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Abstract—This work focuses on developing optimal routing
and camera control strategies for multiple mobile PTZ camera
platforms cooperatively tracking a stochastic target moving on
the ground. The vehicles are modeled as planar Dubins vehicles
traveling at a fixed speed and height. The target is tracked
using an Extended Kalman Consensus Filter that estimates the
target location on the ground plane and the associated error
covariance. Using dynamic programming, we compute optimal
coordinated control policies which minimize the expected fused
geolocation error covariance. The output of this process leads
to the trajectories of the vehicles and the PTZ settings of the
cameras. We show results on both ground and air vehicles
tracking a target whose dynamics is modeled by a stochastic
difference equation and discuss the implications of the results.
The main contribution of the work is in the development of an
optimal strategy for simultaneous vehicle navigation and camera
parameter selection to maximize the tracking performance of
stochastic targets where the risk of losing the target needs to be
considered.

I. INTRODUCTION

In recent years, small unmanned vehicles, both terrestrial
and aerial, have found application in tasks such as surveil-
lance, search and rescue, mapping, and real-time monitoring.
Determination of the world-frame coordinates of the tracked
object is referred to as geolocation. The focus of this work
is on the problem of optimally coordinating the motions of
multiple vehicles, each equipped with pan-tilt-zoom (PTZ)
cameras, for the purpose of tracking a target, with underlying
stochastic dynamics, moving on the ground. It leads to the
development of optimal routing and camera PTZ parameter
control strategies that maximize the tracking performance (i.e.,
minimize the geolocation error). The combined optimization
of routes and camera parameters, and the consideration of
stochasticity in the target dynamics, sets this work apart from
the research in both camera networks [1] and dynamic vehicle
routing [2], as well as previous work on UAV coordination for
optimal tracking [3].

The dynamics of each target is modeled using a stochastic
difference equation. An Extended Kalman Filter [4] is used to
track the target on the ground, using measurements obtained
from video. Geolocation for video cameras is achieved by
using the pixel coordinates, intrinsic and extrinsic camera
parameters, and the terrain data to estimate the location
and associated error covariance of the target in the world
frame. Using dynamic programming, we compute optimal
coordinated control policies, yielding the vehicle trajectories
and camera PTZ settings, which minimize the expected fused
geolocation error covariance. We show results for both ground
and air vehicles, report the optimal trajectories, PTZ settings
and the geolocation error covariance.

A. Related Work

There has been a significant amount of work in coordinated
target tracking. For two vehicles, maintaining a 90◦ angle
of separation in relation to the target minimizes the fused
geolocation error covariance as the camera-to-target line-of-
sight vectors are orthogonal [5]. Much work, such as in [6]
and [7], has been dedicated to designing controllers with
angular separation as the goal. Methods to achieve diverse
viewing angles have also been explored in [8] and [9]. The
controller developed in [7] tasks aerial vehicles to orbit the
target periodically while maintaining a fixed standoff distance.
Each of these studies design control laws that should produce
better geolocation estimates without explicitly considering the
geolocalization. More recently, [3] and [10] have directly op-
timized the geolocation error covariance using online receding
horizon controllers.

The geolocation error is highly sensitive to the relative
position of the vehicle to the target, and the zoom capabilities
of the video sensor. When the relative horizontal distance
between the vehicle and target, with respect to the height, is
large, the resulting error covariance is significantly elongated
in the viewing direction. As this relative horizontal distance
shrinks, the geolocation error covariance tends towards cir-
cularity. This effect is shown in Fig. 1. Thus, purely from
a camera-measurement-based state estimation perspective, the
ideal path for the tracking vehicle would be to match the
target’s motin while directly overhead. However, the different
dynamics of the tracking vehicles and the targets may pre-
clude such positions from being maintained or even acquired.
Additional vehicles working in concert may be able acquire
measurements resulting in a fused geolocation error covariance
of a circular nature.
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Fig. 1. Example fields of view (FOVs) from a height of a) 10m, b)
15m and c) 50m. The vehicles and the corresponding FOVs at the
last position are in blue and green. The target is in red. The figure
shows that the FOV becomes less elongated as height increases.

