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Abstract—We propose a control mechanism to obtain oppor-
tunistic high resolution facial imagery, via distributed constrained
optimization of the PTZ parameters for each camera in a sensor
network. The objective function of the optimization problem
quantifies the per camera per target image quality. The tracking
constraints, which are a lower bound on the information about
the estimated position for each target, define the feasible PTZ
parameter space. Each camera alters its own PTZ settings. All
cameras use information broadcast by neighboring cameras such
that the PTZ parameters of all cameras are simultaneously
optimized relative to the global objective. At certain times of
opportunity, due to the configuration of the targets relative to the
cameras, and the fact that each camera may track many targets,
the camera network may be able to reconfigure itself to achieve
the tracking specification for all targets with remaining degrees-
of-freedom that can be used to obtain high-res facial images
from desirable aspect angles for certain targets. The challenge
is to define algorithms to automatically find these time instants,
the appropriate imaging camera, and the appropriate parameter
settings for all cameras to capitalize on these opportunities. The
solution proposed herein involves a Bayesian formulation in a
game theoretic setting. The Bayesian formulation automatically
trades off objective maximization versus the risk of losing
track of any target. The article describes the problem and
solution formulations, design of aligned local and global objective
functions and the inequality constraint set, and development
of a Distributed Lagrangian Consensus algorithm that allows
cameras to exchange information and asymptotically converge
on a pair of primal-dual optimal solutions. This article presents
the theoretical solution along with simulation results.

Index Terms—Camera Sensor Networks, Cooperative Control,
Distributed Constrained Optimization.

I. INTRODUCTION

Static camera networks have a lower per camera cost of
installation than pan, tilt, zoom (PTZ) camera sensor networks;
however, PTZ camera networks can have lower total installa-
tion cost with greater performance. Static camera networks
must be designed to achieve the coverage and tracking speci-
fications given worst case target distributions. Installation cost
constraints can lead to imagery sequences from static camera
network applications that are quite challenging to analyze. PTZ
camera networks, with appropriate software and communica-
tions, can dynamically reconfigure in response to application
events and actual target distributions to optimize the acquired
imagery sequences accounting for viewpoints and resolution,
to facilitate image analysis and scene understanding.

A prototypical application is a security screening checkpoint
at the entrance lobby of a building. Over the course of each
day a high volume of people flow through the room. The
room is equipped with a fixed number of cameras while the
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number and location of people in the room varies with time.
The objective of the camera network is to track (i.e., state
estimation) all persons in the room at a specified accuracy level
at all times and to capture high-res facial images for certain
persons in the room at opportunistically selected instants.

The challenges of such an application are development of
algorithms to ensure accurate propagation of target-related
information throughout the distributed network, analysis of the
effect of changing network topology on solution convergence,
design of distributed PTZ optimization algorithms, and the
design of objective functions suitable to solving the specified
problem that also have the properties necessary to ensure
convergence. All these factors influence the selection of an
optimization strategy. In this paper, we formulate the problem
within a Bayesian game theoretic framework and utilize a
distributed constrained optimization approach to compute the
optimal PTZ settings that achieve the global camera network
objective through optimization of local camera objectives.

II. LITERATURE REVIEW

The research proposed herein falls within the scope of active
computer vision [1], which involves research on cooperation
and coordination between many cameras in a network, for
applications such as autonomous surveillance, simultaneous
localization and mapping (SLAM), trajectory planning, etc.

Assuming predesigned static camera placement given cer-
tain tasks, the articles [2], [3] define deployment strategies
for camera networks. A path-planning based approach is
proposed in [4], where static cameras track targets, and PTZ
cameras obtain high-res images. Given a target activity map,
the Expectation-Maximization algorithm [5] is used to perform
area coverage in [6]. Other interesting active vision problems
such as object detection across cameras, camera handoff, and
camera configuration, with an emphasis on camera networks
is addressed in [7]–[10]. Methods for tracking a group of
people in a multi-camera setup are addressed in [11], [12].
A review of human motion analysis is performed in [13]. The
methods proposed therein dealt with a centralized processing
scheme and did not delve into the decentralized organization of
cameras. Distributed computer vision algorithms are studied in
[14], [15]. Distributed state estimation algorithms over vision
networks are studied in [16]–[18]. The above articles do not
focus on distributed optimization of the PTZ parameters to
optimize the acquired imagery.

Assumptions on the camera network communication topol-
ogy play a major role in the problem solution. Preliminary
work on camera networks using independent cameras that lack
coordination is provided in [19]. A machine learning-based
method to learn the network topology is described in [20].



The authors employ unsupervised machine learning to estab-
lish links between target activity and the associated camera
views to decipher communication topology to determine target
tracks. In [21], authors measure the statistical dependence
between observations in multiple camera views to quantify
a potential interconnecting pathway for target tracks between
different camera views with an aim to enable camera handoff.
Multi-agent systems with switching topologies are studied in
[22], [23]. Though the studies therein are not based on visual
sensing applications, [22], [23] provide significant insight on
methods potentially applicable to mobile camera networks.

A recent research survey [14] identifies various computer vi-
sion problems that can be solved in a distributed fashion within
a network topology. Within a distributed framework, problems
are often defined as multi-agent tasks that utilize cooperation
between agents. A vision-based target pose estimation problem
that employs cooperation and uses multi-agent optimization
techniques is addressed in [24]. Therein, authors propose a
passivity-based target motion observer model, and propose
a cooperative estimation algorithm where every agent solves
an unconstrained convex minimization problem to minimize
estimation error. The passivity based motion observer model is
utilized in [25] for camera control, under assumptions on target
motion. Though the articles above focus on target and camera
pose estimation, the challenges related to obtaining high-res
imagery while maintaining state estimation performance are
not considered.

A survey of automated visual surveillance systems is pro-
vided in [26]. Building scene interpretation in a modular
manner on decentralized intelligent multi-camera surveillance
systems is described in [27]. For multi-agent network systems
that employ a time-varying topology, stability analysis is
provided in [28]. The analysis is based on graph-theoretic tools
where the authors assume the problem to be convex.

Game-theory as a tool for designing solutions to multi-agent
problems is described in [29]. A vehicle-target assignment
problem within the game-theoretic framework was proposed
in [30]. The standard target assignment problem is different
from a camera-target assignment problem in that the prob-
lem described therein is a one-to-one mapping problem with
the stationary targets, whereas the camera-target assignment
problem allows multiple cameras to each track multiple mov-
ing targets. Nonetheless, articles [29], [30] provide valuable
insight into the challenges faced while designing the camera
parameter optimization as a cooperative game played by
multiple cameras.

A game-theoretic camera control approach for collabora-
tive sensing is proposed in [31]–[34]. In [31], the agents
collaborate to optimize a cost function that is the weighted
combination of area coverage over regions of interest while
trying to achieve high-res images of specific (highly weighted)
targets. In [32]–[34], the agents account for risk and include
image quality in a weighted cost function. Collaboration was
ensured through a game-theoretic formulation. The quality of
the solution was dependent on the user-defined weights.

An automated annealing approach for updating Lagrange
multipliers within a constrained optimization framework to
reduce dependence on agent inter-communication is provided

in [35]. The method uses the probability collectives framework
to generate a relation between game theory and statistical
physics. The authors use a game-theoretic motivation to de-
velop a parallel algorithm, but consider a non-cooperative
game between agents, where the action of one agent is
completely independent of the other agents in the network.
Such an assumption is not appropriate for our application.

A systematic methodology for designing agent objective
functions is outlined in [36], using a hierarchical decoupling of
the global objective function into local objective functions that
are aligned with the global function. Each agent is modeled
as a self-interested decision maker within a game-theoretic
environment, then convergence proofs from the game theory
literature are utilized. Herein, we utilize the methodology of
[36] to decompose a Bayesian value function designed for
the opportunistic visual sensing application into local value
functions suitable for distributed implementation.

III. CONTRIBUTIONS OF THE PAPER

The distributed PTZ camera parameter optimization prob-
lem considered herein is similar to the class of problems
considered in [32], [33]. The solution methodology herein is
significantly enhanced. The cost function in [33] is a weighted
summation of competing objectives and the optimization is
unconstrained. In [32], the authors use a heuristic to weight the
high-res imaging objective dependent on the quality of target
tracking performance achieved by the network of cameras,
collectively. Although such an approach allows the network
of cameras to obtain high-res images only if the tracking
heuristic is desirable, there is no guarantee of all targets being
tracked to the required tracking specification. Optimization
is accomplished via sequential utility maximization by each
agent. Neither paper includes an analysis of convergence of the
distributed implementation. These issues are further discussed
in Remark 3 after defining the required notation.

