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Statistical Bias in 3-D Reconstruction
From a Monocular Video

Amit K. Roy-Chowdhury and Rama Chellappa, Fellow, IEEE

Abstract—The present state-of-the-art in computing the error
statistics in three-dimensional (3-D) reconstruction from video con-
centrates on estimating the error covariance. A different source of
error which has not received much attention is the fact that the re-
construction estimates are often significantly statistically biased. In
this paper, we derive a precise expression for the bias in the depth
estimate, based on the continuous (differentiable) version of struc-
ture from motion (SfM). Many SfM algorithms, or certain por-
tions of them, can be posed in a linear least-squares (LS) frame-
work = . Examples include initialization procedures for
bundle adjustment or algorithms that alternately estimate depth
and camera motion. It is a well-known fact that the LS estimate is
biased if the system matrix is noisy. In SfM, the matrix con-
tains point correspondences, which are always difficult to obtain
precisely; thus, it is expected that the structure and motion esti-
mates in such a formulation of the problem would be biased. Ex-
isting results on the minimum achievable variance of the SfM esti-
mator are extended by deriving a generalized Cramer–Rao lower
bound. A detailed analysis of the effect of various camera motion
parameters on the bias is presented. We conclude by presenting
the effect of bias compensation on reconstructing 3-D face models
from rendered images.

Index Terms—Correspondence errors, statistical bias, structure
from motion (SfM).

I. INTRODUCTION

STRUCTURE from motion (SfM) has been one of the most
active research areas in computer vision for decades, with

the result that today numerous algorithms exist which address
various aspects of the problem (see [4], [8], and [14]). However,
constructing accurate three-dimensional (3-D) models reliably
from video sequences is still a challenging problem. Several re-
searchers have analyzed the sensitivity and robustness of many
of the existing algorithms, concentrating mostly on the error co-
variance of the depth estimates. A detailed review of existing
work in the analysis of errors in SfM is available in one of our
other papers [11]. A different source of error is the bias in depth
estimation. Some authors, notably [1], have proved that there ex-
ists a bias in the translation and rotation estimates from stereo.
In [7], Oliensis mentions correcting for the bias in the depth es-
timate, arising from the statistics of the parameters in their opti-
mization function. However, quantification of the bias resulting
from noisy image measurements is not discussed. Recently, it
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has been proposed that the bias in the optical flow field can be a
possible explanation for many geometrical optical illusions [2].
A broad analysis of bias in 3-D reconstruction from different
cues like motion, shape, and texture was presented in [5]. In
this paper, we focus on quantifying the bias in the SfM problem
and its implications for the design of practical 3-D modeling
schemes. We show that the 3-D depth estimate obtained from
SfM algorithms, using the differential optical flow based formu-
lation, is statistically biased and, under many conditions, that the
bias is numerically significant. We also show that the bias leads
to a new lower bound on the minimum variance of an SfM esti-
mate, thus extending the results in [13]. The effect of different
camera motion parameters on the bias is studied. We present the
effect of bias compensation on 3-D face reconstruction prob-
lems using images rendered from a texture-mapped model.

II. BIAS IN DEPTH RECONSTRUCTION

A. Problem Formulation

Given two images and , we are interested in computing
the camera motion and structure of the scene from which these
images were derived. If and are the horizontal
and vertical velocity fields of a point ( ) in the image plane,
they are related to the 3-D object motion and scene depth (under
the infinitesimal motion assumption) by

(1)

where and are the trans-
lational and rotational motion vectors, respectively,

is the inverse scene depth, and all linear dimensions
are normalized in terms of the focal length of the camera. The
problem is to estimate , and given ( ). Equation (1) can
be rewritten in a more useful form (because of the scale ambi-
guity [4]) as

(2)

where is known as the focus of ex-
pansion (FOE) and .

For points, the above equations can be represented using
matrix notation, where the subscript is used to index the feature
point. Consider points (for a sparse depth map, this denotes
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feature points, while for a dense depth map it denotes the
number of pixels in the image). Let us define

(3)

Then, (2) can be written as

(4)

We want to compute from . Consider the cost function which
minimizes the reprojection error (i.e., bundle adjustment)

(5)

where ( ) are the projections of the depth and motion esti-
mates, , onto the image plane and are obtained from the right
hand side of the (2). In general, the above mentioned cost func-
tion requires nonlinear optimization, and various strategies (see
[4] and [14]) have been proposed for this purpose.