Our work differs significantly from the work above in two
important ways. First, we consider the risk of failing to image
a target. For non-deterministic targets, there is a very real risk
of failing to image the target if a significant portion of its



TABLE I
NOTATION SUMMARY

Parameter Variable
Pan, Tilt, Zoom (Focal Length) (ρ, τ, F )
No. of Cameras Platforms, No. of planning steps Nc, Ns

(ρ, τ, F ) settings vehicle i ai
State of all vehicles and target at time tk z(k)
Expected value of measurements acquired in state z(k) V (z(k))
Global Utility function U0(z)
Recursive Global Utility function Uk(z)
Expected value of U(a) over all targets V (a)
State vector for the target x
State est., state est. covariance for the target x̂, P
Measurement information matrix, state est. information matrix J, P−1

Measurement vector, Measurement covariance u, C
Rotation matrix from frame a to frame b b

aR
Linearized mapping from world to image frame H

probable locations is not covered by the FOV. Second, we
consider PTZ cameras and optimize these settings jointly with
the vehicle routes. This leads to a optimal joint control policy
for a long horizon using dynamic programming by minimizing
the expected fused geolocation error covariance. The benefit
of this approach is that we can evaluate and plan long term
paths for multiple UAVs tracking a non-deterministic target
while minimizing the risk of losing track it.

The rest of the paper is organized as follows. In Section II
we discuss target tracking using the Extended Kalman Filter,
the video-based measurement model, the geolocation error
covariance, and the dynamics of the mobile platform. The
proposed dynamic programming approach, including both the
cost function and PTZ computations, are described in Section
III. Section IV contains a discussion on the simulation and the
results. We conclude with Section V with a summary of the
discoveries and the directions for future work on the topic.

II. TARGET AND VEHICLE MODELS

We consider mobile camera platforms (i.e., vehicles) tasked
with tracking moving targets. Each of these vehicles moves
at fixed forward speed while maintaining a constant altitude.
The target is located on the ground plane and has a non-
deterministic trajectory. A PTZ camera is mounted on each
of the vehicles and is used to acquire measurements of the
target. The main objective is to optimize the motion of the
vehicles and PTZ settings of the cameras with respect to
the joint estimation error covariance across all vehicles for
each target. It is assumed that each vehicle can communicate
with other nearby vehicles or a base station to fuse acquired
measurements. It is also assumed that the world frame location
of each vehicle and the extrinsic camera-to-vehicle parameters
are accurately known. In this section, we first describe how
the target vehicle dynamics are modeled and estimated using
an Extended Kalman Filter. We then discuss the measurement
model and the resulting relationship between the image plane
observation and the geolocation error covariance. Finally, we
present the discretized Dubins vehicle model for the camera
platforms.

A. Target Model

For target tracking in the world frame we consider a dy-
namic model with a linearized discrete time state propagation:

x̂(k + 1) = Φx(k) + γ(k); (1)

and, a nonlinear observation model for each camera:
iu(k) = hi(x(k)) + iη(k), for i = i, . . . , Nc (2)

where γ(k) ∼ N(0,Q) and iη(k) ∼ N(0,Ci). We define the
state of the target at time tk as x(k) = [wp,wv]> where wp
and wv are the target vehicle’s position and velocity vectors.
The superscripts w and i are respectively used to denote the
world and image frames of reference. Since we have a linear
prediction model with a nonlinear measurement model for
each vehicle we use the Extended Kalman Filter. The iterations
of our EKF in information form are as follows.
• Correction

M(k)
−1

= P(k)
−1

+ Hi(k)
>

Ci(k)
−1

Hi(k)

K(k) = M(k)Hi(k)
>

Ci(k)
−1

v(k) = iu(k)− hi(x̂(k)) (3)
x(k) = x̂(k) + K(k)v(k).

• Prediction

P(k + 1) = Φ(k)M(k)Φ(k)
>
+ Q(k)

x̂(k + 1) = Φ(k)x(k) (4)

The prior fused information matrix J = P−1 can be repre-
sented in block form as

J =

[
Jpp Jpv
Jvp Jvv

]
, (5)

where Jpp represents the position information matrix and Jvv
represents the velocity information matrix.

