
A Generalized Kalman Consensus Filter for Wide-Area Video Networks

A. T. Kamal, C. Ding, B. Song, J. A. Farrell and A. K. Roy-Chowdhury
University of California, Riverside, CA-92521

Abstract— Distributed analysis of video captured by a large
network of cameras has received significant attention lately.
Tracking moving targets is one of the most fundamental tasks in
this regard and the well-known Kalman Consensus Filter (KCF)
has been applied to this problem. However, existing solutions
do not consider the specific characteristics of video sensor
networks, which are necessary for robustness across various
application scenarios. Cameras are directional sensors with
limited sensing range (field-of-view), and thus, targets are often
not observed by many of the cameras. The network may also
be spread over a wide area, preventing direct communication
between all of the cameras. This limited field-of-view, combined
with sparse communication and coverage topologies, motivates
us to propose modifications to the traditional KCF framework.
Specifically, we consider the covariance matrices of the state
estimates of the neighbors and compute a weighted average
consensus estimate at each node. Also, the update at each node
is computed in two steps, first towards the weighted consensus
estimate and then towards the final Kalman measurement
update. This leads us to propose a Generalized KCF herein.
Experimental results clearly show the advantage of the GKCF
compared to the KCF in the considered application scenario.

I. INTRODUCTION

As large networks of cameras become common, it is
necessary to develop efficient solutions for analyzing their
sensed data. Tracking targets in the captured video is one
of the most basic tasks in this regard. In many applications,
a distributed network architecture is necessitated whereby
video is analyzed in a distributed manner over the entire
network rather than at a central server. An example could be
a wireless network with limited bandwidth, which is easy
to install and can be mobile. In this paper, we consider
such distributed camera networks and propose a consensus-
based framework that is capable of tracking multiple targets
throughout the network.

The problem of tracking multiple targets in a distributed
sensor network has been studied previously. The Kalman
Consensus Filter (KCF) [1] is a state-of-the-art distributed
algorithm for fusing multiple measurements from different
sensors. It is a distributed approach that combines the Dis-
tributed Kalman Filter (DKF) [2] and the average consensus
algorithm [3]. At each camera (i.e., node), the KCF fuses the
measurements from that node and its immediate neighbors
into the state estimate to attain convergence toward the
optimal state estimate and uses average consensus to ensure
that the state estimates of the node and its neighbors converge
toward the same values.

This work was partially supported by ONR award N00014091066 titled
Distributed Dynamic Scene Analysis in a Self-Configuring Multimodal
Sensor Network.

The KCF is a very appropriate framework for camera
networks and has been applied in [4], [5]. However, certain
issues that are specific to video sensors have not been con-
sidered in the existing solutions. A camera is a unidirectional
sensor with a limited sensing region which is called the
field-of-view (FOV). Thus, in a realistic camera network, a
target would usually be seen in only a few of the nodes.
In a distributed decision making process, the nodes are
assumed to have peer-to-peer communication channels. Thus,
when a sensor gets new measurements for a target, say
Tj , it shares this measurement information with its network
neighbors. This measurement information is used to update
the estimate of Tj’s state and error covariance at each node
that directly observes Tj or receives measurement of Tj
from their neighbor(s). At the same time, the nodes also
share their previous state estimate with each other and try to
compensate the difference between their state estimates of
Tj using a consensus scheme. Thus, at some nodes in the
network that are neither sensing Tj directly nor are neighbor
to a node sensing Tj (termed as naive nodes for Tj), the state
estimate for this target is only adjusted by the consensus
scheme and its error covariance is not adjusted; therefore,
the error covariance matrices of each target may diverge.
Even if the consensus term maintains consistency of the state
estimates, the different covariance matrices at each node can
have a profound effect on the convergence transients, as each
agent uses its local covariance matrix in the computation for
incorporating measurement information.

Such issues are important for networks with sparse com-
munication topology. For example, camera networks are
often spread over a wide area which prevents each cam-
era from communicating directly with all other cameras.
There can be many naive nodes in sparse communication
topologies. The presence of these naive nodes motivates
us to propose certain modifications to the KCF framework
for application in camera networks. In such scenarios, the
proposed Generalized Kalman Consensus Filter (GKCF)
outperforms the standard KCF. Although the paper is focused
on camera networks (since it is a common scenario where
these constraints apply), the GKCF approach is applicable
to other sensor networks that have similar characteristics. If
the network is fully (or close to fully) connected, then the
effect of naive nodes is usually very low and the standard
KCF [4], [5] performs well.