Herein, a method for distributed, cooperative and parallel
optimization on a connected camera network is defined, ana-
lyzed, and implemented. The camera parameter optimization
process maximizes a Bayesian value function that accounts for
risk arising from the uncertainty in the estimated target posi-
tions, while adhering to Bayesian constraints on the tracking
performance. The value function is designed as an ordinal
potential function [36], such that it can be decoupled into
local objectives known to each camera. The tracking constraint
is common to all cameras. With reasonable assumptions on
network connectivity, utilizing a Bayesian constrained opti-
mization approach, the proposed solution method provides
feasible optimal solutions to perform opportunistic visual
sensing of targets maneuvering with random trajectories.

A shorter and less comprehensive presentation of this
approach is contained in [34]. Relative to [34], this article
includes an enhanced discussion and analysis of the proposed
approach throughout, a detailed and realistic simulation ex-
ample with discussion, a statistical analysis of the proposed
approach relative to imaging with a network of static PTZ
cameras, development of mechanisms for convergence towards
the global optima, and a detailed discussion of possible
alternative methodologies.



TABLE I: Notation Summary

Parameter Variable
Pan, Tilt, Zoom (ρ, τ, ζ)
Min. focal length, Max. focal length F , F
No. of Cameras, No. of Targets in region NC , NT (t)
i-th camera, j-th target Ci, T j

(ρ, τ, ζ) settings for Ci, all cameras except Ci ai, a−i

(ρ, τ, ζ) settings for all cameras a
Dimension of (ρ, τ, ζ) settings for Ci ai ∈ <ni , ni = 3
Dimension of (ρ, τ, ζ) settings for all cameras a ∈ <n, n = 3NC

No. of problem constraints m
Tracking performance vector for all targets UT (a)
Tracking threshold vector for all targets T̄
Global Bayesian imaging value over all targets VI(a)
Local Bayesian imaging value over all targets VIi (ai)
Bayesian tracking value vector for all targets VT (a)
Achieved global imaging value over all targets V̄I(a)
Achieved local imaging value over all targets V̄Ii (ai)
Achieved tracking value vector for all targets V̄T (a)
Lagrange multiplier vector for all targets λ
Camera Ci’s version of λ λ(i)

Lagrange multiplier vector obtained via consensus λ̄
Lagrangian constructed for optimization L(λ,a)

Weight for importance of imagery of T j by Ci wj
i

Image resolution obtained for T j by Ci rji (ai)

Relative pose quality factor between Ci and T j αj
i (ai)

State vector for T j xj = [pj , vj ]>

State est., state est. covariance for T j x̂j , Pj

Fisher Information Matrix J
Measurement Vector, Measurement Covariance u, C
Rotation Matrix from frame a to frame b b

aR
Entity e before, after new measurement e−, e+

Entity e in global frame, frame defined by Ci
ge, ie

Entity e at time-step tk e(k)
Entity e for target T j ej

Entity e at local or global optimum e∗

IV. PROBLEM DESCRIPTION AND SOLUTION OVERVIEW

Facial detection and recognition processes are greatly fa-
cilitated by capture of high resolution images of the face
from a desired aspect angle [37], [38]. This paper does
not discuss facial recognition methods; instead, it focuses
on the means to configure a network of PTZ cameras to
opportunistically acquire high-res facial imagery. We use the
term ‘opportunistic’ as each camera must select its parameters
to satisfy a tracking constraint at all times and to obtain high-
res facial images at times-of-opportunity. Such an opportunity
may arise due to the high probability of image capture at a
high zoom setting from a superior aspect angle, and when
tracking constraints on all the targets can be simultaneously
satisfied. The tracking constraints, while useful in their own
right, are necessary to enable high-res imaging. Note also that,
due to the uncertainty of the target motion, the high zoom
setting required by certain cameras to attempt to obtain high-
res images, will impose tracking risk that must be accounted
for appropriately by the camera network.

The operating environment includes NC cameras placed
at known, fixed locations and a time-varying number of
targets NT (t) with independent and unknown trajectories. It
is possible that NT (t) > NC . All cameras have changeable
pan (ρ ∈ [−180◦, 180◦]), tilt (τ ∈ [−90◦, 90◦]), and zoom
(ζ ∈ [F , F ]) parameters. We assume the cameras to have
parfocal zoom lenses [39] that maintain focus with changing
focal length and have a negligible focus error.
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Fig. 1: System Block Diagram and Event Time-line: Note that information
exchange shown is only between neighboring cameras. The time-line of
procedural events is shown between image sample times.

In a distributed solution framework, using information up
to and including the last imaging time tk, the i-th camera
in the network will be required to optimize its parameters
ai = [ρi, τi, ζi]

> ∈ <3 for the next imaging instant tk+1, in
cooperation with the other cameras to maximize an objective
function. Any choice of ai yields a field-of-view (FoVi)
for the resulting image. The parameters of all cameras are
organized into a vector a = [a1, . . . ,ai, . . . ,aNc ]>. The vector
containing all parameter vectors except those of Ci is denoted
by a−i. Additional notation is summarized in Table I.

Remark 1: By the nature of the visual sensing application,
depending on the choice of ai, Camera Ci may image multiple
targets each at a different resolution. The attained resolution,
one quantity affecting image quality, is determined by the
choice of ai. In addition, depending on the choice of a any
given target may be imaged by multiple cameras, yielding
improved tracking accuracy. �

Solution of the overall problem in the time interval t ∈
(tk, tk+1) involves several processes. Based on the previous
images up to and including the image at tk, the target
state estimation process provides a prediction of the mean
x̂j(k + 1)− and covariance matrix Pj(k + 1)− for all targets
(i.e., j = 1, . . . , NT ) at tk+1. Every camera in the network
has its own embedded target detection module [31], [32],
[40], [41], a target state tracker, and a distributed camera
parameter optimizer, as shown in Fig. 1. This article focuses on
distributed camera parameter optimization, not target detection
or state estimation. For the results herein, the target state
estimate is computed using the Information Weighted Kalman-
Consensus tracker derived in [18].

In Fig. 1, the top portion illustrates the information flow and
the bottom portion illustrates the processing sequence. Images
acquired at tk are first processed for feature detection and
target association. The resulting measurements are used for
distributed state estimation [18], [42], which ensures that the
state of each target is estimated consistently by each camera
in the network. Each camera only uses its own imagery and



data communicated from its neighbors’ on the communication
graph. Consistency and accuracy of state estimation are pre-
requisites that enable distributed optimization of the network
parameter vector a for high-res image acquisition at tk+1.
Upon completion of the target state estimation process, a prior
target state estimate g x̂j(k+1)− and a prior covariance matrix
Pj(k + 1)− are available for each target T j at the future
sampling time tk+1. Subsequently, each camera will optimize
its PTZ parameter settings ai using g x̂j(k+1)− and Pj(k+1)−

as inputs. Following computation of an optimal PTZ setting,
each camera Ci physically changes its settings to the specified
value ai(tk+1). The focus of this paper is on the algorithms
within the optimization block as highlighted in Fig. 1.

Remark 2: If cameras take images with a period Ts, the
designer could choose to re-optimize the camera parameter
settings a after every M -th image, resulting in tk = MTs,
while still using all M images for target detection and tracking.
In this article, we choose to use M = 1. In future work, it
could be interesting to adapt M in response to events.�

Remark 3: It is useful to compare different optimization
approaches. In centralized optimization, one entity would
receive all the required information and adjust the entire vector
a to maximize the expected value function. Convergence
of centralized optimization methods are well understood. In
distributed approaches, each agent Ci will only adjust the
proposed values of its parameters ai for the next imaging time.
In distributed sequential optimization, while Ci is adjusting
ai, all other cameras Cj for j 6= i are idle. Cameras
sitting idle potentially save energy at the expense of time
to reach convergence. The convergence of such schemes is
straightforward to analyze as each camera is solving a much
lower dimension optimization problem. The analysis would be
similar to that for the centralized case. In distributed parallel
optimization, all cameras adjust their parameters simultane-
ously. Convergence of this case is more complex, requiring
results from optimization and game theory, and cost functions
meeting certain technical requirements.

V. BACKGROUND

This section briefly reviews concepts of optimization [43]
and game theory [36], [44] necessary for the solution method-
ology proposed herein.

A. Centralized Constrained Optimization

Consider a standard convex vector optimization (e.g., maxi-
mization) problem with a differentiable primal objective func-
tion1 fo and differentiable inequality constraints gj

maximize fo(a) (1)
subject to gj(a) ≥ 0, j = 1, · · · ,m,

where m is the total number of constraints and a ∈ <n. The
Lagrangian L(λ,a) augments the primal objective function

1The notation fo(a) is short for fo(a : xj , j = 1, . . . , NT ), which is
more precise in making explicit the fact that the value depends on the target
state; however, it is too cumbersome to be effective.

with the constraints

L(λ,a) = fo(a) +

m∑
j=1

λjgj(a) = fo(a) + λ>g, (2)

where g is the vector of constraint functions and λ ∈ <m is
the Lagrange multiplier vector with λj ≥ 0.