B. Measurement Model

The video sensor mounted on each mobile platform acquires
image plane measurements of all targets in its field of view
(FOV). The two main coordinate frames that are used in
video tracking are the world coordinate frames (also called the
topographic frame), where the target and vehicle are located,
and the sensor coordinate frame. This section presents the
nonlinear and linearized measurement models. The lineariza-
tion is performed relative to the estimated position wp̂ of the
target vehicle on the ground plane and closely follows the
work presented in [11]. For the remainder of this section,
all measurement vectors are computed at tk with the time
argument and subscripts dropped to simplify notation.

We assume that the topographic position of the i-th mobile
camera wp̂i, and the estimated target position wp̂ are known.
The rotation matrix i

wR(ρi, τi) and focal length Fi are also
assumed to be known functions of the pan, tilt and zoom
settings of the gimballed video sensor.

Let the position of the target in the i-th camera frame be
ip =

[
ix, iy, iz

]>
. Using the standard pin-hole camera model



with perspective projection [12], the projection of ip onto the

image plane of camera i is iu =
[
Fi

ix
iz , Fi

iy
iz , Fi

]>
.

Thus, the image plane measurement iu is

iu =

[
Fi

ix
iz

Fi

iy
iz

]
+ iη (6)

where the measurement noise iη ∼ N (0,Ci) with Ci > 0
and Ci ∈ <2×2.

Given the estimated state and camera model, the estimated
target position in the i-th camera frame is ip̂ =

[
ix̂, iŷ, iẑ

]>
and the predicted estimate of the measurement is

iû =

[
Fi

ix̂
iẑ

Fi

iŷ
iẑ

]
. (7)

The measurement residual iũ is defined as
iũ = iu− iû. (8)

1) Observation Matrix Hi: Given wpi,
wp̂, and i

wR, subse-
quent analysis will use the linearized relationship given by the
first order Taylor series expansion of eqn. (6) around the esti-
mated state. The linear relationship between the measurement
residual and the state error is

iu− iû ≈ Hi(
wp−w p̂) (9)

where Hi =
∂iu
∂wp

∣∣∣
w p̂
∈ <2×3. Taking the partial derivatives as

defined above, it is straightforward to show that

Hi =
Fi

(iẑ)2

[
wN>1
wN>2

]
(10)

where wN1 = w
i RiN1 for iN1 =

[
iẑ, 0,−ix̂

]>
, and wN2 =

w
i RiN2 for iN2 =

[
0, iẑ,−iŷ

]>
, are the vectors normal to the

vector from camera i’s origin to the target’s estimated position
ip̂. Let us define matrix wN> as follows:

wN> =

[
wN>1
wN>2

]
(11)

The observation matrix can then be written as

Hi =
Fi

(iẑ)2
wN>. (12)

Given the linearized mapping between the image and world
frames, the quantity Ji = H>i C−1i Hi is the geolocation
information matrix of the measurement conditioned on the
target being in the FOV of i-th camera.

C. Camera Platform Model

A Dubins vehicle is a planar vehicle that has a fixed forward
velocity with a bounded turning radius. This provides a simple
model for a airborne mobile camera platforms with both a
fixed altitude and velocity. The model neglects sideslip. For
the i-th vehicle, let wpi = [wxi,

wyi,
wzi]

> denote its position
in the world frame, let ai = [ρi, τi, Fi] be the pan, tilt and
focal length of the camera, and ψi denote its heading. The
kinematics of the camera platform with fixed altitude wzi,

velocity vi and max turning rate wmax > 0, are described
by

wẋi(k) = vicos(ψi(k))
wẏi(k) = visin(ψi(k)) (13)
ψ̇i(k) = ui(k), |ui| ≤ wmax.

To discretize the Dubins vehicle dynamics, we apply a zero
order hold (ZOH) on the control input at a sampling time of
1 second [3].The discrete-time equivalent model for non-zero
input is

wxi
+ =

vi
ui

[sin(ψi + ui)− sin(ψi)] + xi

wyi
+ =

vi
ui

[cos(ψi)− cos(ψi + ui)] + yi (14)

ψi
+ = ui + ψi,

and for zero input is

wxi
+ = vicos(ψi) + xi

wyi
+ = visin(ψi) + yi (15)

ψi
+ = ψi.

Because Dubin vehicles use only three inputs (left, straight,
right), ui(k) ∈ U where U = {−wi,max, 0, wi,max}.