B. Computation of Bias

Because of the fact that feature positions are never tracked
perfectly, the 3-D reconstruction, in most situations, is statisti-
cally biased and the bias is significant. We give a precise expres-
sion for the bias and outline a proof in the Appendix .

As mentioned earlier, the solution of the cost function (5) in-
volves nonlinear optimization which is extremely difficult, un-
less very good initial conditions are available ([4, Ch. 17]). The
initial conditions are usually generated using a simpler method,
e.g., a factorization approach. Also, different strategies are em-
ployed to solve this optimization problem. One of the common
methods used is to first estimate the camera motion and then
the depth. Another strategy is to update the camera motion and
depth, one at a time, using the previous estimate of the other,
until a convergence criterion is reached [taking advantage of
the bilinear nature of the SfM (2)]. For monocular video se-
quences, it is often possible to first estimate the direction of
motion (i.e., FOE) and then estimate the depth and rotational
motion. The point to note is that if we assume an estimate of
the camera motion or FOE and solve for the depth, we are es-
sentially solving a linear system of equations. Similarly, if we
assume that the depth is known and solve for the camera mo-
tion, we again have a linear system. This can be seen from the

bilinear parameterization of (2). Also, the methods for gener-
ating initial conditions are often linear. It is a well known fact
that the least-squares (LS) solution to a linear system of the form

with errors in the system matrix is biased [3]. When
the SfM problem is posed in a LS framework, the matrix in-
volves the image coordinates, which almost always have mea-
surement errors. Thus, it should be expected that the solution of
the SfM problem would also have a bias. Such a bias is present
if we adopt any of the above strategies to solve the nonlinear op-
timization problem using bundle adjustment or an initialization
strategy that uses a linear LS criterion. To the best of our knowl-
edge, this is the first attempt to explicitly compute and analyze
the bias, arising from errors in feature tracking, in depth recon-
struction from monocular video. Once the bias term is known,
it can be compensated for and an unbiased estimate obtained at
each of the above stages.

The actual value of the bias would be different for the dif-
ferent situations explained above. We consider the particular sit-
uation where the camera motion is known and derive the expres-
sion. We do this because one of the most common approaches
to solving the 3-D reconstruction problem is to first estimate the
camera motion, and then the depth. Expressions for the other
conditions (e.g., simultaneous estimation of depth and rotation
using a strategy that alternately estimates one of these param-
eters, or estimation of camera motion from the depth) can be
similarly derived. For algorithms that estimate the parameters
alternatively and update based on the previous estimates, the
bias will propagate through the reconstruction strategy. For the
case when the camera motion is known, (4) can be written as

(6)

with , and
. We now

state the main result of this paper in the form of a theorem.
Theorem 1: Consider the LS solution of (6), i.e.,

. For convenience, let us define

(7)

(8)

where and . The bias in the
inverse depth estimate is , where is the
true value. If is the variance in the
image coordinate measurements, then under the assumptions of
the above formulation, the bias in the inverse depth estimate, ,
of the feature point is given by

(9)
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where represents the partial derivative of a function with
respect to .

Proof: See Appendix A.
Further Comments : The bias can be similarly calculated

for other parameters. For example, assume that the rotational
motion parameters are unknown. In this case, ,

and . If a strategy of alternately estimating
depth and motion is adopted, the bias needs to be computed and
compensated for at each stage (as explained later), else it will
propagate through the different stages. The expression for the
bias depends upon the variance . This can be estimated using
the methods described in [11].

C. Analysis of Bias

The bias is a function of the camera motion parameters. It is
most affected by the rotational motion of the camera. As can
be seen from the expression in (9), the bias is negligibly small
when the angular motion is zero (or very small). Once the struc-
ture and motion estimates are obtained, the bias can be com-
puted and subtracted out of the estimate. For the biased estimate,

, where is the true value. If is
the bias compensated estimate, then ,
thus leading to an unbiased estimate. The effects of bias com-
pensation and how it is dependent on the camera motion param-
eters in presented through simulations in Section IV.

The estimate of the two-frame bias in Theorem 1 can be ex-
tended to multiframe situations. Suppose that we have two-
frame reconstructions. Let ( ) be the two-frame esti-
mates aligned with respect to a particular frame of reference.
Let the true value be and the bias in (9) be represented by
( ), i.e., , .
Assume that the estimates and the true value have the same
scale (so that the problem of scale ambiguity does not arise).
Then, the LS estimate for the structure over all observations is

(see [11] for details). Taking expectations
on both sides, we see that the bias in the multiframe estimate is

, where is obtained from (9)
for the and frame.