To allow for a clear discussion of the literature and our
motivation, Sec II states the problem of interest and its
related notation. Section III presents a technical description
of our motivation, overviews the contributions of the paper,

and reviews the related literature. In Sec IV-A, we derive
our Generalized Kalman Consensus Filter algorithm for a
single target. Sec IV-B shows the implementation of GKCF
in a multi-target scenario, where data association is neces-
sary. Finally Sec V, shows simulation results comparing the
performance of our approach with other methods.

II. PROBLEM FORMULATION

We assume that sensors {Ci}NC
i=1 are monitoring an area

containing targets {Tj}NT
j=1. The sensors are interconnected

via a network represented by the undirected connected graph
G. NCi

is the collection of sensors which are directly
connected to Ci. The state xj of target Tj evolves in discrete
time model according to

xj(k + 1) = Φxj(k) + γj(k), (1)

where xj(k) is the state vector of Tj at time k, Φ is the state
propagation matrix and γj(k) ∼ N (0,Q) is the process
noise. For the simulations and certain discussion herein,
without loss of generality, xj is a 6-dimensional vector which
consists of the 3d position and velocity components of the
target Tj . The state of the system is the concatenation of the
target states: x = [x1; . . . ; xNT] and x ∈ <(6NTX1).

Let x̂j+
i (k) and Wj+

i (k) denote the state estimate and
information matrix for target j at node i. Throughout this
paper, we will use the information matrix notation, where
the information matrix is the inverse of the state covariance
matrix. The time propagation equation for each estimate is

x̂j−(k + 1) = Φx̂j+(k), (2)

Wj−(k + 1)
−1

= ΦWj+(k)
−1

ΦT + Q. (3)

The state transition matrix Φ is assumed to have its eigen-
values in the closed unit disk, with at least one eigenvalue
on the unit disk (i.e., neutral stability). When T j is observed
by Ci, we assume the following sensing model:

zji = Hj
ix

j + ηji (4)

where ηji ∼ N (0,Rj
i) is measurement noise.

When the sensor is a camera, zji is the 2-dimensional
coordinate of the projection of T j on Ci’s image plane.
The matrix Hj

i ∈ <(2X6) is the transformation (linearized
camera calibration matrix [6]) from the 3d target position to
the camera image plane. The matrix Hj

i is a time varying
function of the state estimates. For simplicity of notation, we
drop the time index from Hj

i hereafter.
Let W ∈ <(6NTX6NT) be the information matrix of

the state vector x. Under the (reasonable) assumptions that
the initial information matrix W(0) = cov(x(0))

−1 is
block diagonal, the measurement noise between targets is
uncorrelated (cov(ηji , η

j′

i′) = 0), and the process noise
between targets is uncorrelated (cov(γj , γj

′
) = 0). Then

it is straightforward to show that W(t) = cov(x(t))
−1 is

block diagonal for all times. This is true for the centralized
Kalman filter and for the consensus based filters in this
article. Due to this block diagonal structure of W(t), the
DKF and KCF algorithms can be considered for each target

separately, which greatly decreases the amount of required
calculations.

As explained in Sec I, specific characteristics of video net-
works leads to naive nodes, which we now define precisely.
Definition: Naive Node. In a realistic camera network a
node might exist where neither the node Ci nor its immediate
neighbors Ci′ , i

′ ∈ NCi
can see a specific target T j . In this

particular scenario, Ci is naive about T j in the sense that it
cannot directly receive any observation update about T j . We
call such a node Ci ‘Naive’ relative to target T j .

