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Abstract. In this paper, we investigate the problem of forecasting fu-
ture activities in continuous videos. Ability to successfully forecast activ-
ities that are yet to be observed is a very important video understanding
problem, and is starting to receive attention in the computer vision lit-
erature. We propose an activity forecasting strategy that models the
simultaneous and/or sequential nature of human activities on a graph
and combines that with the interrelationship between static scene cues
and dynamic target trajectories, termed together as the ‘activity and
scene context’. The forecasting problem is then posed as an inference
problem on a MRF model defined on the graph. We perform experi-
ments on the publicly available challenging VIRAT ground dataset and
obtain high forecasting accuracy for most of the activities, as evidenced
by the results.

1 Introduction

In computer vision literature, one major topic of interest is to automatically
detect and recognize human activities in a video. The methods developed in the
literature on activity recognition range from analyzing simple individual actions
such as those discussed in [1, 2] to more natural and complex human activities
involving one or more actors in the scene [3–5]. However, these methods provide
‘after-the-fact’ recognition once the activity of interest is complete. Forecasting
activities into the future much before they are observed is an important prob-
lem for many application scenarios and can be useful in designing anomalous
event detection schemes. However, it hasn’t yet received much attention in the
computer vision community.

We have seen some recent developments in the field of activity prediction
or forecasting and two classes of such problems have been introduced in the
literature. The first class of problems looks into early recognition of ongoing
activities [6–8] and is defined in the literature as an inference of the ongoing
activity given temporally incomplete observations. In this problem, the first few
frames of the video sequence containing an activity are observed and an early
classification of the ongoing activity needs to be achieved. The second class
of the problems seeks to forecast future activities in continuous videos [9] well
before they are observed. This problem can be generally stated as an anticipation
about future activity classes in a continuous video, where no observation of any
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Fig. 1. Different types of problems in human activity analysis. The figure shows four
consecutive activity sequences for an actor - opening the trunk of a vehicle, unloading an
object from the vehicle, closing the trunk, and the actor carrying the unloaded object,
performed in that order. Three categories of activity analysis problems are presented
on these sequences. (A) The classic activity recognition problem: each of the activity
sequences is fully observed before the activity labels are predicted. (B) Early prediction
of ongoing activity: only a few initial frames per activity sequence is observed and the
goal is an early prediction of the activity classes from these incomplete observation
sets. (C) Forecasting of future activities in absence of observation: at any point of time
in a continuous video all activities occurring upto that time point are observed and the
goal is to forecast the labels for future activities without the availability of observation
for any of them.

future activity is available and all past activities are observed. The differences
between these two problems and how each of them are principally different from
a standard activity recognition problem are described through Fig. 1.

In this paper, we propose a method that not only attempts to solve the
problem of forecasting unseen future activities (the second class of problem)
but also jointly recognizes the activities that have already taken place and were
observed. In most cases, it can be observed that activities performed by an
actor occur following fixed temporal sequences. For example, if a person carries
a bag and walks towards the trunk of a parked car, s/he is most likely to open
the trunk, load the bag into it and then close the trunk. Also, for collective
activities it can often be seen that actions of the actors involved are strongly
synchronized with each other within a spatio-temporal window. All of these
are collectively termed in this paper as ‘activity and scene context’ and we
leverage upon these contextual information for successful recognition of observed
activities and forecasting of unobserved future activities.

We formulate the joint recognition and forecasting problem probabilistically.
The past, present and future activities in a video are modeled as the nodes of a
graph and the activity and scene context are modeled as a Markov Random Field
on the proposed graph structure. Then a suitable inference strategy is adapted
for recognition and forecasting of the activity classes. We show experiments on a
challenging and realistic activity dataset - the VIRAT ground dataset release 2
[10]. This dataset comprises of long duration video clips, each containing multiple
activities that take place either simultaneously or sequentially, thereby making
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these datasets both challenging and suitable for testing the proposed spatio-
temporal context based activity forecasting method.