III. BIAS-MODIFIED MINIMUM VARIANCE BOUND FOR SFM

A lower bound on the variance of the SfM estimator, known
as the Cramer–Rao lower bound (CRLB), was derived in [13]
under Gaussian noise assumptions. This assumed the estimate
to be unbiased. In the light of our discussion, this means that
the true positions of the features are known, which is hardly the
case ever. Since we know the expression for the bias, we can
obtain a more accurate expression for the CRLB.

The general expression for the CRLB after incorporating the
bias in the estimate and under the proper regularity assumptions
is [12]

(10)

where is the estimate of the parameter , is the bias of the
estimate, and the Fisher information matrix. is an iden-
tity matrix and is the gradient with respect to .

Let denote the estimate of (the true value). Let the bias
in the multiframe estimate be denoted by (Section (II)). It
can be shown that the variance of the biased estimate , repre-
sented as can be expressed as

. In [11],
we showed how to compute the covariance represented by the
first term on the right hand side of the above equation. This was
done using the implicit function theorem and did not require as-
sumptions on the distributions of the noise in the observations
(i.e., feature positions). Adding the bias to this expression, we
can now compute a general expression for the covariance of the
inverse depth estimate. Since the bias does not depend on ,

. Let the matrix for the inverse depth parameter
be denoted by . By substituting the values of the different
terms in (10), the variance of the inverse depth estimate is lower
bounded as

(11)

This is the expression of the generalized CRLB of the inverse
depth, obtained from the optical flow based SfM equations in
(2). Under the special case of additive Gaussian noise assump-
tions in and in (2), the matrix is as derived in [13]. Substi-
tuting that expression into (11), we obtain the generalized CRLB
for the Gaussian noise case.

IV. EXPERIMENTAL RESULTS

The first set of experiments deals with a set of 50 3-D points
whose true positions are known. The initial positions of these
points were set randomly. Different kinds of motion were ap-
plied to these points so as to obtain various motion tracks for
each of them. The perspective projections of these points were
generated on a 512 512 pixel grid. This resulted in creating
a set of tracked features. The median value of the true mo-
tion between two consecutive frames (median computed over
all frames and features) was around 15 pixels in both the hori-
zontal and vertical directions.

Effect of Bias on Reconstruction: A set of ten random fea-
ture points, chosen from the above set, were tracked across a
few frames. The depths from each pair of frames were obtained
and then fused together using stochastic approximation, as ex-
plained in [11]. To fix the scale of the reconstruction, the depth at
the first point was used. In these experiments we considered the
case of nonzero but constant translational and rotational camera
motion. The effect of measurement noise was studied by adding
noise to the feature positions. Fig. 1(a) shows the effect of bias
compensation with noise of standard deviation pixels.
It can be seen that bias compensation makes the estimate closer
to the true value (i.e., reduces the bias) and gives significant ad-
vantages for some of the points.

Variation of Bias With Individual Camera Motion Param-
eters: In this set of experiments, we analyzed the effects of the
camera motion through numerical simulations. The focal length
of the camera was assumed to be known. Each of the six motion
parameters was varied over a certain range of values, keeping
all the others fixed. The range for the variation in the different
experiments was as follows: a) cm/frame; b)
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Fig. 1. (a) Reconstruction plot for noise with standard deviation � = 5 pixels. The plot is for a set of ten 3-D points tracked over 15 frames. The camera
is moving with constant, nonzero translation and rotation. The solid lines indicate the true depth values, the dashed lines indicate reconstruction without bias
compensation, and the dashed and dotted lines indicate reconstruction with bias compensation. (b)-(d) CRLB of the inverse depth as a function of the number
of frames, for different camera motion parameters, which are as follows: (b) x = 10, y = 10, ! = ! = ! = 1 degree/frame; (c) x = 1, y = 1,
! = ! = ! = 0; (d) uniform acceleration, ! = ! = ! = 0. (a) Depth versus number of points. (b) CRLB versus number of frames (c) CRLB versus
number of frames. (d) CRLB versus number of frames.

cm/frame; c) cm/frame; d) de-
grees/frame; e) degrees/frame; f)
degrees/frame. The motion terms which affect the bias the most
(approximately 5%–10% of the true depth) are ( , , ,
and ). The effect of ( , ) on bias is almost negligible.