Since the objective and constraint functions
fo, g1, · · · , gm are differentiable, if an optimum a∗

exists, then the Lagrangian L(λ∗,a∗) attains its maximum
at the primal-dual pair (a∗,λ∗) that must satisfy the KKT
conditions

∇fo(a∗) +

m∑
j=1

λj∗ ∇gj(a∗) = 0, (3)

gj(a∗) ≥ 0, λj∗ ≥ 0, (4)
λj∗gj(a∗) = 0. (5)

The KKT conditions provide a certificate for optimality.
In a centralized solution approach, the Lagrangian is max-

imized by search over the parameters a and λ. This requires
that all data and all parameters are available at a central
controller. Although, proofs of optimality are simpler and well
known for this centralized approach, for reasons stated in the
introduction, we are interested in decentralized solutions.

B. Game Theory and Ordinal Potential Functions

For a distributed optimization approach, Ci will only adjust
ai and λ. A challenge in formulating a distributed optimization
problem is the decoupling of the system objective into local
objectives, one for each agent. The game theory literature and
the concept of potentiality provides guidance for addressing
this challenge.

Consider a ∈ S and ai, bi ∈ Si, where S = S1×. . .×SNC

is the collection of all possible camera parameter settings in
the game G, and Si is the collection of all possible camera
parameter settings for Ci. The sets S and Si for i = 1 to NC ,
referred to as action sets within the game theory literature, are
compact. Let2 φi(ai : a−i) denote the local objective function
of Ci. Game Gp is a potential game if ∃ a potential function
φp : S 7→ < such that ∀a ∈ S and ∀ai,bi ∈ Si,

φp(bi,a−i)− φp(ai,a−i) = φi(bi : a−i)− φi(ai : a−i). (6)

Game Go is an ordinal potential game if ∃ an ordinal potential
function φo : S 7→ < such that ∀a ∈ S and ∀ai,bi ∈ Si,

φo(bi,a−i)− φo(ai,a−i) > 0

⇔ φi(bi : a−i) − φi(ai : a−i) > 0. (7)

Potential games and ordinal potential games allow the global
utility maximum to be achieved by maximization of the local
utilities of each camera. When Eqn. (7) is satisfied, the local
objective functions are said to be aligned with the global
objective. Given φo(a), if the local utilities are defined as
φi(ai : a−i) = φo(ai,a−i), then it is straightforward to show
that the resulting game is a potential game.

2This notation φi(ai : a−i) means that the value of the function φi may
depend on both ai and a−i, but that ai as treated as an independent variable
while a−i is treated as a constant by Ci.



Thus, by defining the global objective function as an ordinal
potential function with the individual local camera objectives
aligned to it, the game becomes an ordinal potential game.
When the set S is compact, and a game has a continuous
potential function, then the game has at least one Nash Equi-
librium. Therefore, given any feasible initial condition, at each
step for which one camera increases its own utility, the global
objective function increases correspondingly, due to G being
a potential game. If φo is continuous and S is compact then
φo(a) is bounded above; therefore, the optimization converges
toward a maxima. At the maxima, no camera can achieve
further improvement and thus a Nash equilibrium is reached.

C. Distributed Constrained Optimization

For the distributed approach define the local constrained
optimization problem for the i-th camera

maximize fi(ai) (8)
subject to gj(ai : a−i) ≥ 0, j = 1, · · · ,m,

where ai ∈ <ni , and a−i ∈ <n−ni . The local Lagrangian is

Li(λ,ai : a−i) = fi(ai) +

m∑
j=1

λjgj(ai : a−i)

= fi(ai) + λ>g, (9)

where g is the vector constraint and λ ∈ <m with λj ≥ 0.
If we define the global objective function as the sum of

local objective functions:

fo(a) =

NC∑
i=1

fi(ai), (10)

then from Eqns. (2–5), (9), and (10), ∀a ∈ S, and ∀ai,bi ∈ Si,

L(λ,bi,a−i)− L(λ,ai,a−i) > 0

⇔ Li(λ,bi : a−i)− Li(λ,ai : a−i) > 0, (11)

where the objective of each agent is to maximize its local
Lagrangian. Therefore, Li and L are aligned, and the global
Lagrangian L is an ordinal potential function.

Remark 4: In a potential game, Ci can only choose its own
action ai, but will take into account the proposed actions a−i
of all other agents. The actions of all other agents a−i are
determined by the other agents. Because Ci is the only agent
able to select ai, consensus between agents is inappropriate
for computation of ai. Instead, a modified flooding approach
will be used, see Section VIII-B. At the same time, all cameras
must collaboratively choose actions and λ to ensure that all
constraints are satisfied. During distributed optimization each
Ci has a local version of the Lagrange multiplier vector,
denoted as λ(i). A consensus algorithm is used to ensure the
convergence of λ(i) to a single value, see Section VIII-C.�

VI. SYSTEM MODEL

The continuous-time state space model of target T j is:

ẋj(t) = F xj(t) + G ωj(t) (12)

where j = 1, . . . , NT is the target number and xj = [gpj ; gvj ]
with gpj and gvj representing the position and velocity
vectors in the global (earth) frame. The process noise vector
ωj ∈ <3 is assumed to be zero mean Gaussian with power
spectral density Q. The discrete-time equivalent model is:

xj(k + 1) = Φxj(k) + γ(k) (13)

where Φ = eFT is the state transition matrix, γ ∼ N (0,Qd)
is the process noise, and T = tk+1−tk is the sampling period.

A. State Estimate Time Propagation

The state estimate and its error covariance matrix are
propagated between sampling instants using [45]:

x̂j(k + 1)− = Φx̂j(k)+ (14)
Pj(k + 1)− = ΦPj(k)+Φ> + Qd. (15)

B. Camera Coordinate Transformations

Target T j’s position in the i-th camera’s frame, cipj , is
related to its position in the global frame gpj by:

gpj = g
ciR

cipj + gpci (16)
cipj = ci

g R[gpj − gpci ], (17)

where gpci is the position of Ci in global frame and ci
g R is

a rotation matrix that is a function of the camera mounting
angle and ai.

C. Measurement Model

Camera measurement models are derived in various refer-
ences [32], [46]. The following presents final results only for
the expressions needed in this article. The derivation in [32]
uses a notation similar to that herein.

Let the coordinates of target T j in camera Ci’s frame be
cipj =

[
cixj , ciyj , cizj

]>
. The standard pin-hole perspective

projection camera model for Ci and T j , assuming that T j is
in the FoV of camera Ci is,

iiuj =


Fi
sx

cixj

cizj
+ ox

Fi
sy

ciyj

cizj
+ oy

+ iiηj , (18)

where sx and sy give the effective size of a pixel in (m/pixel)
measured in the horizontal and vertical directions, respectively;
Fi is the focal length setting defined by ai; the point (ox, oy)
gives the coordinates of the image plane center in pixels; and
the measurement noise iiηj ∼ N (0,Cji ) with Cji (ai) ∈ <2×2.
The fact that the measurement noise covariance Cji is depen-
dent on ai is important. Note, for example, that as the focal
length increases, the size of a target in the image increases
and the pixel uncertainty of its location changes.

Given the estimated state and the camera model, the pre-
dicted measurement is

ii ûj =


Fi
sx

ci x̂j

ci ẑj
+ ox

Fi
sy

ci ŷj

ci ẑj
+ oy

 . (19)



The measurement residual ii ũj is
ii ũj = iiuj − ii ûj . (20)

D. Observation Matrix Hj
i

The linearized relationship between the residual and the
position error vector is

iiuj − ii ûj ≈ Hj
i

(
gpj −g p̂j

)
, (21)

where Hj
i =

∂iiuj

∂gpj

∣∣∣∣
g p̂j

∈ <2×3 is defined in [34]. Note that

Hj
i is a function of both gpj and ai. When T j is not in FoVi,

then Hj
i = 0 ∈ <2×3.

E. Measurement Update

Using Hj
i and Eqn. (20), a measurement update for the

state estimates and error covariances for targets in the area is
performed using the Information-Consensus Filter from [18].

VII. IMAGE OPTIMIZATION METHODOLOGY

The goal is to track all targets at all times to a specified
accuracy T̄, to discover times-of-opportunity at which im-
proved imagery is obtainable, and to determine the sequence
of PTZ parameters for each camera to achieve these goals.
Improved imagery means that the system should only attempt
to acquire a high-res image of any target T j at the next
imaging instant if that image is expected to yield higher
imaging value for that target than is already available. The
method implements distributed, simultaneous optimization by
all agents to compute the optimal camera parameters a∗
relative to Eqn. (1) at each imaging time-instant.