2 Relation to Existing Work

In computer vision research, majority of the works related to human activity in
video has focused on the task of recognition of simple to more complex activities
[11]. Many existing works exploring context focus on spati-temporal relationship
of features [3, 12], interactions of objects and actions/activities [13, 5, 14], AND-
OR graph based scene representation [15, 16]. Methods such as [17–22] studied
spatio-temporal relationship between activities in a scene.

There have been some recent works on the emerging topic of early recognition
of ongoing activities. The method in [6] approached this problem by representing
an activity as an integral histogram of spatio-temporal features and subsequently
used a novel dynamic bag-of-words approach to model how these feature distri-
butions change over time. Authors in [7] developed a ‘spatial-temporal implicit
shape model’ which characterizes the space time structure of the sparse activity
features extracted from a video and the early recognition is done using a random
forest structure. The authors in [8] proposed a max-margin framework based on
structured SVM to recognize partially observed events. However, these methods
rely on the availability of a partial set of information for the ongoing activity
where a typical activity forecasting problem should be able to forecast probable
future activities well before the start of the activity segments.

Very recently, the activity forecasting problem was introduced in [9]. The
authors combined semantic scene labeling with inverse optimal control to forecast
probable actor trajectories, which in turn help predict destinations and future
actions. However, there are a number of differences between our method and [9].
[9] investigates the effect of the static scene environment on future activities,
whereas we use both static cues from the scene and dynamic cues from target
trajectories and model their interrelationships for forecasting future activities.
Unlike a pure trajectory based approach in [9], we combine the target trajectory
information with the motion based activity recognition methods in a dynamical
model. Finally, we show results on the recent release of VIRAT dataset containing
11 diverse activities where [9] tested their forecasting method on a dataset of
three activities.

3 Overview of the Proposed Method

In this work, we propose a strategy to jointly recognize and forecast activities
in long duration continuous videos. The method attempts to recognize activities
that have already been observed in a video while forecasting the most probable
categories of future activities, yet to be observed in that video sequence.

A typical surveillance video contains multiple activities occurring simultane-
ously or in succession at different portions of the scene. In such videos, it can be
observed that a specific activity by an actor is often followed by another activity
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Fig. 2. The overall pipeline: Training and Testing.

by the same actor and this pattern repeats itself through and across the videos
given the similarity in scenes. Therefore, an actor’s future activities can often be
inferred from one or more of its previous activities. Moreover, in group activities
where multiple actors are involved, one actor’s observed activity pattern can help
us forecast another’s future actions. We call this ‘activity context’ and it can be
modeled on the edges of an activity graph to aid recognition and prediction. As
the number of observed activities can increase with time, the graph formation
strategy is dynamic with an aim to keeping the size of the graph constant. This
is discussed in Sec. 4.1.

After graph formation, a ‘Markov Random Field’ (MRF) (see Sec. 4.2) is
defined on the graph. The edge potentials defined on each of the edges of the
graph are modeled using the frequencies of occurrence of pairs of activities in a
tight spatio-temporal proximity (Sec. 4.3) and are directly learned from a set of
annotated training videos. The node potentials for the observed nodes (observed
activities) are obtained using the likelihood of the activities, given by a set of ac-
tivity classifiers when applied on the features (STIP+BoW) extracted from the
observed activity regions (Fig. 2). The node potentials for all the unobserved
nodes (unobserved future activities) are initially set as uniform distributions in
absence of any other specific information. However, as in most cases, the activ-
ity can be characterized by the proximity and motion of the actor relative to a
number of key points and detected secondary objects in the scene. These scene
specific information, termed as the scene context, help modifying the observa-
tion/node potential of the first unobserved activity node in immediate future for
every actor (Fig. 3). Please note that these scene contexts and the previously
introduced spatio-temporal activity context are collectively termed as ‘activity
and scene context’.