Bias-Modified Generalized CRLB: The generalized
CRLB, derived in Section III, varies with the nature of the
camera motion. From Fig. 1(b), we see that there is a distinct
upward shift in the minimum reconstruction error for nonzero
translation and rotation. When the rotational velocity is zero,
the bias term is negligible; the difference in the CRLB is too
small to represent in the plots of Fig. 1(c)–(d). This is the case
irrespective of the actual value of , including any accelera-
tion. The reason for this can be understood from the expression
for the bias in (9). The only term in (9) that contributes to the
bias if is . This
would be small unless the variances of the errors in the feature

positions are very large, in which case, the solution itself would
be unreliable.

The conclusion that can be drawn from this analysis is that
the parameters that affect bias the most are the camera angular
motion values. For zero (or close to zero) rotation, the bias in
the estimate is negligible. While this can be understood math-
ematically from the expression for the bias as derived above, a
physical explanation is a topic for future study.

A. Bias in 3-D Face Modeling

For this particular problem, we decided to use the database
available on the World Wide Web at http://sampl.eng.ohio-
state.edu/~sampl/data/3DDB/RID/minolta/faces-hands.1299/
index.html. This database includes the 3-D depth model ob-
tained from a range scanner and a frontal image of the face
for texture mapping. We used the 3-D model and the texture
map to create a sequence of images after specifying the camera
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TABLE I
EFFECT OF BIAS ON 3-D FACE RECONSTRUCTION

motion. The camera motion consisted of translation along the
and axes and rotation about the axis. Given this sequence of
images, we estimate the 3-D model using a 3-D face reconstruc-
tion algorithm [10] (not explained in this paper) and the bias
in the reconstruction using the (9). We present here the results
on the first five face models in the above mentioned database.
Following the convention on the website, we refer to the five
subjects as ”frame001” to ”frame005.” From Table I, we see
that the peak value of the bias is a significant percentage of the
true depth value. This happens only for a few points; however,
it has significant impact on the 3-D face model because of
interpolation techniques which, invariably, are a part of any
method to build 3-D models. The third and fourth columns
in Table I represent the root mean square (RMS) error of the
reconstruction represented as a percentage of the true depth
and calculated before and after bias compensation. The change
in the average error after bias compensation is very small.
However, by itself, this number is misleading. The average
error in reconstruction may be small, however, even one outlier
has the potential to create a very poor reconstruction. Hence, it
is very important to compensate for the bias in problems related
to 3-D reconstruction from a monocular video. It is justified to
ask whether these few points at which the bias is large could
have been removed by an outlier rejection method on the output
3-D model. Even if that is possible, the bias estimation and
compensation technique described in this paper can prevent the
cause of these erroneous points, as well as provide a physical
understanding for their reason of occurrence.

V. CONCLUSION

Traditionally, the analysis of the accuracy of 3-D reconstruc-
tion has focused on the error covariance of the estimate. In this
paper, we have pointed out that there is another source of error
in the SfM problem, namely the bias in the estimate. Our deriva-
tion of the bias term was based on the fact that the solution of
a LS estimation problem with noisy system matrix is statisti-
cally biased. The SfM problem or certain stages of existing al-
gorithms can be posed in a linear LS framework. The system
matrix in these formulations contains the positions of the fea-
tures, that can never be obtained exactly. A new minimum error
bound (i.e., generalized CRLB) for SfM was proposed after in-
corporating the bias term. Simulations were carried out in order

to show the effects of the different camera motion parameters
on the bias. It was observed that the bias is negligibly small if
the camera angular motion is small.

APPENDIX

OUTLINE OF PROOF OF THEOREM 1

We give a brief outline of the proof. The details can be found
in [9].

Expanding in a Taylor series around
the true value , (i.e., the noise ) and assuming the mean
deviation in that region to be zero (i.e.,

), and all the components , , ,
to be mutually uncorrelated, we can express

(12)

where all the partials are computed at . The above equa-
tion is actually a simplified version which does not take into
account the errors in ( , , , , ). This is because

In the absence of any measurement noise, the expected value
of the estimate obtained from the LS solution should equal the
true value . However, since there exist errors in the measure-
ment model, the estimate is biased and the sum of the last four
terms on the right hand side of (12) represents the total bias
in the estimate. In order to calculate the bias, we need to com-
pute the derivatives in (12). We can compute all the derivatives
using the fact that for an arbitrary matrix ,

[6]. The final result can be obtained by sub-
stituting substituting the partials in (12).
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