking system is the out-
put of the intra-camera tracking system, which are a set of
long, robust SCTs. Each SCT represents a target in a single
camera and the goal of the inter-camera system is to asso-
ciate all SCTs in a high dimensional space.

3.1.1 Feature Generation

After intra-camera tracking is done, different features of
each SCT are generated to better distinguish two persons.
We use appearance features in HSV space, HOG features,



Figure 3. Selected frames of selected cameras from the proposed dataset. (a) and (b) are two scenarios. The horizontal axis represents the
time and the vertical axis shows the camera numbers in different scenarios. The time is not synchronized in this presentation because we
want to show as many tracks as possible. In (a), the same group or individual is represented by the same color of arrow. For instance, the
group consisting of the person in pink and the person in blue shows up in camera 5, 6 and 3 respectively. The features and sizes of them are
highly distinguished in these three cameras, especially in C6 at time t2. In (b), the scenario is even more challenging than (a). The group
denoted by the red arrow in camera 1 and the group denoted by light blue at t1 merge to a large group in C2 at t2. A similar scenario can
be found with the green and purple arrow. The three-person group in C3 is denoted by the dark blue arrow at t2. However, only two of
them can be found in C1 at t3. The group with the yellow arrow at t1 and t2 splits to two individuals at t3.

PHOG features and texture features to calculate feature dis-
tances.

3.1.2 Feature Transformation across Cameras

In our camera setup, there are both indoor and outdoor sce-
narios with very different lighting conditions. Therefore,
the appearance of the same person might vary widely across
cameras. So normalized appearance features are important
for reducing the effect of lighting variance. We use the
method in [7] to find the linear brightness transfer function
(BTF) in color space.

3.1.3 Social Grouping Model

We observe that people often walk with others. There-
fore, when people are in groups we can consider the inter-
relationships between them rather than tracking each person
separately. We exploit both the spatial and temporal infor-
mation between neighboring targets to build a social group-
ing model (SGM) in one camera. If we are confident for at
least one person’s association, this increases our confidence
for associations made for other people in the same group.

If X represents a SCT, we calculate the motion similar-
ity between two pairs of SCTs in two cameras Cn and C ′

n,

which is represented by XCn
i and XC′

n

i′ . We adopt the def-
inition of a group in [16], where a moving group is a col-
lection of people who move at similar speeds and in similar
directions. A group is created when two or more people
walk together for enough time within a distance threshold.
At a given time t, let τ be defined as

τ = min{w(XCn
i ), h(XCn

i ), w(XCn
j ), h(XCn

j )} (1)

where w(XCn
i ) and h(XCn

i ) are the width and height of
the bounding box of SCT i in at time t. If the the distance
between two SCTs d(X (T )

i ,X (T ′)
i′ ) satisfies the following

condition

d(X (T )
i ,X (T ′)

i′ ) = ||XCn
i −XCn

j || < α · τ (2)

with α be a control parameter and (T ) be a time window T ,
we can say that the tracklet XCn

i and XCn
j are in the same

group in camera Cn if the condition holds for 80% of time.
We will still find a grouping function Φ which represents
if two SCTs belong to the same group under two different
camera views. The overall algorithm of SGM across cam-
eras is given in Algorithm 1.

In Algorithm 1, θ is a controlled threshold. Φ is a group-
ing cue matrix, where Φi,j = 0 means tracklets i and j are



Figure 4. Overview of baseline camera network tracking algorithm.

Algorithm 1 Overview of Social Grouping Model
Input:

-SCTs from the intra-camera tracking scheme (Assum-
ing p SCTs in Cn and q SCTs in C ′

n);
-A zero initialized grouping matrix Φ, the size of which
is (p+ q)× (p+ q);

1: Build a matrixG1 which is p×p and another matrixG2

which is q × q. These two matrices are to label if two
SCTs are close to each other for enough time or not;

2: Find pairs of SCTs from the same camera which satisfy
Equ. (2) in 80% of the time windows (T ) and (T ′)
individually in the corresponding position of G1 and
G2;

3: for i from 1 to p do
4: for i′ from 1 to q do
5: if d(X (T )

i ,X (T ′)
i′ ) < θ then

6: check if there is at least one j and one j′ which
make G1(i, j) = 1 and G2(i′, j′) = 1;

7: if YES then
8: if Ev(j, j′) = 1 and Ep(j, j′) < δp then
9: Φ(X (T )

i ,X (T ′)
i′ ) = −1;

10: Φ(X (T )
j ,X (T ′)

j′ ) = −1;
11: end if
12: end if
13: end if
14: end for
15: end for
Output:

The grouping matrix Φ, where Φ(i, i′) = −1 means the
two SCTs in different time windows belong to a same
group and Φ(i, i′) = 0 means otherwise;

not in the same group in the given two time windows (T )
and (T ′), while Φi,j = −1 means they are. Note that Φi,j

does not represent two tracklets in the same time window;
instead it represents two tracklets in different time windows.
d represents the feature distance between two tracklets. In
this algorithm, if an element in the matrix G1 or G2 equals
to 1, this means that the overlapped part of the two tracklets
are very close to each other and these two tracklets can be
viewed as belonging to the same group.