This section starts with specification of the global objective
and constraints that are subsequently decoupled into local
objectives for each camera. The global objective function
for the constrained optimization problem is designed as a
Bayesian imaging value function that accounts for the risk in
imaging the target. Risk will be formulated using the Fisher
information matrix defined as Jj(k+1)− =

(
Pj(k + 1)−

)−1
.

The prior covariance matrix Pj(k+1)− computed using Eqn.
(15) can be written in block form as3:

Pj− =

[
Pj−pp Pj−pv
Pj−vp Pj−vv

]
, (22)

where Pj−pp is the prior, position error-covariance matrix.

A. Global Imaging Value Function

This section discusses the design and desired properties of
the global imaging value function VI

(
a : gp̂j−,Pj−

pp

)
and the

global constraint set. The notation VI
(
a : gp̂j−,Pj−

pp

)
with

j = 1, · · · , NT makes explicit that the optimization variable is
a, while the value also depends on the distribution of target T j

which is parameterized by
(
gp̂j−,Pj−

pp

)
. For ease of notation,

from this point in the paper, we will drop dependence of VI (a)
on gp̂j− and Pj−

pp, unless needed for clarity.

3The time argument (k + 1) is dropped for ease of notation.

1) Value Function Properties: The imaging value function
should have the following properties:
Continuously differentiable: This is necessary for proofs of
convergence, and greatly facilitates numeric optimization.
Increases with image quality: Herein, image quality is
defined by two parameters: image resolution and relative pose
between the imaging camera and the imaged target.

Image resolution rji (ai,
gp̂j), which is a positive real num-

ber, will be quantified by the number of pixels occupied by
T j on camera Ci’s image plane. Given gp̂j , the resolution
increases monotonically with zoom ζ of the imaging camera.

Relative pose between camera Ci and target T j will be
quantified by the scalar quality factor αji (ai). Let vector ovj
be the target’s velocity vector. Define the vector oCi

to be the
i-th camera’s optical axis direction in the global frame

oCi
= g

ciR
cie3, (23)

where e3 = [0, 0, 1]>. Define oT j to be the vector from
camera Ci’s position to target T j’s estimated position. Using
the vectors ovj , oCi

, and oT j we define the scalars

oc =
oCi
· oT j

‖ oCi
‖‖ oT j ‖

, and oo =
oCi
· ovj

‖ oCi
‖‖ ovj ‖

. (24)

The scalar oc ∈ [−1, 1] yields the maximum possible positive
value of 1 if camera Ci images target T j such that T j is at
the center of its FoV. The scalar oo ∈ [−1, 1] has maximum
magnitude when T j’s motion vector ovj is pointing directly
toward or away from camera Ci.

To define αji (ai), we use the following assumption.
Assumption 1: (Facial Direction) Target T j faces in the

direction indicated by vector ovj .
From Assumption 1 and Eqn. (24), when the scalar oo < 0,

T j is likely to be facing camera Ci. This condition differen-
tiates between targets facing Ci and those facing away from
it. The relative pose quality factor is thus defined as

αji (ai) =

{
(oc oo)

2 if oo < 0
0 otherwise.

(25)

Hence when αji ∈ [0, 1] is large, it is likely that T j is facing
Ci and at the center of Ci’s FoV. The imaging value obtained
by camera Ci for imaging T j located at gpj is defined as

V jIi(ai,
gpj) = rji (ai) α

j
i (ai). (26)

Balanced Risk: Risk is defined as the probability that the
target is outside of the FoV of the cameras that are expected to
image it. Risk increases monotonically with zoom ζ, because
the ground-plane area within the FoV decreases as ζ increases.
Herein, we will address risk by using the expected value of
the tracking constraints and the imaging value.

To understand the issues involved, it is informative to briefly
consider the simple case where NT = 1 and α1

i > 0 for
i = 1, . . . , NC . For this case, if risk was neglected and VI was
defined with the properties mentioned above, then each camera
would maximize its focal length and select its pan and tilt
parameters to center on the expected target location. If instead,
the value accounted appropriately for risk, then one or more
camera might significantly increase its zoom parameter, while
at least one of the remaining cameras would use lower zoom



Fig. 2: Non-convexity of the Bayesian Imaging Value Function: The figure
is a plot of an example Bayesian imaging value function that highlights the
multimodal nature of the function for scenarios where NT > 1.

parameters, to decrease the tracking risk due to the uncertainty
in the estimated target position. The camera at the highest
zoom setting would be the one at the best aspect angle.

Remark 5: Fig. 2 depicts the appearance of an example
Bayesian Imaging Value function for a scenario with NT = 2
targets in an area monitored by NC = 1 camera. As shown in
the figure, when NT > 1, the summation of the per target
expected imaging value across the targets for any camera
will typically yield a multimodal (i.e., nonconvex) objective
function. Given the expected target positions and their respec-
tive distributions, for a constant tilt angle τ , the plot shows
how the value of the objective function changes versus zoom
(ζ ∈ [ζ, ζ]), and pan angle (ρ ∈ [ρ, ρ]), It can be seen that the
multi-modal nature of the function is exaggerated for higher
values of ζ. Thus, the possibility of multiple targets makes the
visual sensing problem inherently non-convex and provides
challenges in achieving optimal solutions. Non-convexity is
further discussed in Section IX.�

2) Imaging Value VI(a : gp̂j−,Pj−
pp): We define the global

Bayesian image value function as

VI(a) =

NC∑
i=1

NT (t)∑
j=1

wji (t) E
〈
V jIi
(
ai,

gpj
)〉

(27)

=

NC∑
i=1

∫
FoVi

NT (t)∑
j=1

wji (t) V
j
Ii

(ai, z) ppj (z)

 dz,

where wji (t) is a time-varying local dynamic imaging weight
that magnifies the importance of imaging certain targets rela-
tive to other targets4. Given the assumptions herein, the prob-
ability distribution ppj (z) of the position of T j in the global
frame at the next imaging instant is the Normal distribution

4Specification of wj
i (t) is application dependent. It could be constant,

user-specified, or could increase as the target approaches a specified location
such as an exit. See the example in eqn. (49).

N (gp̂j−,Pj−pp). The dummy variable z representing target
position is used for integration over the ground plane, where
the region of integration is the i-th camera’s FoV.

Each camera integrates over its own FoV. The integral of
image quality over FoVi as a function of probability weighted
target position yields the Bayesian value function, which
provides the desired tradeoff between image quality and risk.

3) Performance Constraints: The performance constraints
will be defined as a function of the posterior Fisher Informa-
tion Matrix Jj+

(
a : gp̂j−,Pj−

pp

)
.

Fisher Information: The Fisher Information Jj for T j in
block form is

Jj =

[
Jjpp Jjpv
Jjvp Jjvv

]
, (28)

where, Jjpp represents the position information matrix. The
posterior position information matrix Jj+pp is given by

Jj+pp = Jj−pp +

NC∑
i=1

Hj>

i

(
Cji
)−1

Hj
i , (29)

where, Jj−pp is the prior information about T j . As was shown
in Section VI-D, Hj

i and Cji are functions of ai and Hj
i is

a function of the target position. Therefore, Jj+pp depends on
a and on the target position. Computation of the expected
tracking accuracy should account for this variation and for the
probability that T j ∈ FoVi.
Tracking Performance: We define a vector Uj

T (a :
gp̂j−,Pj−

pp) as a measure of tracking performance for each
target in the area. One example is Uj

T (a) = diag
(
Jj+pp
)
.

Because the quantity Uj
T (a) depends on whether T j is within

the FoV of each camera that is expected to image it, we
define the global Bayesian tracking value vector Vj

T (a) as
the expected value of the tracking performance vector Uj

T (a)
over the position of T j computed across all the camera’s FoVs:

Vj
T (a) = Epj

〈
Uj
T (a)

〉
=

∫ (
Uj
T (a) ppj (z)

)
dz, (30)

where all variables are as defined in Eqn. (27) and the
summation over all cameras is accounted for already in eqn.
(29), which also accounts for prior information.
Tracking Constraint: Each target’s tracking constraint is

Vj
T (a) � T̄j , (31)

where T̄j is the user specified lower bound on the tracking
information about target T j . Due to the reciprocal relation
between (scalar) information and covariance, the reciprocal
of T̄j is the upper bound on the covariance of target T j’s
state estimate. The tracking performance threshold T̄j is hence
measured in m−2. The notation ‘�’ in Eqn. (31) indicates a
per-element vector inequality. Stacking the Bayesian tracking
value vectors for each target, we obtain

VT (a) =
[
V1
T , · · · ,V

j
T , · · · ,V

NT

T

]>
, (32)

and rewrite Eqn. (31) for all targets presently in the area as:

VT (a) � T̄, (33)

where VT (a), T̄,0 ∈ <m with m = NT (t)dim(gpj). Eqn.
(33) is the global tracking constraint.