III. MOTIVATION

We briefly review the KCF [1], [7] (see Algorithm 1)
and explain the motivation for proposing the GKCF. Here

Algorithm 1 KCF for T j at Ci

Given Wi(1), x̂−i (1), ε and K
for k = 1 to K do
1) Get measurement zi.
2) Compute information vector and matrix

ui = (Hi)
T (Ri)

−1zi (5)

Ui = (Hi)
T (Ri)

−1Hi (6)

3) Broadcast message Mi to neighbors containing ui, Ui, x̂−i (k)

4) Receive message Mi′ from neighbors i′εNCi

5) Fuse the information vectors and matrices and calculate weight
matrices

yi =
∑

i′∈NCi
∪{i}

ui′ (7)

Si =
∑

i′∈NCi
∪{i}

Ui′ (8)

6) Compute Kalman Consensus estimate

Mi = (Wi + Si)
−1 (9)

x̂+
i (k) = x̂−i (k) + Mi

(
yi − Six̂

−
i (k)

)
(10)

+γWi(k)−1
∑

i′∈NCi

(
x̂−
i′ (k)− x̂−i (k)

)
γ = ε/(1 + ||Wi(k)−1||), ||X|| = tr(XTX)

1
2 (11)

7) Update the state of the Kalman-Consensus filter

Wi(k + 1)← (ΦMiΦ
T + Q)

−1
(12)

x̂−i (k + 1)← Φx̂+
i (k) (13)

end for

K is the total number of imaging time instants and ε
is a parameter, specified by the designer, that affects the
rate of convergence toward consensus. If ε is set too high,
oscillations or divergence might occur in the state estimation
process. If it is set too low, the convergence speed will be
slow. It has been shown that we must choose 0 < ε < 1/∆
for convergence [7] where ∆ is the maximum degree of the
network G. Thus, a value close to (but less than) 1/∆ can
be chosen for ε for the fastest convergence.

It should be noted that the KCF algorithm described
above works under the assumption that all the sensors have
sensed all the targets. The issue of limited sensing range

in the distributed estimation process has been considered
previously. In [8], the authors considered the case where
not all sensors get measurements of the target. However,
the solution was not fully distributed; rather it was a hybrid
solution consisting of a distributed and a centralized scheme
for information fusion. The nodes used the KCF algorithm
to update their state estimates. These state estimates were
sent along with the state covariance information to a fusion
center. For larger networks a hierarchical tree structure of
fusion centers was proposed, where the information of all
the nodes reached a root fusion center. In this paper, we
are interested in solving the problem using a completely
distributed architecture.

With the above introductory materials, we are in a position
to discuss various specific conditions that require attention
when the KCF is applied to sparse (e.g., camera) networks
with naive nodes, and to propose solution strategies for each
of them.
1) Average vs. weighted average: The basic KCF algorithm
uses average consensus to combine state estimates from
neighboring nodes (see eqn. (10)). With average consensus,
the state estimates of all the nodes get the same weight in
the summation. Since naive nodes do not have observations
of the target, their estimates are often highly erroneous.
This results in reduced performance in the presence of naive
nodes.
2) Covariance/Information Matrix Propagation: The in-
formation matrix measurement update of eqn. (9) considers
the node’s own information matrix and the local neigh-
borhood’s measurement covariance. It does not account for
cross covariance between the estimates by the node and its
neighbors. In the theoretical proof of optimality for KCF, the
cross covariances terms between neighbors’ state estimates
were present [1]. It has been stated in [1] that dropping these
cross covariance terms is a valid approximation when the
state estimate error covariance matrices are almost equal in
all the nodes.

However, when Ci is naive w.r.t. T j , yi and Si are both
zero. Therefore, Mi = Wi

−1 at eqn. (9). Consequently,
from eqn. (12) it can be seen that the diagonal elements of
Wi tend to zero at each time update as long as Ci remains
naive with respect to T j . This makes the covariance matrix
diverge. From this, it can be clearly seen that omitting the
cross covariances in the covariance update equation is not
valid for sparse networks with naive agents. The correlation
between the two dependent variables is the unknown param-
eter making this computation difficult. There has been some
work, e.g. [9] and [10], where the authors incorporated cross
covariance information, which should lead to the optimum
result. But, no method for computing these terms were
provided and predefined fixed values were used instead.
3) Over-correction of the states: The measurement update
term and consensus term in eqn. (10) are both functions of
the prior state estimate x̂−i (k). Both terms apply corrections
to the prior state estimate, from different information sources.
Thus the state estimate might get over-corrected. This is
usually not a big issue in sensor networks without naive