An object detector and a person tracker are employed to extract and esti-
mate various scene context features (see Sec. 4.4) for each actor in the scene at
each time point. A trained classifier, when applied on the scene context features
extracted from the observed video, provides us with the observation potentials of
the aforementioned nodes. The edge potentials remain fixed for the graph across
all time points. Finally, the joint activity recognition and forecasting problem
can be posed as an inference problem on the MRF just described, which is solved
using an iterative ‘message passing’ algorithm.
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4 Activity Forecasting Framework

Let a complete continuous video clip be V , vt being the portion of V that is
observed upto time t and let v

′

t be the portion that is yet to be observed. There-
fore, vt ∪ v

′

t = V . vt contains a number of activity regions and the set of K most
recent observations from these activity regions is given as Y = {y1, y2, · · · yK}.
More clearly, the observation yk denotes the image observation of an activity,
i.e., the features computed from the kth activity region amongst the most recent
K activity observations. A subset of these observations is the set of observed
activities by one individual actor. If there are no actors O = {o1, o2, · · · ono}
in the scene at time t, the set of activities by actor oi ∈ O, observed so far
would be Y i = {yi1, yi2, · · · yiNi}. Further, we define a forecasting horizon h over
which we intend to do activity forecasting. Note that h is not a time window,
rather it denotes the number of future activities per actor we would be pre-
dicting ahead of the current time instant. Therefore, we can define a total of
(K + no.h) variables representing the hidden activity labels, which we estimate.
Let the set of these labels be Xt = {x1, x2, · · ·xK , xK+1, · · ·xK+no.h}. The two
subsets of this label set are the one containing the labels with associated ob-
servations, Xobs

t = {x1, x2, · · ·xK} and another containing the labels for which
no observation is available, Xunobs

t = {xK+1, xK+2, · · ·xK+no.h}. Let the hidden
variable/label for kth activity by actor oi be represented as xik ∈ Xt.

In the next subsections we introduce the structure of an ‘activity graph’,
the potential functions associated with an MRF defined on it and how to do
recognition and prediction as inference on this MRF to obtain the labels of the
hidden states Xt.

4.1 Activity Graph Formation

A graph is built with the atomic activities (both observed and unobserved)
as nodes and the activity contexts are modeled on the edges of the graph. The
characteristics and definitions of various components of the graph are, as follows,

Each node in the graph is an atomic activity. Let the set of all the nodes in
the graph at any given time instant t be Nt. Let a node corresponding to an
activity by actor oi be nik. Then, nik ∈ Nt. The hidden variable corresponding to
the node nik is xik (the activity label), the value of which is to be estimated. An
edge between two activity nodes represents the spatio-temporal context between
them. Let the set of all the edges in the graph be Et. The nodes corresponding to
the already observed activities in the video are called observed nodes (N obs

t , blue
nodes in Fig. 3). The unobserved activities are represented by the unobserved
nodes (N unobs

t , white nodes in Fig. 3). Observed edges are those which connect

two observed nodes (Eobst , blue lines in Fig. 3). If both the terminal nodes of an
edge are unobserved, it is called an unobserved edge (Eunobst , red lines in Fig. 3).
If an edge connects two nodes one of which is observed and the other unobserved,
it is called a semi-observed edge (Esemi−obs

t , black lines in Fig. 3).
Two observed nodes are connected by an edge if the corresponding activ-

ities occur in a predefined spatio-temporal proximity. But for the unobserved
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Fig. 3. A snapshot of the graph structure for activity forecasting for two actors in
the scene at any time instant ‘t’. ‘B’ denotes a trained activity classifier for observed
activity recognition and ‘S’ denotes a scene-context classifier.