4) Global Problem Summary: The constrained global imag-
ing value maximization problem can be written as

maximize VI
(
a : gp̂j−, Pj−

pp

)
(34)

subject to
[
VT

(
a : gp̂j−, Pj−

pp

)
− T̄

]
� 0.

The global Lagrangian L(λ,a) is

L(λ,a) = VI (a) + λ>
[
VT (a)− T̄

]
, (35)

where L : (λ,a) 7→ <, and λ ∈ <m is the Lagrange multiplier
vector. Thus, to find the optimal primal-dual pair of solutions
(a∗,λ∗) through a central controller, the global unconstrained
problem given by the Lagrangian in Eqn. (35) would be solved.

B. Decoupling the Global Problem

Due to the desired distributed nature of our solution, we
need to decompose the global problem into smaller local
problems that are solvable by each camera.

In our problem formulation, we allow camera Ci to op-
timize only its own camera parameter settings ai. Using this
system restriction, we define the local Bayesian imaging value
function for Ci as

VIi(ai) =

∫
FoVi

NT (t)∑
j=1

(
wji (t) V

j
Ii

(ai, z) ppj (z)
)
dz. (36)

Define VTi
(ai) = VT (ai : a−i). This notation con-

cisely indicates that Ci can only alter ai, where for the
purpose of its local optimization a−i is fixed. Note that
VT (ai : a−i) is distinct from VT (ai,a−i) = VT (a) and
that maxai∈Si

VTi
(ai) ≤ maxa∈S VT (a). Each agent will

have the constraint VT (ai : a−i) � T̄. While Ci is changing
ai, the other agents are simultaneously changing their sub
vectors of a−i and all agents are broadcasting their current
locally optimal values through the network. Thus the tracking
constraint for camera Ci is

VTi
(ai) � T̄. (37)

Note that,

VTi(ai) � T̄ ⇔ Vj
Ti

(ai) � T̄j for j = 1, . . . , NT (t).

The Fisher Information given in Eqn. (29) can be reorga-
nized as:

Jj+pp =

[
Jj−pp + Hj>

−i

(
Cj−i

)−1

Hj
−i

]
+ Hj>

i

(
Cji
)−1

Hj
i .

For the process of Ci optimizing its parameter vector ai,
the contribution from prior information and all other cameras
(term in brackets) is independent of ai and considered by Ci

to be constant and known. The term
[

Hj>

−i

(
Cj−i

)−1

Hj
−i

]
is computed from a−i which will be available through the
distributed optimization process discussed in Section VIII.

Thus from Eqns. (29-30), we can write

Epj

〈
diag

(
Jji

)〉
� T̄− Epj

〈
diag

(
Jj−pp + Jj−i

)〉
, (38)

where Jji = Hj>

i

(
Cji
)−1

Hj
i and Jj−i = Hj>

−i

(
Cj−i

)−1

Hj
−i.

The right hand side of this inequality represents, for the current

proposed settings of the other cameras a−i, the expected im-
provement in tracking accuracy required from Ci for imaging
T j to have a feasible global solution. Targets for which the
right-hand side of Eqn. (38) is negative can be removed from
the set of tracking constraints for Ci.

From Eqns. (36) and (37), the local imaging value maxi-
mization problem can be written as

maximize VIi
(
ai : gp̂j−, Pj−

pp

)
(39)

subject to VTi

(
ai : a−i,

gp̂j−, Pj−
pp

)
� T̄.

The local Lagrangian Li(λ(i),ai) is

Li
(
λ(i),ai

)
= VIi(ai) + λ>(i)

[
VTi

(ai)− T̄
]
. (40)

Thus, for camera Ci to find its local optimal primal-dual pair
of solutions (a∗i ,λ

∗
(i)), Ci will maximize the local uncon-

strained Lagrangian given in Eqn. (40).
In this approach, all cameras in the network optimize

simultaneously. The subscript (i) on λ(i) in Eqn. (40) indicates
that the Lagrange multiplier vector picked by camera Ci to
solve the problem is a local variable and may not be globally
the same throughout the network. In order to overcome this
predicament, cameras in the network employ a variant of the
algorithm described in [47], [48] to perform dynamic average
consensus over the local Lagrange multiplier vectors. This
results in a consensus-step after each optimization-step The
algorithm is explained in detail in Section VIII.

C. Lagrangian as an Ordinal Potential Function

For the problem stated in Eqn. (34), note that the global
objective of the multi-camera network defined in Eqn. (27) is
the sum over the local objectives defined in Eqn. (36)

VI(a) =

NC∑
i=1

VIi(ai). (41)

At each optimization step κ, the i-th camera adjusts λ(i)(κ)
and ai(κ), leaving a−i(κ) fixed, to solve the problem in
Eqn. (39) with VIi(ai) defined in Eqn. (36). Dynamic average
consensus over λ(i) between optimization steps forces each
agent’s local value toward a non-negative consensus agreement
vector λ̄(κ) = 1

Nc

∑
i λ(i)(κ). Convergence of the dynamic

game is assured when the local Lagrangians Li(λ(i),ai), and
the global Lagrangian L(λ,a) form an ordinal potential game.

From Eqns. (35), (40),and (41), ∀λb, λa � 0, let L̃ =
L(λb, bi, a−i)− L(λa, ai, a−i). Thus,

L̃ =

NC∑
i=1

VIi(bi) + λ>b
[
VT (bi, a−i)− T̄

]
−

NC∑
i=1

VIi(ai)− λ>a
[
VT (ai, a−i)− T̄

]
= VIi(bi) +

∑
l 6=i

VIl(al) + λ>b
[
VT (bi, a−i)− T̄

]
−VIi(ai)−

∑
l 6=i

VIl(al)− λ>a
[
VT (ai, a−i)− T̄

]
= Li(λb, bi : a−i)− Li(λa, ai : a−i).



Hence, ∀a ∈ S, ∀ai,bi ∈ Si, and ∀λb, λa � 0,

L(λb, bi, a−i)− L(λa, ai, a−i) > 0

⇔ Li(λb, bi : a−i)− Li(λa, ai : a−i) > 0.

Therefore, as explained in Sections V-B and V-C, Eqns. (35)
and (40) form an ordinal potential game.

VIII. DISTRIBUTED OPTIMIZATION

The distributed optimization process can be broken down
into three separate steps, where κ denotes the iteration counter:

1) Camera Parameter Optimization: Each camera
Ci computes (ai,λ(i)) to increase Li

(
λ(i),ai : a−i

)
while holding a−i constant. It then communicates
the newly computed local primal-dual pair estimates(
i, κ,ai(κ),λ(i)(κ)

)
and new portions of a−i to its

neighbors Ni.
2) Camera Parameter Replacement: Each camera Cn

that is a neighbor of Ci (i.e. Cn ∈ Ni) receives(
i, κ,ai(κ),λ(i)(κ),a−i

)
. It replaces its previous value

of (ai,a−i) using the rules of replacement described in
Section VIII-B.

3) Consensus on Lagrange Multipliers: Ci performs
dynamic average consensus on its local Lagrange multi-
plier vector λ(i)(κ) and the Lagrange multiplier vectors
received from cameras in Ni to converge towards a con-
sensus Lagrange multiplier vector λ̄, using the Lagrange
multiplier update law in Eqn. (43), defined in Section
VIII-C.

This distributed optimization process is then iterated over κ
until a stopping criteria is achieved.

Since the optimization problem described by Eqn. (39) is
non-convex, any solution found may only be locally optimal.
It is assumed that all agents start with identical values of a(κ)
for κ = 0 and that a(0) is not on the separatrix dividing the
domain of attraction of one local optimum from another.

A. Connectivity, Communication, and Consensus

The approach requires the following standard assumptions
on the camera communication graph.

Assumption 2: (Connectivity) The camera communication
graph is undirected, and connected, i.e. there exists at least
one communication path from each agent to every other agent
in the network.

Remark 6: In [48], each agent changes λ and the entire
vector a while computing a dual solution, then using consensus
on both a and λ. Herein, agent Ci only optimizes λ and ai,
which is a subvector of a. When the subvector ai is broadcast
to the neighbors of Ci, they pass it to their neighbors. Each
agent receiving a newer value of ai replaces their older value.
Thus, for the approach herein, each camera Ci need only
perform dynamic average consensus on λ(i) and the set of
Lagrange multiplier vectors {λ(n)} for Cn ∈ Ni. Connectivity
ensures that the changes to ai and λ(i) by each Ci eventually
affect all agents in the network. The convergence of consensus
is asymptotic, but becomes trivial for strictly feasible solutions,
which have λ = 0. The effects of a change in any ai are fully

distributed throughout the network in a finite number of steps,
which is less than the diameter of the network.�

Assumption 3: (Weights Rule) There exists a scalar β > 0
such that for each i ∈ [1, Nc], ωii(κ) ≥ β, and ωin(κ) ∈ [β, 1]
for Cn ∈ Ni. If cameras Ci and Cn are not directly connected,
then ωin(κ) = 0.