−100 −80 −60 −40 −20 0 20 40 60 80 100
−80

−60

−40

−20

0

20

40

60

80

x axis

y
a
x
is

Average
KCF Convergence
Weighted Avg

Fig. 1: This figure shows the distribution of the estimates for
different algorithms (after removing the ground state offset from
the estimates) in the presence of naive nodes in the network. Green
dots represent the average state estimates of the nodes. Black dots
represent the converged states of the KCF algorithm. Red dots
represent the weighted average of all the nodes’ estimates.

nodes because every node’s state estimate will be close to
the consensus. In sparse networks, the estimates of naive
nodes may lag behind by a significant time. This happens
because naive nodes do not have direct access to new
observation of a target, the only way they can get updated
information about a target is through a neighbor’s state
estimate which was updated in the previous iteration. Thus
a naive node might be multiple iterations away from getting
new information about a target. This information imbalance
can cause large oscillations. In the KCF algorithms this effect
can be decreased by choosing a smaller rate parameter ε.
However, decreasing ε yields slower convergence of the naive
node’s state estimate.

The above issues can be problematic for tracking applica-
tions involving a camera network with naive nodes. A naive
node may associate an observation to a wrong target. This
can affect the tracking performance of nodes that are actually
observing the target by influencing them to drift away from
their estimates. Since KCF is a very appropriate framework
to build a distributed tracker in a camera network, we propose
some changes to address the above challenges leading to a
Generalized Kalman Consensus Filter. The following are the
main proposed modifications.
1) The consensus portion of the GKCF correction step
at each node will take into account the state covariances
of neighbors. The nodes will then converge towards the
weighted mean, instead the unweighted mean.
2) Each node and its neighbors’ state covariance matrices
will be used jointly at consensus step to update that node’s
error covariance matrix. This will prevent the state covari-
ance of the naive nodes from monotonically increasing.
3) Weighted average consensus will correct the prior estimate
towards the weighted mean. Then the DKF algorithm will use
measurements to update this consensus state and covariance,
thus preventing the overcorrection issue mentioned above.

The motivation for using weighted average consensus
instead of average consensus can be verified from Fig 1.

This figure (from our simulation explained in Sec V) shows
the position of the average state estimates over all sensors
(green dots), the convergence value of the KCF approach
(black dots) and the weighted average of the state estimates
over all sensors (red dots), relative to the ground truth state.
It is evident from the plot that weighted average is a better
estimate of the state.

IV. GENERALIZED KALMAN CONSENSUS FILTER

The proposed GKCF approach is presented in Algorithm
2. For the first portion of the discussion, we assume that there
is only one target present in the scene. Next we generalize the
concept for multiple targets. The notation in the Algorithm 2
is generalized for multiple targets. Thus, for the single target
case we can just omit the target ID j and also omit Steps 2
and 6 from the algorithm, which are specifically needed for
the multi-target case and will be elaborated on later.

A. Generalized Kalman Consensus Filter for a Single Target

To derive our approach in Algorithm 2, we first introduce
the weighted average consensus. Next, we show how to
incorporate this consensus scheme into our framework. We
then implement the Distributed Kalman Filter (DKF) with
the results from the weighted average consensus and show
how to propagate our covariance and state estimates.

1) Weighted Average Consensus: Let the initial state
estimate of all NC agents be xi(0) with information matrix
Wi(0). As we use this information matrix term as weights in
the weighted average consensus algorithm, the terms weight
and information matrix will be used interchangeably. Also
let W(0) =

∑NC

i=1 Wi(0). So, the global weighted average
of the initial states is

x∗ = W(0)−1
∑

i=1:NC

Wi(0)xi(0). (14)

Define the weighted initial state of each agent as

x̃i(0) = Wi(0)xi(0). (15)

Weighted average consensus [7] states that if the iterative
update in eqns. (21) and (22) is performed for all i =
1, . . . , Nc, then each of the terms Wi(κ)

−1
x̃i(κ) tends to the

global weighted average x∗ as κ→∞. As a by-product, the
weights also converge to the average of the initial weights.
Both these properties of the weighted average consensus will
be utilized in our approach.