nodes and edges, this strategy cannot be adapted as we are unaware of both
the spatial location and time of any future activity. Even the exact number of
future activities in a video clip at any observational time point is also unknown.
Therefore, whenever an activity is observed, we add one more unobserved node
(corresponding to the actor of that activity) in the graph and drop the node cor-
responding to the oldest observed activity. Thus the total number of observed
(K) and unobserved (no.h) nodes remains constant through the video. Please
note that an actor might exit the scene, or the video sequence might end before
all the future activity nodes are observed. The unobserved nodes are time or-
dered and two consecutive unobserved nodes pertaining to the activities to be
performed by the same actor are connected using an unobserved edge. Second
order connections are also made for two unobserved nodes. Finally, the semi-
observed edges are used to connect the last two observed nodes per actor and
the two unobserved nodes in the immediate future.

4.2 Markov Random Field Modeling

The set of random variables associated with nodes Nt is Xt = {x1, x2, · · ·xK ,
xK+1, · · ·xK+no.h}, which are to be estimated given all observations Yt. These
random variables correspond to the state of each node in the graph and the
support for each of these variables is the candidate set of activities (C).

Then the overall MRF is expressed as

P (Xt;Yt) =
1

Z

K+no.h∏
k=1

φ(xk, yk)
∏
(k,l)

: (nk,nl)∈Et

ψ(xk, xl) (1)

Here φ(xk, yk) represents the node potential of any node nk ∈ Nt, and
ψ(xk, xl) is the edge potential from node nk to node nl. To estimate the optimal
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state for every node, we have to maximize P (Xt;Yt). Towards that objective,
we first estimate the approximate marginal distributions P (xk;Yt) at each node
using a belief propagation scheme as described later. The optimal states that
maximize the posterior distribution could be then estimated by maximizing the
marginals independently.

4.3 Edge/Activity Context Potential

The activity context potential is defined on the edges of the graph, in each of
Eobst , Eunobst , Esemi−obs

t . This potential function models the association between
any two activities occurring immediately one after the other or in close spatio-
temporal succession. For any two nodes nik and njl (the corresponding labels

being xik and xjl respectively) such that
(
nik, n

j
l

)
∈ Et, the inter-activity potential

is given as,

ψ
(
xik = cm, x

j
l = cn

)
= fsmn,1 if i = j, |l − k| = 1

= fsmn,2 if i = j, |l − k| = 2

= fdmn if i 6= j (2)

All these values fsmn,1, fsmn,2 and fdmn are computed from the annotated
training data. fsmn,1 is computed as the ratio of the number of times the same
actor performs the activities cm and cn immediately one after another to the
total number of times the activity cm is performed in the training data. fsmn,2 is
computed as the number of times the same actor performs activities cm and cn
with the gap of exactly one activity in between them, and it is expressed as a
ratio to the total number of times the activity cm is performed. Finally, fdmn is
obtained as the ratio of the number of times activities cm and cn are performed
in a close spatio-temporal vicinity by two different actors to the number of times
cm is observed in the video. The same spatio-temporal proximity thresholds are
also used in forming the graph, as discussed in Sec. 4.1.

For computing the activity context, only close spatio-temporal neighbors
(1st and 2nd order connections) are considered, as we have observed that sub-
sequences of relatively smaller length show stronger trends in repeating them-
selves than the longer activity sequences. Thus in the training videos, we examine
all such 2 and 3-tuples of activity sub-sequences and model their pairwise re-
lationships. This also helps us in correcting for any false positives and missing
activities.

4.4 Node Potentials

The node potential is the likelihood of occurrence of a particular type of activity
as observed in the video data. As there are specifically two types of nodes in our
graph (observed and unobserved), we devise separate strategies for computing
node potentials for these two categories of nodes.
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Observed Nodes: From the annotated training data, we identify the activity
regions and we train one activity classifier, the output of which is the probability
of a given activity belonging to a particular category. Features at these activity
regions are the observation variables and if any of the observation variables
is associated with the kth observed activity by actor oi, it is denoted as yik.
A classifier can be employed to estimate the probability of an observation yik
resulting from an activity belonging to a particular category cp ∈ C. Thus, if
the set of trained baseline classifiers is B, then the observation/node potentials
of the node nik is given as

φ
(
xik, y

i
k

)
= p

(
xik|yik, B

)
, if nik ∈ N obs

t (3)

Although we have mentioned a particular feature and type of baseline classifier in
the experiments section, any other discriminative classifier and low level motion
features could be used for this purpose.