Assumption 4: (Double Stochasticity) Let Bi = Ci
⋃
Ni,

and
∑
l∈Bi

ωil(κ) = 1 and
∑
i∈Bi

ωil(κ) = 1.
Assumption 3 ensures that all cameras are influential [47]

while performing consensus on the local Lagrange multiplier
vectors, and Assumption 4 ensures that all cameras asymp-
totically converge to a consensus Lagrange multiplier vector
λ̄ � 0 [49].

B. Camera Parameter Replacement Rule

We use a variant of the flooding algorithm [50] to
propagate the local variables through the network of cam-
eras. After Ci computes ai(κ), it delivers the information
{i, κ,ai(κ),λ(i)(κ)} to its neighbors Ni, and will rebroadcast
to its neighbors any updated PTZ information, {l,al, κl}
for l 6= i, that it received since the last broadcast. Using
rebroadcast, each agent’s parameter updates travel throughout
a connected network exactly one time. For the l-th subvector
in C ′is version of a, Ci has a value al(κl) and a time-
stamp κl both computed by Cl, even if Ci and Cl are not
neighbors. Because the network may contain loops, Ci may
receive information about other cameras via multiple paths. Ci
will replace its l-th subvector with the received information
only if the time-stamp in {l,al, κl} is more recent than the
time stamp corresponding to the value it is currently using.
Otherwise, the message is discarded without rebroadcast.

C. Distributed Lagrangian Consensus

At iteration κ camera Ci receives the set of Lagrange
multiplier vectors {λ(n)(κ)} for Cn ∈ Ni. It also has its local
copy of a. Its local computations must jointly optimize ai and
λ (given a−i) while also converging toward agreement across
the network on the value of λ. This section describes dynamic
average consensus on the local versions of Lagrange multiplier
vectors. Following the notation in [48], we refer to this as a
distributed Lagrangian consensus algorithm.

Camera Ci iteratively optimizes using the update law [47]:

ai(κ+ 1) = −s(κ) Da(i)
(κ) (42)

λi(κ+ 1) = νλ(i)
(κ)− s(κ) Dλ(i)

(κ), (43)

where the scalar s(κ) > 0 is the step-size,

Dai
= ∇ai

Li
(
λ(i)(κ), ai(κ) : a−i(κ)

)
,

and

Dλ(i)
= ∇λ(i)

Li
(
λ(i)(κ), ai(κ) : a−i(κ)

)
=

[
VTi

(a∗i )− T̄
]
.

The first term in Eqn. (43) is the consensus term, which is a
convex combination of λ(i)(κ) and {λ(n)(κ)}:

νλ(i)
(κ) =

∑
l∈Bi

ωil(κ) λ(l)(κ), (44)



which always yields νλ(i)
(κ) ∈ <m as a non-negative vector.

The second term is the gradient descent term, which adjusts
λ(i) in a coordinated fashion with the change in ai to converge
toward an optimal and feasible solution relative to the local
optimization problem. The step-size s(κ) > 0 can be adjusted
to maintain component-wise non-negativity of λ(i).

With Assumptions 2, 3 and 4 , it is shown in [47]–[49]
that for all i = 1, . . . , NC , there exist λ̄ � 0 such that
limκ→∞ ‖λ̄− λ(i)(κ)‖ = 0.

D. Certificate for Optimality

For the unconstrained maximization problem defined by
Eqn. (40) for each agent, the optimal primal-dual pair(
a∗i ,λ

∗
(i)

)
must satisfy the KKT conditions:

∇VIi(a∗i ) + [∇VTi
(a∗i )]

>
λ∗(i) = 0, (45)

VTi
(a∗i )− T̄ � 0, λ∗(i) � 0, (46)

λ∗>(i)
[
VTi

(a∗i )− T̄
]

= 0, (47)

which provide a certificate of optimality at each agent.
All cameras optimize in parallel. Camera Ci broadcasts

a∗i and λ∗(i), and new portions of a−i, to its neighbors who
propagate them through the network. While Ci is locally
optimizing its settings, it is accounting for an updated λ(i),
and for each target, the prior information Jj− and expected
new information based on the currently best settings of all the
other cameras a−i.

Optimization stops when either an optimum is achieved, a
user-defined stopping condition is met, or the time interval
allotted for optimization elapses (see Fig 1). The solution
approach described in [32] optimized a weighted combination
of tracking and imaging; whether or not an optimum was
achieved, there was no guarantee that the tracking specification
was achieved. For the approach herein, the KKT conditions
described in Eqns. (45 - 47) provide a certificate on optimality
and feasibility (i.e., satisfaction of the tracking specification).
Numeric algorithms to solve the constrained optimization
problem defined in Eqn. (39), to which the KKT conditions of
Eqns. (45–47) apply, first find a feasible solution, then search
within the feasible set for the optimal feasible solution. Thus,
when the time interval allotted for optimization elapses, even if
the solution is sub-optimal, the solution obtained is guaranteed
to be feasible. This results in all targets being tracked to the
specified tracking accuracy at all times, while procuring high-
res imagery when opportunity arises. After optimization, the
cameras physically alter their settings to the optimal values in
readiness for upcoming images at tk+1.

Thus, by using the replacement step in Section VIII-B and
the Lagrange multiplier update law from Eqn. (43), at each
consensus iteration κ, every camera maintains an estimate of
the primal-dual pairs of all cameras.

IX. IMPLEMENTATION

This section describes a Matlab implementation of the
proposed approach. The goal of the simulation is to evaluate
the performance of a distributed PTZ camera network using
the methods described herein to obtain opportunistic high-res
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Fig. 3: Top-view of 20× 20 surveillance area at t = 0, prior to target entry.
Camera locations are indicated by colored stars. The camera’s FoV boundary
is drawn on the ground plane using the same color as its star. The FoV of
the camera is the convex area interior of this polygon.

facial imagery of targets moving in a region, while tracking
all targets at all times to a specified tracking accuracy.

A. Scenario, Setup and Experiment Details

Fig. 3, shows a 400 m2 area being monitored by NC =
3 calibrated cameras located at C1 = [10, 0, 3]>, C2 =
[0, 10, 3]>, and C3 = [20, 10, 3]>m. Camera locations are
indicated by colored stars. The boundary of the FoV for each
camera is drawn as a wide solid line in a color coordinated
with the color of the position marker of the camera. Note that
the FoV is the area in the interior of this polygon.

Every target T j is modeled as a circular disc of negligible
height and a radius of 30 cm. All target discs are coplanar
to the ground plane. The entrance to the area is located at
y = 20, x ∈ [1, 3] and indicated by the pink hash marks in
Fig. 3. Targets enter through the entrance at random times;
therefore, the total number of targets in the area is time variant.
When a target T j enters the area, its position coordinates are
randomly initialized in [gxj , gyj , 0]>, where gxj ∈ [1, 3] and
gyj = 20. When a new target is detected, the number of
targets NT (t) is increased, and the target state is augmented
to the state vector and included in the imaging and tracking
value functions. The maximum number of targets permissible
in the area was limited such that 0 ≤ NT (t) ≤ NT where
NT = 10. To ensure that targets entering the area are detected,
the entrance must be constantly monitored. This is achieved
by inserting an artificial stationary target at (2, 20, 0) with
constant position uncertainty of 2m2. Once a target is in the
room, its motion is generated using the model in Eqn. (13).
The exit to the room is located at y = 0, x ∈ [5, 10] and
indicated by the black hash marks in Fig. 3. If the target
trajectory intersects the wall in this region, then the target
has exited the room, in which case, the target state is removed
from the state vector, excluded from the imaging and tracking
value functions, and the number of targets NT (t) is decreased.
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Distributed Constrained Optimization for Bayesian Opportunistic Visual Sensing

Fig. 4: Bayesian Tracking and Imaging Values: Fig. a (top left) shows that the camera network expects to successfully and co-operatively satisfy the tracking
constraint T̄ = 1.0 m−2 for every target, at all times. Fig. b (middle left) shows that the achieved tracking values satisfy the tracking constraint T̄. Fig. c
(bottom left), plots the achieved local imaging value V̄Ii (ai) and the achieved global imaging value V̄I(a) (i.e., sum of the local values). Figs. d (top right),
e (middle right) and f (bottom right) show the per camera optimal pan angle ρ◦ ∗i , tilt angle τ◦ ∗i and zoom ζ ∗i values, respectively.