We assume that the initial information matrix Wi(0),
is provided at the initial time step by the target detection
mechanism. It would ideally be zero for nodes that are not
detecting the target. For nodes that are detecting the target,
the initial value would be Wi(k − 1) = Hi

>R−1Hi.
At the kth iteration, the agents communicate with each

other with the Wi(k− 1) and x̃i(k− 1) information. Then,
using the previously discussed average consensus scheme,
they get an updated prior state estimate x̂−i (k) and weight
estimate Wi(k) (see eqns. (21), (22) and (23)). This prior
estimate tends towards the global normalized weighted aver-
age as stated before.

Algorithm 2 Multi-target GKCF on sensor Ci

Given Wj
i (0), x̂j+

i (0), ε and K. Also let,

x̃j
i (0) = Wj

i (0)x̂j+
i (0) (16)

for k = 1 to K do
1) Get measurements { zi l}

L
l=1

2) Associate observations to targets using Hungarian Algorithm. Let
the observation associated with Tj in Ci be zji .
If no observation in associated, set zji = 0 and (Rj

i)−1 = 0
3) Compute information vector and matrix

uj
i = (Hj

i)
T

(Rj
i)
−1

zji (17)

Uj
i = (Hj

i)
T

(Rj
i)
−1

Hj
i (18)

4) Broadcast message Mi to neighbors containing
uj
i ,U

j
i , x̃

j
i (k − 1),wj

i (k − 1) ∀j
5) Receive message Mi′ from neighbors i′ ∈ NCi

6) Compute cross camera data association (CCDA) matchings using
the method described in IV-B.2 and sort all data accordingly.

7) Fuse the information matrices and vectors

yj
i =

∑
i′∈NCi

∪{i}
uj
i′ (19)

Sj
i =

∑
i′∈NCi

∪{i}
Uj

i′ (20)

8) Compute weighted average consensus estimate

x̃j
i (k) = x̃j

i (k − 1) + ε
∑

i′∈NCi

(
x̃j
i′ (k − 1)− x̃j

i (k − 1)
)

(21)

Wj
i (k) = Wj

i (k − 1) + ε
∑

i′∈NCi

(
Wj

i′ (k − 1)−Wj
i (k − 1)

)
(22)

x̂j−
i (k) = Wj

i (k)
−1

x̃j
i (k) (23)

9) Compute Kalman consensus estimate

Wj
i (k) = Wj

i (k) + Sj
i (24)

x̂j+
i (k) = x̂j−

i (k) + Wj
i (k)

−1
(
yj
i − Sj

i x̂
j−
i (k)

)
(25)

10) Propagate weight and weighted state estimate

Wj
i (k)← (ΦWj

i (k)
−1

ΦT + Q)
−1

(26)

x̃j
i (k)←Wj

i (k)Φx̂j+
i (k) (27)

end for

2) Covariance/Information Matrix Propagation: After
communicating with its neighbors and prior to using mea-
surement information, the optimal state estimate at Ci is
a linear combination of the information from Ci and its
neighbors. Since these variables are not independent, optimal
estimation would require knowledge of the cross correlation
structure between each pair of these random variables. Since,
it is usually quite difficult to compute this cross correlation,
we need some other way to approximate the covariance or
in this case the information matrix. The update operation
of the information matrix Wi(k) in eqn. (22) can be used
as an approximation of the information matrix due to the
incoming information from the neighbors’ states. A property
of the weighted average consensus is that the weights also
converge to the average of the weights as the state estimates

converge towards the weighted average. Thus, this kind of
covariance/weight propagation enables the weights to be
updated accordingly when informative state estimates arrive
at a naive node.

After computing the state and weight estimates with all
the available information, we need to propagate the weight
and state in time. One should note that instead of propagating
the state estimate, we have to propagate the weighted state
estimate as necessitated by the weighted average consensus
equations. Thus the weight propagation equation takes the
form of eqn. (26).

3) Two-stage Update: To resolve the issue of overcor-
rection of the states, we divide the estimation process in
two stages. First, as mentioned above, Ci updates its state
and information matrix using its neighbors’ states and in-
formation matrices. Next, we further update our state and
information matrix with current measurement information,
which we explain below.