III. OPTIMAL VEHICLE ROUTES AND CAMERA SETTINGS

The technique of dynamic programming can be used to
solve a wide array of applications described by dynamic
equations-of-motion that require optimized paths. We apply
dynamic programming to produce an optimal control policy
for a group of mobile cameras tracking a stochastic target. We
present the utility function, followed by the computation of the
PTZ settings. Naive implementation of dynamic programming
results in an exponential time algorithm. By considering
relative vehicle-to-target coordinates instead of absolute co-
ordinates, we reduce the total amount of computation.

A. Utility Function

The utility function is designed to optimize estimation per-
formance over a planning horizon. Performance is quantified
as a function of the expected fused geolocation information

E 〈J〉 =
∑

i=1Nc

JiPr{wp ∈ FOVi} (16)

=
∑
i

Ji
∫
FOVi

pp (ζ) dζ. (17)

The dummy variable ζ is integrated over the ground plane
and pp is the Normal distribution N (wp̂,P−pp) of the predicted
position of the target in the global frame at time tk.

For optimization, we choose a function g (E 〈J〉) : Sn
++ 7→

<+. Ideally, g is a convex function. For this paper, we choose
g to be the trace. The trace is easily computed and linear, but
has the deficiency that it can be increased by increasing one
diagonal element while leaving another component near zero,
yielding an elongated estimation error ellipsoid.



Algorithm 1 Uk(z)
for each the i-th camera platform do

Compute ai = [ρi, τi, Fi].
First [ρi, τi] are obtained by centering the view on wp̂(k).
Then map Ppp(k) to the image plane and compute Fi of the
minimum bounding view.

end for
Propagate w x̂(k) and Ppp(k) to w x̂(k + 1) and Ppp(k + 1)
for each u ∈ UNc do

Compute Uk+1(z) and save if max
end for
return V(z(k)) + max Uk+1(z)

The value function is

V (z(k)) = trace(E〈Jpp〉), (18)

where z(k) is concatenate vector of target camera platform
state vectors. The resulting utility function is evaluated over a
planning horizon of Ns time steps according to

U0(z) =
1

Ns

Ns−1∑
k=0

V (z(k)). (19)

Backwards induction is used in dynamic programming to
find the optimal control policy

∏
k(z), which maps each state

z(k) to an optimal control input for each vehicle at time tk.
Let Nc be the number of camera platforms. The optimal value
is determined through the standard technique of value iteration
where the optimal utility for Eqn. (19) is computed using the
recursive function

Uk(z) = max
u∈UNc

(V (z(k)) + Uk+1(f(z,u))),∀z, (20)

from k = Ns − 1 to 0 with VNs
(z) = 0,∀z. The input u

corresponding to the maximum value in Eqn. (20) is stored in∏
k(z). The state propagation model f(z,u) returns the state

z(k + 1).
The optimal PTZ settings ai(k + 1) of the video cameras

are dependent on the expected state of the target x̂(k+1) and
the corresponding covariance P(k + 1). The risk of failing
to acquire an image of the target, is enhanced by ensuring
that the expected position of the target and its associated
error covariance ellipse are within the FOV of the camera.
The amount of information obtained when imaging a target
is directly proportional to the zoom of the camera. To reduce
computation, instead of searching over the PTZ parameters
during the optimization phase, we solve for the minimum
bounding FOV of the target’s uncertainty ellipse. The steps
involved in this process are shown in Algorithm 1.

IV. SIMULATION

To demonstrate the effectiveness of our approach we pre-
pared a simulation framework consisting of a 500m x 500m
area. In this area we considered two vehicles with the ob-
jective of tracking a non-deterministic target. The target was
initialized with a starting velocity of 5m/s along the x-axis

and was propagated through time according to Eqn. (1). The
parameters used for this dynamical model are as follows:

Φ =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Q =


33 0 50 0
0 33 0 50
50 0 100 0
0 50 0 100

.
The target track was propagated for 120 seconds. We con-
sidered two scenarios: one for land-based camera platforms,
and the other for aerial platforms. For the scenario considering
land vehicles we set the altitude of the camera wzi = 2m and
for the scenario with aerial vehicles, wzi = 100m. In both
cases the vehicles were initialized with a velocity vi = 15m/s
along the x-axis. Planning for Ns seconds ahead is done at
every time instant by propagating the estimated target state,
and estimated error covariance from x̂(k) and P̂(k) through
to x̂(k+Ns) and P̂(k+Ns). Planning for very long horizons
is undesirable since the error in the expected location of a
non-deterministic target increases as the target is propagated
through time.