Unobserved Nodes: The node potentials, thus obtained above, are potentials
for the observed nodes. However, for an unobserved node nik, observation yik is
yet to be obtained (i.e., yik = ∅) and hence a future activity is equally likely to
belong to any category out of the M possible activity types in the dataset, i.e.,

φ
(
xik, y

i
k = ∅

)
= (1/M)1T , if nik ∈ N unobs

t (4)

Although no low level motion feature is available for a future activity, its likeli-
hood of being categorized as a specific activity can sometimes be substantially
improved over 1/M with the help of some secondary observations from the scene,
termed as the ‘scene context’ through this paper.

Scene Context Classifier: Often times, an activity is characterized by its in-
teraction with other objects in the scene. For example, in [10], ‘opening trunk’/
‘closing trunk’, ‘loading a vehicle’/‘unloading a vehicle’, ‘getting into a vehi-
cle’/‘getting out of a vehicle’ - all these activities have at least one thing in com-
mon, i.e. the actor interacts with a parked car in all of them. Similarly, ‘entering
a facility’/’exiting a facility’ are both associated with a detectable entry-exit
point of a facility in the scene, probably the doorway of a building. Therefore,
knowledge about the locations of these objects, key scene elements and whether
an actor is going to interact with either of them in near future could help us
ascertain that the future activity belongs to a much smaller subset of all possible
activities. These information, as a whole, is termed as the ‘scene context’. It is
represented by a set of variables comprising of the locations/bounding boxes of
all the secondary objects, and key points in the scene that are related to one or
more types of activities, location and motion information of the actor relative
to these objects/key points. Please note that the scene context is computed in-
dividually for every actor in the scene and the values of them naturally change
with time. Details on such context features in relation to experiments on VIRAT
data is given in Sec. 5.
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The computed scene context features are averaged over a predefined time
window to generate a smoothed scene context feature vector per actor at each
time point. Let, at time point t, the scene context feature computed for actor

oi be foit =
〈
foit,1, f

oi
t,2, · · · f

oi
t,Nf

〉
. As these features are computed in between

two successive activities, the pair (foit , ak+1) completes the representation of the
scene context, where foit is computed at a time t, after which the next activity
oi is going to perform is ak+1. Such features for all the actors over the entire
training dataset are combined and a scene-context classifier S is trained. Given
a test video, at each time point, whenever we want to run the recognition and
prediction, we compute the scene context features. If an actor oi has already per-
formed k activities and its computed scene context features at time t is foit , then
the classifier S provides us with the likelihood of the next activity (Xi

k+1) that
oi is going to perform, which is also the node potential for the first unobserved
activity node for oi at time t. Therefore,

φ
(
xik+1, y

i
k+1 = ∅

)
= p

(
xik+1 | f

oi
t , S

)
, (5)

where nik ∈ N obs
t , nik+1 ∈ N unobs

t . For all other future unobserved nodes for actor
oi, the node potentials remain uniform (see Eqn. 4) until the next observation
is obtained. It can be noted that as foit is time varying, the estimated node
potential also changes from frame to frame and needs to be re-estimated.

4.5 Inference: Loopy Belief Propagation

The next step is to do the inference on the MRF, which involves the computation
of the marginal probability distributions for the states xk of each node nk ∈
Nt, given the observations Yt. For computation of the marginals at each node,
we choose to use Loopy Belief Propagation (LBP) based on the Sum-Product
algorithm [23]. If LBP converges at iteration L, the estimated marginals at each
node would be P (L)(xk;Yt) and the MAP estimates for the most likely states
is computed as x̂k = argxk

max P (L)(xk;Yt). This optimum state corresponds
either to the recognized or the predicted label of activity node nk depending on
the type of the node.