Consider that a node that has completed Step 3 in Al-
gorithm 2. If it did not have any observation, then zi and
(Ri)

−1 were set to zero. Using the fused information vector
and matrix and the updated prior weight and state estimate
(from the weighted average consensus step of eqns. (22)
and (23)) appropriately in a standard Distributed Kalman
Filter, we get the final state and weight estimate at time
k. Thus using DKF in eqns. (24) and (25) we can estimate
the state and weight which includes the properly weighted
innovations from the measurements and the state estimates
of the neighbors.

Note that in a more general algorithm, at the expense of
additional communications, the weighted consensus of Step
8 could be performed multiple times between measurements.
Then the state estimates would converge even closer to the
global weighted average (by virtue of the weighted average
consensus steps). Also note that the GKCF achieves its
improved performance at the expense of additional commu-
nication, as it requires communication of the information
matrix for each observed target whereas the KCF does not.

B. Generalized Kalman Consensus Filter for Multiple Tar-
gets

This section discusses tracking of multiple targets in a
distributed sensor network. The main difference between
single and multi-target tracking is the requirement of data
association. Several methods have been proposed for data
association in multi-target multi-sensor scenarios. The au-
thors in [11] used Joint Probabilistic Data Association to
perform data association and embedded it into the KCF. We
will show how the proposed GKCF can be used with data
association.

We assume that all the sensors know the total number of
targets and their initial states (this can be done in many ways
like observing the entrances and exits). The sensor which
detects a target gets an initial covariance/weight prior of the
target state from the detection mechanism. The initial weights
for that target in other sensors have to be set to zero (because
they are not initially observing the target). To track multiple

targets, two extra steps (Steps 2 and 6 in Algorithm 2) are
needed relative to the single target GKCF algorithm. We
describe these two additional steps in detail in this section.

Since a camera does not know the association between its
observations and the targets, data association becomes nec-
essary. When two sensors communicate information about
multiple targets, they should also be able to associate the
different targets more reliably than without communication.
Data association is performed in two different stages. The
self data association step is where a cameras associates
its observations with the targets. The cross camera data
association step is where two cameras associate the different
targets among themselves.

1) Self Data Association: At the beginning of an iteration,
assume that Ci has Li observations: { zi l}

Li

l=1. The weighted
state estimates of all the targets are available from the
previous iteration. In order to compare an observation with
a target, the weighting factors need to be removed from the
weighted state estimates and transformed to the observation
space. The unweighted prior state estimate at iteration k is

X̂ j−
i (k) = Wj

i (k − 1)−1x̃j
i (k − 1). (28)

So in the observation space, the state estimate and its
covariance would have the form Hj

i X̂
j−
i (k) and Hj

iW
j
i (k−

1)−1HjT
i respectively. Let us also define the covariance of

the lth observation in Ci as Rl
i. We then compute the self

data association using the Mahalanobis distance:
d(T j

i , zi l)(k) =
(
Hj

i X̂
j−
i (k)− zi l

)T
(
Hj

iW
j
i (k − 1)−1HjT

i + Rl
i

)−1 (
Hj

i X̂
j−
i (k)− zi l

)
. (29)

We can now perform a matching between the observation set
and the target set. In our experiments, we use the Hungarian
algorithm [12], which is a bipartite matching algorithm that
finds the association across two sets by minimizing the sum
of the distances over all associated pairs. We do not consider
matching pairs that have a distance over a certain threshold.

After this association is done, we denote the observation
associated with Tj in Ci as zji . If Tj is not associated to any
of the observations in Ci, we set zji = 0 and (Rj

i)
−1 = 0.

2) Cross Camera Data Association: After the cameras
communicate their weighted state estimates, weights and
measurement information, we need to associate the targets
across the cameras. If the cameras maintain a consistent
ordering scheme for the targets, then this step is not nec-
essary. If that ordering information is not available, the
cameras can estimate this association using a cross-camera
data association scheme. Just as in the self data association
issue, we use the bipartite matching between the targets
across two cameras using Mahalanobis distance as

d(T j
i , T

j′

i′)(k) =
(
X̂ j−

i (k)− X̂ j′−
i′ (k)

)T
(
Wj

i (k−1)−1+ Wj′

i′ (k−1)−1
)−1(

X̂ j−
i (k)−X̂ j′−

i′ (k)
)
. (30)

For simplicity of notation, let us assume that after the cross
camera data association is performed, the information from

each neighboring camera is sorted such that all data with the
index j in camera i represents Tj’s information.