A. Terrestrial Vehicle

We first examine the target state estimation over a 120
second time window by two land based or low flying camera
platforms.

The results for two land vehicles without planning (Ns = 1)
are shown in Fig. 2. Fig. 2(a) shows the final paths taken by
the two land vehicles. The nonexistent planning horizon means
that each vehicle can and will take the best move available to
it even if it results in a terrible set of choices at the next time
step. This can also be seen at t = 50 where the geolocation
error covariance is reduced by moving closer to the target
at the expense of maintaining orthogonal error covariance
ellipses. Because the video sensor is located only 2m above the
ground, the resulting geolocation error covariance for a single
measurement will be far from circular. In order to maintain an
accurate target geolocation estimate, a second measurement
is required, preferably with an orthogonal geolocation error
covariance. This can be clearly seen in Fig. 2(d) and 2(e) for
t > 50, where the covariance is significantly increased when
the angle between the two vehicles, relative to the target, strays
away from 90◦.

Preplanning the trajectories for the entire 120 second dura-
tion is not only unreasonable for a stochastic target, it is also
prohibitive in terms of computation. However, no planning,
as we have just shown, can lead to situations causing large
fluctuations in tracking accuracy. In the worst case the target
track may be lost as the actual and expected vehicle positions
diverge and actual position fails to be in the camera FOVs.
The number of steps to plan ahead is dependent on the desired
tracking accuracy and the amount of randomness in the vehicle
motions, which is quantified by the process noise covariance
matrix Q. Fig. 3 shows the results of planning Ns = 3 steps
ahead, for the same target trajectory. The computational cost
of such a plan length is minimal and may be easily computed
every second. From the trajectories exhibited in Fig. 3(a),
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Fig. 2. Trajectories and results for 2 ground vehicles tracking a target
with Ns = 1 planning steps. The explosion in tracking error from
lack of planning can be demonstrated in Fig. 2(e).

we can observe that the vehicles maintain a much further
distance from the target than in the previous case. The relative
angles between the two vehicles, shown in Fig. 3(d), also stay
close to the 90◦ separation required for minimal instantaneous
geolocation error covariance. The propagation of the expected

(a)

(b)

(c)

(d)

(e)

Fig. 3. Trajectories and results for 2 ground vehicles tracking a target
with Ns = 3 planning steps. Maintenance of the optimal angular
separation and the resulting smooth error covariance is displayed.

target position and error covariance for the duration of the plan
results in paths that ensure optimal measurements of targets
that are governed by our model. It is also clear from Fig.
3(e) that the geolocation error covariance of the tracker is
very smooth and not subject to the large fluctuations of the



previous scenario.

B. Aerial Vehicle

We now examine the target state estimation over a 120
second time window by two aerial camera platforms. Since
the video sensor is located at a height of 100m, the resulting
geolocation error covariance will tend more toward circularity
than it did for the terrestrial vehicle. While a second mea-
surement, with an orthogonal geolocation error covariance, is
preferred, it is no longer necessary to maintaining good target
geolocation estimates.

The paths traversed by the aerial vehicles are displayed in
Fig. 4(a). It is immediately apparent that the vehicles have
paths that follow the target more tightly that the planning sce-
nario for ground vehicles. This enhances tracking performance
as also be observed in the covariance plot of Fig. 4(e). Note
that the angular separation of 90◦ is less critical as shown in
4(d).

V. CONCLUSION AND FUTURE WORK

We have examined the defined and analyzed the path
planning process for a stochastic target and multiple ground
or aerial vehicles. Our results have confirmed that a 90◦

separation between the tracking vehicles is indeed preferable,
especially for gorund vehicles. We have also shown the ability
to maintain track of a stochastic target and the positive benefits
that planning has on the tracking error covariance. Also, we
have observed is that it is much easier for high flying aerial
vehicles to track targets on a ground plane than it is for land
based vehicles. Future work will consider multiple targets with
multiple vehicles, distributed optimization, incorporation of
smoothness constraints for the PTZ parameters, and incorpo-
rating vehicle uncertainty into the model.
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