5 Experimental Results

To assess the effectiveness of our proposed method in activity forecasting, we
perform experiments on the publicly available state-of-the-art VIRAT ground
dataset[10] that contains 11 activities in different scenes (see supplementary for
the list of activities). We perform two similar sets of experiments corresponding
to two recognition schemes used for labeling observed activities, viz. 1. An auto-
mated classifier (BOW+SVM), 2. Ground truth activity labels. For experiment
set 1, we use half of the data for each scene for training our model and the rest
is used for testing. For experiment set 2, however, training is only needed for the
scene context based future activity classifier and only a fifth of the data in each
scene is used for training and we test our method on the rest of the data.
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5.1 Preprocessing

Given a test video sequence, the first task is to obtain the observed activity
regions. As activity regions overlap with the motion regions in a video, a back-
ground subtraction method [24] can be used to locate the motion regions. Mov-
ing persons and vehicles are identified by using an available software [25]. Doors,
bags, boxes etc. are detected by using a detector similar to [26] on the entire
scene. A tracking method [27], when applied on the detected actors’ bounding
boxes, provides us with the trajectories of the actors.

5.2 Extraction of Scene Context Features

For our experiments on VIRAT dataset, the set of scene context features com-
puted are - 1. Are cars parked in the scene? (1-Y, 0-N), 2.Distance from the
closest parked vehicle normalized by length of diagonal of the car bounding box,
3.Heading towards the closest parked vehicle, 4. Largest overlap of the actor
bounding box with the bounding box of a parked vehicle normalized by area of
the actor bounding box, 5. Is there one or more entry/exit points to facilities in
the scene? (1-Y, 0-N), 6. Distance from the closest entry/exit point normalized
by the length of the diagonal of the actor bounding box, 7. Heading towards the
closest entry/exit point, 8. Is an object seen on the actor? (1-Y, 0-N), 9. Aver-
age velocity of the actor, 10. Time elapsed since last observed activity. For other
datasets, the objects of interest will be recognized from the segmented training
videos and the generalized scene context features can be estimated by keeping
the same relationship between actor and objects. The features are estimated at
every frame for every actor using the actor track and locations of detected ob-
jects in the scene. The features extracted from the training videos are further
used to train a bag of decision trees containing 200 fully grown trees. At every
frame, the next activity class is used as label. In training videos, given a scene
context feature vector extracted at any frame, the trees individually vote and
the normalized votes are used as the likelihood for probable future activity class
labels.

5.3 Motion Feature Extraction for Observed Activities

In experimental setup 1 (automated classifier based labels for observed activ-
ities), we have used a ‘Bag-of-Features’ approach over ‘Space Time Interest
Points’ (STIP) [28] due to its popularity in the literature for recognition of
atomic activities. The STIPs based on Harris and Förstner operators are com-
puted for every activity region in the training data. Feature vectors computed
at each point are clustered and quantized to generate a codebook during the
training phase and each activity category is modeled as a distribution over this
codebook. A multiclass SVM classifier is trained with these features and the cor-
responding activity labels obtained from the annotated training data. Similarly,
for test video inputs, the STIPs are computed and probable activity regions are
identified where a significant number of points from the trained vocabulary is
observed.
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Fig. 4. Increasing trend of forecasting probabilities for different classes of activity (ob-
served in the test set) with time. The positive direction of the time axis indicates
increasing time gap from the instant at which the activity to be forecast happens. (A)
Probability with which the ground truth activity is forecast as the next activity in exp.
setup 1, (B) Similar increasing trend as observed in exp. setup 2.