Remark 7: Note that the target trajectory from Eqn. (13) may
intersect a wall. If the point of intersection is the exit, then the target
exits the area as described above. If the point of intersection is not
the exit, then the target trajectory reflects off the wall.�

As discussed in Section VI-C, the measurement model
depends on the camera parameters. In addition, while the
image processing algorithms may compute the centroid of
the feature region in the image plane to subpixel resolution,
the covariance matrix used in the state estimation routine
must account for the the uncertainty in the computed centroid
relative to the “actual target centroid.” Let nji (ai) represent the
area occupied by T j’s image on Ci’s image plane measured in
sq. pixels. For this simulation, the estimation routine models
the covariance of the measurement of T j by Ci as

Cji (ai) =

 nj
i (ai)

pi
σ2
x 0

0
nj
i (ai)

pi
σ2
y

 , (48)

where pi is the pixel resolution of Ci’s image plane (in sq.
pixels) and σ2

x and σ2
y (in sq. pixels) are positive constants. For

this simulation, each camera Ci was set to an image resolution
pi of 800× 600 sq. pixels, with σx = σy = 5 pixels.

The results in Figs. 4 - 6 correspond to a 31 sec. simulation.

All cameras image at a frequency of 1 Hz, with the first
images obtained at time t = 1 second.

All cameras optimize simultaneously, using an interior-
point method [51]. The tracking constraint in Eqn. (37) uses
T̄ = 1.0 m−2. Ci receives camera parameters a∗−i through its
neighbors, and uses its current parameters ai to implement the
method described in Section VIII.

Define V̄ jIi to be the imaging value achieved by camera Ci
for imaging T j . The weight wji (t), in Eqn. (27), is defined as
the continuously differentiable and bounded function:

wji (t) = σd
(
dj(t)

)
σv

(
V̄ j , V jIi(t)

)
, (49)

where σd = 1 + 1
1+exp[lddj(t)] , and σv = 1

1+exp[lv(V̄ j−V j
Ii

(t))]
.

The symbol V̄ j = maxτ<t, i∈[1,Nc]

(
V̄ jIi(τ)

)
is the best image

quality for target T j for any camera and any prior image. The
symbol dj(t) is the distant between T j’s estimated position at
time t and the exit. With these definitions σd(t) ∈ [1, 2] and
σv(t) ∈ [0, 1]. This definition of wji (t) gives higher value (i.e.,
emphasizes) those targets nearest to the exit and those targets
for which the value of the next image is expected to improve
the most relative to prior imagery.
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(a) Optimized FoVs at t = 1.
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(b) Optimized FoVs at t = 21.
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(c) Optimized FoVs at t = 24.
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(d) Optimized FoVs at t = 25.
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(e) Optimized FoVs at t = 30.
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Fig. 5: Top-view of Opportunistic High-res Facial Image Capture: Figs. a (top left), b (top center), c (top right), d (bottom left), and e (bottom center) show
the optimized FoVs at times of opportunity: t = 1, t = 21, t = 24, t = 25 and t = 30, respectively. Each figure shows the optimized FoVs of the cameras
after feasible optimal solutions are achieved. Fig. f (bottom right) shows the expected per target imaging value V j

I

(
a(t)

)
from Eqn. (50).

B. Single Trial Results

For this simulation, targets T 1 to T 10 entered the area at
times 0.1, 10.2, 11.1, 14.2, 20.4, 22.9, 27.2, 28.8, 30.1,
and 30.4 seconds, respectively. Target T 1 left the area at time
14.4 seconds. No other targets left the area. When T j enters,
a camera monitoring the entrance images it, detects the new
target and augments it to its state vector. Other cameras add
the new target to their state vector as they receive the new
target information at the state estimation stage.

1) Bayesian Imaging and Tracking Performance: Cameras
maximize their local Lagrangians Li(λ∗(i),a

∗
i ) to satisfy the

tracking spec and maximize their local Bayesian imaging
values. Fig. 4a shows that the expected Bayesian tracking
value Vj

T (a∗) is greater than the tracking spec, at all times;
therefore, all primal-dual solutions (a∗i ,λ

∗
(i)) obtained through

local optimization are expected to be feasible at all imaging
instants. Because the solutions are strictly feasible, using Eqn.
(47), it is trivial to prove that the dual optimal Lagrange
multiplier vectors for all cameras are λ∗(i)(t) = λ̄ = 0 ∈ <m,
where m = 2NT (t).

The proposed approach utilizes predicted target motion
based on state estimates from the last imaging time. Estimation
error or unexpected maneuvers by targets, such as a simulated
target reflecting of a wall, can lead to a drop in the accuracy
actually achieved. Fig. 4b shows the tracking value V̄j

T (a∗)
actually achieved by the network. Various instances of dif-
ferences between the expected and achieved accuracy can be
observed through the simulation time. Since the target motion

is a random process, there is no deterministic guarantee that
the achieved accuracy meets the specification.

Fig. 4c shows the achieved imaging values of each camera
and of the network of cameras. The peak values occur at those
opportunistic times at which the cameras procure high-res
facial images of targets, while the tracking constraints on all
targets are satisfied. A high value for V̄Ii (a∗i ) indicates a high-
res facial capture by camera Ci. Given the target trajectories of
this simulation, all cameras availed opportunities for high-res
image capture throughout simulation time.

Figs. 4d - 4f show the per camera optimized PTZ values
versus time. Top-views of the camera FoVs for a selection of
high-res imaging opportunities is shown in Fig. 5.

Figs. 5a, 5b, 5c, 5d, and 5e show the post-optimization FoVs
of the cameras for time-steps t = 1, t = 21, t = 24, t = 25,
and t = 30, respectively. The prior estimate of the position
of the centroid of each target is marked by a red dot. The
actual position of the centroid of each target is marked by a
blue dot. A red dashed curve is drawn to indicate the surface
area occupied by a target on the ground plane, relative to the
target’s estimated centroid position. Similarly, a blue dashed
curve indicates the surface area occupied by a target, relative to
the actual target centroid position. The posterior 1−σ position
error ellipse corresponding to the estimated position of each
target is drawn as a wide black curve.

Target T 1 enters at time t = 0.1. Cameras collaboratively
image T 1 at time t = 1, where C2 images T 1 with the highest
imaging value among all cameras (see Fig. 4c). Similarly,
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Expected Bayesian Imaging Value Maximization vs. Local Iterations

Fig. 6: Optimization: The maximization of VIi (ai) versus the number of local
iterations at time-instant t = 25. The vertical pink dashed lines indicate local
iterations κi at which Ci broadcast parameters as described in Section VIII-B.
After the cameras have collaboratively found a feasible PTZ configuration,
C2 and C3 capitalize on the target configuration to obtain images expected
to have very high values.

camera C1 obtains an opportunistic high-res image of T 2 at
time t = 21. Note that in all cases, the entrance and all targets
are within at least one FoV.

Fig. 5f plots the time history of the expected imaging value
per target acquired by all cameras in the network:

V jI
(
a(t)

)
=
∑
i

wji (t) E
〈
V jIi
(
ai(t),

gpj(t)
)〉
, (50)

where V jIi(ai,
gpj) is defined in eqn. (26). The number of

curves is different at each time because the number of targets
is time varying. A high-res image capture of T j by any
camera Ci is indicated by a spike in the global Bayesian
imaging Value function V jI

(
a(t)

)
. The figure shows that for

this simulation run, the camera network obtained at least one
high-res facial image of each target in the area, at times-
of-opportunity distributed throughout the time period of the
simulation. Combining the information from this figure with
that from Fig. 4c, we see for example that as T 2 moves
through the room, at various times, different cameras have
opportunities to image it.

Fig. 6 is an example, using time-instant t = 25, of the
optimization process that each camera performs prior to each
imaging instance. All cameras simultaneously perform a few
optimization iterations, then broadcast their (approximate)
primal-dual solutions, update their local estimates of a∗ using
the sub-vectors received from their neighbors and resume the
optimization process. The broadcast instances are indicated
by the pink dashed vertical lines. This process repeats till an
optimum is reached or time expires.