3.2. Tracking Algorithm in a Non-Overlapping
Camera Network

The overall camera network tracking system is encapsu-
lated in the optimization of an energy function shown in Fig.
4. The goal of the energy function is to combine different
features of SCTs, which are generated by the intra-camera
tracking module, and then compare each SCT in order to
find a one-to-one mapping between each SCT. This one-to-
one mapping is then used to generate the final track for the
wide area. Suppose there are N cameras and the camera set
is C = {C1, C2, ..., CN}. If we use L to represent if two
SCTs in different cameras can be associated or not, then

L(XCn
i ,XC′

n

i′ ) =

{
1, if XCn

i → XC′
n

i′ ,
0, otherwise

(3)

where XCn
i represents the ith SCT in camera view Cn and

”→” denotes that the two tracklets can be associated. We
define the overall problem of multi-camera tracking as

argmin
L

∑
i,i′

L(XCn
i ,XC′

n

i′ ) ·D(XCn
i ,XC′

n

i′ ) (4)

where D is a distance function between two SCTs.
However, there are a couple of constraints which may

reduce the number of possible associations. For example,
grouping behavior is an important cue we observe when
people are walking together. Also, similar to [3], prior
knowledge of camera network topology is another impor-
tant cue for intra-camera tracklet association. The prior
knowledge of topology includes both spatial and temporal
cues. For the spatial cues, we can know if it is possible
for a person walk from one camera to another. Temporal
constraint can tell us how much time it typically takes for
a person to walk from one camera to another. Assuming
we detected every person in every camera, if we use U to
represent the location adjacency between Cn and C ′

n, then

U(Cn, C
′
n) =

{
1, if Cn → C ′

n,
0, otherwise

(5)

where Cn → C ′
n means these two cameras have location

adjacency.
If the mean transition time from Cn to C ′

n is t̄ and the
standard deviation for each transition time is σ(t), the tem-
poral transition probability V is a Gaussian function



V (Cn, C
′
n) = G(t̄, σ(t)) (6)

The overall transition probability between two cameras
is:

PTran(Cn, C
′
n) = U(Cn, C

′
n) · V (Cn, C

′
n) (7)

Adding both group constraints and the topology con-
strains to the overall energy function for a inter-camera sys-
tem, it becomes to

argmin
L

∑
i,i′

L(XCn
i ,XC′

n

i′ ) ·D(XCn
i ,XC′

n

i′ )+

λ2 ·
∑
i,i′

Φ(XCn
i ,XC′

n

i′ )

s.t. PTran(Cn, C
′
n) = c

(8)

where c is a constant between 0 and 1.
As mentioned above, to solve Equ. (8), D and Φ have

to be computed. D is computed by a predefined distance
function where Bhattacharyya distance is used in this work
and Φ can be computed as determined in Sec. 3.1.3.

4. Preliminary Experimental Results
Our evaluation metrics in camera network tracking are

based on ([14]).
1). Tracking length (TL): Percentage of completed tra-

jectory which was correctly tracked.
2). Crossing fragments (XFrag): The number times that

there is a link between two tracks within a specified toler-
ance, but missing in the tracking results.

3). Crossing ID-switches (XIDS): The total number of
times that there is no link between two tracks in two cam-
eras within a specified tolerance of the ground truth trajec-
tories, but one or more links exist in the tracking results.

In our experiments, we assume that if the tracking re-
sults are within 0.5 meters of the ground truth, we consider
the association between two tracklets is correct; otherwise
it is wrong. We test our tracking system on two subsets
of CamNeT, which cover the two different scenarios. The
step-by-step results of scenario 1 are listed, where different
combinations of models from the baseline algorithms are
tested. The final tracking results of scenarios 2-6 are also
provided.

In our experiments on scenario 1, we generate 1456
tracklets and 322 SCTs for all the 8 cameras using our ba-
sic tracker. Table 2 shows the tracking results of scenario
1. In order to demonstrate the significance of each model in
our algorithm, we compare our results with the state-of-art
method in [13]. We also consider the SGM in the imple-
mentation for fair comparison. The results show that when
SGM is applied, the numbers of XIDS and XFrag reduce.
Moreover, both temporal (i.e. the walking time from one

camera to another) and spatial constraints (i.e. if a walking
path exists between two camera views) are applied when we
implement our algorithm. We take out one or both of these
two constraints and show the importance of the effect of the
topology.

Table 2. Tracking results of scenario 1, where “t-constraints” de-
notes the temporal constraints, “s-constraints” denotes the spatial
constraints and ‘st-constrains” represents the spatio-temporal con-
straints. The first row shows the results obtained using the method
in [13]. The rest of the rows show results for different variants of
the proposed method. The several constraints with/without which
the proposed method is run are described in the first column.

TL XFrag XIDS
Method in [13] 82.8% 24 23
Without SGM 84.1% 27 20

Without t-constraints 72.2% 21 75
Without s-constraints 56.6% 22 102
Without st-constraints 43.9% 18 156

With SGM and st-constraints 84.3% 27 15

Fig. 5 shows the tracking results over the data collec-
tion period. Each row represents the data collected for a
particular camera, while each column represents the data
collected at a specific time. The boxed individuals in each
scene represent people being tracked. For groups of peo-
ple determined to be walking together, the same color box
is used to represent the pair. From one time instant to an-
other, box color remains constant for the same people when
correct associations are made within and between cameras.

The inter camera tracking results of scenario 2 to 6 are
listed in Table 3. We use spatio-temporal constraints when
reporting our results.

Table 3. Tracking results of scenarios 2 to 6 (S2-S6).
S2 S3 S4 S5 S6

TL 85.0% 78.9% 77.3% 70.0% 75.0%
XFrag 29 36 36 52 40
XIDS 23 26 32 44 34

5. Conclusions
In this paper, we provide a new non-overlapping multi-

camera dataset (CamNeT) for tracking. This dataset has
5 to 8 non-overlapping cameras, which cover around 20%
to 30% of the open area. Due to the lighting conditions
variations and crowded scenarios, this dataset is very chal-
lenging and can be seen as a standard dataset to work with.
We also present a baseline camera network tracking system.
We show preliminary results on our datasets which can be
compared against any other methods.
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