5.4 Experiment Set 1

In this section, we present the experimental results when a classifier (BOW +
SVM) is used to generate node potentials corresponding to already observed
activities. At every fifth frame between two activities in a continuous video, we
forecast the next activities that an actor is going to perform using the previ-
ously observed activities in the video as well as estimated scene context at that
frame. At any given time before an activity is performed, the proposed method
estimates the probabilities of various candidate future activity labels and these
forecasting probabilities can vary with time as the actor moves and the scene
context changes. In Fig. 4(A) and Fig. 5(A), we examine this variation in fore-
casting probabilities with time for the next activity that an actor may perform.

Let us assume that an actor has already performed an activity Alast upto time
tlast (or just entered the scene) and is going to perform Anext at time tnext. At
every time point t between tlast and tnext, we estimate the probability with which
Anext is forecast as the next unobserved activity label, and thus tr = (t−tnext) is
the forecasting horizon. The average probability of forecasting the ground truth
activity(Anext) over all instances of Alast in the dataset is computed and its time
evolution is observed. Please note that for the same future activity performed,
the time gap [tlast, tnext] varies for different instances and hence is normalized
between [−1, 0] (−1 denotes the end time of last observed activity or the time
of actor’s first appearance and 0 is the time when the next activity is going to
occur in future). This time gap is split into 8 equal ranges (∆tri , i = 1, · · · 8)
and the average probabilities (with standard errors) of the next ground truth
activities are plotted.

Fig. 4(A) shows the time evolution of probabilities of three activity types
(loading obj. to vehicle, opening trunk, entering facility) as the next activity in
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Fig. 5. Time evolution of forecasting probabilities for different classes of activity (in
the test set), where no apparent trend is observed. The positive direction of the time
axis indicates increasing time gap from the instant at which the activity to be forecast
happens. (A) Probability with which the ground truth activity is forecast as the next
activity in exp. setup 1, (B) Similar absence of trend, as observed in exp. setup 2.

exp. setup 1. It can be observed that for these activities, the probabilities rapidly
increase as the forecasting horizon closes to zero (t closes to tnext), especially
for the first two car related activities. This is because, during this time range an
actor typically walks upto the vehicle and as the actor gets closer to the vehicle
(t closes to tnext), the model gets more confident that the person is going to
interact with the car and hence one of these activities is going to be performed.
The last observed activity label and the spatio-temporal context further refines
the forecasting probabilities to put preference to a particular activity label.

However, this increasing trend in forecasting probability is largely activity
specific as for some of the activities in the dataset, there may not be any tightly
associated scene context variable. Thus, even large changes in computed scene
context variables minimally affect the forecasting probabilities when these ac-
tivities would occur in immediate future. For VIRAT, some examples of such
activities are Running, Gesturing etc. As seen in Fig. 5(A), there is no visible
trend in the time evolution of forecasting probabilities for these activities. Again,
for activities such as ‘unloading object from a vehicle’, the relevant scene context
variables (e.g. distance from a car, overlap with a car bounding box etc.) remain
largely constant, thereby resulting in uniform average probabilities through the
forecasting time range (Fig. 5(A)).

5.5 Experiment Set 2

The probabilities and accuracies for forecasting future activities are affected
by the accuracy of the recognition module used for already observed activities.
Therefore, to factor out the effect of the errors in the observed activity recog-
nition module on the forecasting results, we repeat the same experiments as in
exp. set 1 with only the classifier replaced by a perfect recognition scheme. As
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Fig. 6. (A) An example showing how the posterior probability of forecasting increases
with time and stabilizes once the next observation is obtained. (B) Time evolution of
forecasting probability averaged over all activity classes in exp. setups 1 and 2. (C)
Average accuracy of forecasting correct labels for the immediately next unobserved
activities in both the experimental setups.

we observe an activity, we retrieve its ground truth label and set the activity
recognition probability for that particular activity at a very high value, and close
to zero for the rest. The evolution of forecasting probabilities with normalized
time horizon is shown in Fig. 4(B) for the activities that show an increasing
trend in forecasting probabilities and Fig. 5(B) for the activities without any
apparent trend in the time evolution of probabilities. The figures are visually
similar to those for the same activities in exp. setup 1. However, the average
forecasting probabilities for most of the activities are typically higher than that
in the classifier based recognition case (set 1).