Remark 8: We start each optimization iteration with a wide
FoV. This choice of initial condition facilitates the search for a
feasible solution. This is similar to using a metaheuristic [52],
[53] to aid computation of a feasible solution. �

Remark 9: Camera FoV’s alter significantly between suc-
cessive time instants to achieve high-res imagery and satisfy

the tracking spec. One such example can be seen in Figs. 5c
and 5d as all the camera FoVs change considerably from time
t = 24 to those at t = 25 (also see Figs. 4d-4f). Such rapid
motion can hamper image quality due to motion blurring and
may also cause mechanical wear. Model Predictive Control
[54] based approaches to enforce constraints on the PTZ
parameters are interesting for future research. �

Remark 10: As seen in Fig. 5f, in spite of the formulation
of Eqn. (49), it is still possible that the camera will attempt
to acquire images of targets with lower image value than was
previously obtained. There are at least two explanations. First,
this can occur inadvertently because a previously imaged target
is sometimes visible in the FoVs of cameras that have been
optimized for imaging other targets. Second, as long as the
expected imaging value V jI is finite, which it always is, the
optimization still receives some value for new imagery, even
if it is not of higher quality than previous imagery. �

C. Multi-Trial Performance Analysis

This section provides an analysis of the performance of
the proposed PTZ camera network approach using data from
N = 100 Matlab simulation runs. Across all simulation runs,
target trajectories and target times of entry were independent,
with the target times of entry designed such that target T j al-
ways entered before target T j+1. To make results comparable,
all other parameters (e.g. camera locations, image resolution,
pixel noise, area entrances and exits, etc.) were defined to be
the same for all simulation runs, as defined in Section IX-B.

For a dynamic PTZ camera network, define V̄ jD(n) to be
the maximum global imaging value achieved for target T j

during simulation run n. Similarly, for a constant (static) PTZ
camera network, let V̄ jS (n) be the maximum global imaging
value achieved for target T j during simulation run n. Define
a performance ratio V̄ jB(n) as

V̄ jB(n) =
V̄ jD(n)

V̄ jS (n)
, (51)

where V̄ jB(n) provides a measure of the relative gain in imag-
ing value achieved by utilizing a dynamic PTZ configuration
rather than a static PTZ configuration.

Fig. 7 shows the distribution (histogram) of the performance
ratio V̄ jB over N = 100 simulation runs. The network of
dynamic PTZ cameras consistently outperforms the static
camera configuration by procuring images of higher quality.
Fig. 7 uses a semilog horizontal axis with a maximum of 106.
The performance improvement ratio actually varies from 1 to
1012. Such enhanced image quality is better suited for image
analysis and scene understanding.

Fig. 8 displays the histogram of the per target achieved
imaging value, which is denoted by V̄ jI (a). The number of
opportunistic high-res images obtained for target T 1 is greater
than those obtained for T 2, and so on. There are at least
two explanations. First, T j always enters before target T j+1;
therefore, the cameras likely have more opportunities to image
T j at a higher resolution than T j+1. Second, the difficulty in
acquiring high-res images increases as the number of targets
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Fig. 7: Performance Improvement Distribution: Imaging performance im-
provement ratio of dynamic PTZ camera configuration relative to a static PTZ
configuration. Each colored line corresponds to a distinct target, showing the
distribution of the per target performance ratio V̄ j

B (see Eqn. (51)) over 100

simulation runs. The range of V̄ j
B values is plotted as bins on the horizontal

axis. The dynamic PTZ config. significantly outperforms the static PTZ config.

in the area increases, due to the increase in the number of
feasibility constraints (see Eqns.(33), (37), and (39)).

Remark 11: The camera positions across all simulation runs
(static and dynamic) were left unchanged. The locations were
selected so that, for the static configuration, all locations
within the entire area were within the FoV of at least one
camera. Altering the positions of entrances, exits, or the static
parameter cameras may provide different performance than the
static configuration used herein. �

This section demonstrates that the proposed method causes
the cameras to cooperate to ensure that all targets are expected
to be tracked to an accuracy better than T̄, and that high-res
target images are obtained at times-of-opportunity implicitly
defined by the feasibility constraints. The statistical analysis
provides a measure of the increase in imaging performance
obtained while using the proposed method.

D. Discussion of Implementation Issues

For convex problems, the proposed distributed optimization
methodology would converge to the unique global optimum
for each imaging time instant. As with many practical appli-
cations, visual sensing problems such as the one considered
herein are inherently non-convex (refer to Fig. 2), and thus the
solution obtained may only be locally optimal. The large vari-
able space makes design of an exhaustive search impractical.

In addition to being non-convex, the local imaging value
and the constraint functions are nonlinear. Our implementation
used the Matlab function ‘fmincon’, which is offered as part of
the Optimization Toolbox and is designed to solve nonlinear
optimization problems with nonlinear constraints.

To facilitate the search for a feasible solution, at the start
of each optimization interval, we initiated each camera using
the optimal pan and tilt values from the end of the prior
optimization interval, but reset the zoom parameter to its
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Fig. 8: Opportunistic Imaging Distribution: Fig. shows the distribution of the
per target achieved image value over N = 100 simulation runs. Each colored
line corresponds to a distinct target, showing the histogram of values.

minimum value (i.e., widest FoV). The wide FoV initialization
was preferred as it enhances feasibility and convexity of the
value function, see Fig. 2 and Remark 8. This initialization
method ensures that all agents begin the optimization process
from the same value of a. This initialization worked well in
the sense that a feasible solution was found for every imaging
instant of every trial; nonetheless, alternative initialization and
relaxation techniques, could be investigated.

Finally, it is important to note that if the initial parameters
of the cameras were not identical and were distributed about
a saddle point of the value function, such that some initial
parameter vectors were in the domains of attraction (DOA) of
different local optima, then different agents could conceivably
converge toward different locally optimal points prior to com-
municating their new settings. After the communication, there
would be no guarantee that the camera parameter settings of
different agents are all within the DOA of the same locally
optimal point. We ensured that all agents start with the same
value for a. This issue and methods to ensure convergence to
the global optimum are interesting areas for future research.

X. CONCLUSION AND FUTURE WORK

This article addressed the design of a method for a dis-
tributed network of smart imaging sensors to collaboratively
track all targets to a specified accuracy while also acquiring
high resolution images at times-of-opportunity. The solution
uses a Bayesian framework that trades off higher imaging
value versus increased risk of the target not being in the field-
of-view. The Bayesian imaging value depends on the target’s
expected position, direction-of-motion, image resolution and
camera relative pose. The approach includes a dynamic target
weighting scheme. In the example, we demonstrate the utility
of this feature in two ways. First, the importance of a target
increases as the target approaches the exit, to help ensure that
all targets are imaged at least once. Second, the weight at any
time instant for a target is dependent on the image quality pre-
viously acquired for that target; therefore, subsequent images



of each target receive little value unless a better quality image
is expected to be acquired.

The method proposed herein allows all agents to optimize
simultaneously. The global optimization problem is formulated
as a potential game with the global objective decoupled
into smaller local problems with aligned local objectives.
A Lagrangian consensus algorithm is used to perform dis-
tributed, co-operative and simultaneous optimization across
all cameras in the network. This formulation enables use of
existing convergence proofs from the game theory literature.
Convergence of the Lagrange multiplier vector is achieved
by consensus methods and of the camera PTZ parameters is
achieved by a modified flooding algorithm. Future research
could explore probabilistic communication schemes [55] to
decrease communication loading and latency issues.

It is possible to design alternative optimization methods that
use a combination of parallel and sequential processing. Graph
partitioning [56] is a branch of optimization that decouples an
existing communication graph into smaller subgraphs, often
dynamically, subject to problem constraints. A property im-
plicit to a visual sensing application is that the communication
graph and the vision graph [15] are often different. This
occurs since every camera in the network may not obtain a
measurement of every target in the area, which often results
in cameras [18] ‘naive’ with respect to certain targets. Using
vision graph discovery methods to design a set of constraints,
the existing communication graph Gc could be decoupled into
smaller subgraphs Gj , on the basis of measurements on target
T j . Agents that are nodes of subgraph Gj may optimize
sequentially, while subgraph Gj optimizes in parallel with
respect to other subgraphs in the network. This topic is largely
unexplored and could provide beneficial results, especially in
scenarios where a network of cameras is assigned to survey a
large area with camera visibility constraints.

The method proposed herein can be extended to locally
convex discontinuous functions using the subgradient-based
distributed constrained optimization approaches described in
[47], [48]. Though preliminary work on modifying the ap-
proach therein for application to a visual sensing problem was
done in [57], further research on the method is required.

Extension of the proposed method to optimize the PTZ
settings over a time horizon would enhance continuity of the
PTZ settings, see Remark 9. This would reduce mechani-
cal wear and enhance image quality which facilitates image
analysis. Design of alternative imaging value functions and
constraints that account for occlusion or are dependent on
advanced image processing techniques to aid target gait [58],
gesture [59], and activity [60] recognition is another interesting
topic. As discussed in Remark 2, various alternative designs
are possible for M > 1. For example, a sequence of high rate
images could be taken with various focal lengths allowing
a complete reformulation of the trade-off between risk and
image quality. Implementation on a Camera Network test-bed
is also of interest and in process.
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