An example showing the increasing forecasting probability for the next un-
observed activity is presented in Fig. 6(A) (in exp. setup 2). In a video segment,
an actor in observed to ‘carry an object’ and the unobserved future activity
would be ‘person loading object to a vehicle’. A parked car is detected in the
scene and the posterior probability of the next activity being labeled as ‘person
loading obj.’ rapidly increases as the person walks straight towards the car and
gets closer to it. Fluctuation in the probability is seen due to occlusion of the
detected object on person. The posterior probability gets close to 1 just before
the start of the next activity. Once the next observation is obtained, the poste-
rior represents recognition probability and remains constant for the rest of the
video. The time evolutions of forecasting probability averaged over all activity
classes for both exp. setup 1 and 2 are shown in Fig. 6(B) and in both the cases
they show an overall increasing trend. As expected, the average probabilities in
exp. setup 2 is higher than that in exp. setup 1. Similar trends are also observed
in Fig. 6(C), which shows the time evolution of average forecasting accuracies.
An increasing trend very similar to that of forecasting probabilities is observed.

As the proposed method is capable of forecasting activities deeper into the
future beyond the immediately next activity, we also compute the time evolution
of forecasting probabilities and accuracies for activities one step ahead (the ‘next-
to-next’ activities). Time evolution of forecasting probabilities for the next-to-
next activities are given in the supplementary. The overall forecasting accuracies
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Fig. 7. Confusion matrices showing the overall forecasting accuracies obtained for each
class of activity. (A-B) Accuracies for forecasting activities in immediate future and
one step ahead (next-to-next) in experimental setup 1, (C-D) Accuracies for next and
next-to-next activities respectively in experimental setup 2.

of all next and next-to-next activities in exp. setup 1 are shown in Fig. 7(A-B).
The accuracies for most activities happening in immediate future is high. As we
predict activities deeper into future, the accuracies tend to go down, as evidenced
by Fig. 7(B). Similar trends are seen for activities in exp. setup 2 (Fig. 7(C-D)).
Please note that, as there is no baseline activity classifier to train in exp. setup
2 and we need only 20% of the data for training the scene context classifier,
we have the entire remaining dataset for testing and that is why results for all
11 activities could be investigated. With an ideal activity recognition scheme
(setup 2), the expected improvements in forecasting accuracy can immediately
be evidenced by the confusion matrices shown in Fig. 7(C-D).

The effect and importance of individual components of the proposed model
can be understood by analyzing the results above. Fig. 4 and Fig. 6 show im-
provement in forecasting probability and accuracy as the scene context based
node potential changes from uniform (no scene context) to a more definitive
distribution. Fig. 6(B,C) and Fig. 7 also show how scene context improves fore-
casting over simple temporal activity context as the next unobserved activity
nodes benefit from scene context, but the next-to-next activities do not.

6 Conclusion

In this paper, we have presented a novel approach towards the problem of fore-
casting future activities in long duration continuous videos. We have shown that
the forecasting problem can be posed as a graph inference problem on a MRF
where individual activities in a sequence are nodes on the graph. The method
combines the spatio-temporal inter activity context and inter-relationship be-
tween actors’ tracks and detected key points and objects in the scene with a
standard activity recognition classifier to forecast activities that are yet to be
observed. We show detailed experimental results on the challenging VIRAT[10]
dataset and achieve meaningful and encouraging results. Future work would in-
clude anomalous activity detection using the method proposed in this paper.
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