V. EXPERIMENTAL EVALUATION

To validate our approach, we prepared a simulation frame-
work. In our simulation, we considered a 500× 500 grid. In
that area, we considered four moving targets. Each target’s
state vector is 4 × 1, i.e. 2d position and 2d velocity
components. The initial positions were uniformly picked
from the grid. The starting velocity was uniformly picked
from 2-20 and with a random direction. The targets were
propagated through time using the dynamics similar to (1).
The values of the parameters we used for this dynamical
model are as follows:

Φ =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, Q =

50 5 5 5
5 50 5 5
5 5 50 5
5 5 5 50

.
The targets were also programmed to randomly change
direction and to be deflected back when they reached the
boundary of the grid. The tracks were propagated for 40
iterations.

There were 5 cameras monitoring the area. The partially
overlapping FOVs are depicted by the smaller black rectan-
gles in Fig 3. The communication adjacency matrix A for
the cameras is given below. The observations were generated
using the same model as (4). The parameters used in this
sensing and network model are as follows:

H=

[
1 0 0 0
0 1 0 0

]
, R=

[
10 0
0 10

]
,A=

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

.
The initial state of all the targets were provided to each of
the cameras. The initial weights were selected depending on
whether a camera was viewing the target or not as

Wviewing(0) = (0.05)I4, Wnotviewing(0) = (1.0e−6)I4.

Ground truth states of different targets

Fig. 2: This figure shows the
ground truth tracks for the state
estimates in Fig 3.

The targets were
tracked using both KCF
and GKCF methods
separately. The tracking
results using both KCF
and GKCF methods are
shown in Fig 3 (ground
truth tracks are given in
Fig 2). In this figure,
the left column shows
the state estimates in
different cameras using
the KCF algorithm and right column shows the state
estimates in different cameras using the GKCF algorithm.
Here the circle at one end of the tracks symbolizes the final
point on the track. From the left column, we can see that

KCF GKCF

C1

C3

C4

C5

C2

Fig. 3: This figure shows multi-target tracking (i.e., consensus
estimates of the state vectors) results for four targets (shown in
red, green, blue and magenta colors) using the KCF (left column)
and the GKCF (right column) approaches. The cameras’ FOVs are
represented by black rectangles. The ground truth states for this
simulation are shown in Fig 2.

the cameras’ tracks lagged from the ground truths (e.g.,
blue target) and in some cases got associated with another
target’s track (red and green target). In the right column, we
can clearly see that the tracking was successful using the
GKCF approach.

Next, we compute the error statistics to compare the
GKCF and KCF against each other and against the cen-
tralized Kalman filter. Fig 4 shows the mean square errors
(MSE) relative to the ground truth states for the different
methods. To construct this graph, the simulation was run
50 times with different randomly generated tracks. For a
particular target, the mean square error of estimation is
defined as,

MSEj = E
[
(x̂j

i − xj)
T

(x̂j
i − xj)

]
. (31)

Here, xj is the ground truth state. The expectation is over
all iterations and all cameras. From the figure, it is evident
that the performance of the GKCF was very close to the
centralized Kalman filter. Please note that in this simulation
only one target was used to remove the effect from data
association errors. In the legend of this figure, the average

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

14000

16000

Simulation RunsM
ea
n
S
q
u
a
re

E
rr
o
r
F
ro
m

G
ro
u
n
d
T
ru
th

GKCF (Avg Err = 590)
KCF (Avg Err = 2698)
CKF (Avg Err = 378)

Fig. 4: This figure shows the mean square errors (MSE) relative
to the ground truth states for the different methods. The x-axis is
the different runs of the simulation with random tracks. The y-axis
is average of the squared errors over all the iterations and cameras
for each run.

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Iteration

M
S
E

fr
o
m

g
ro
u
n
d
tr
u
th

Weighted Average
GKCF
Average
KCF

Fig. 5: In this figure we show experimentally how the KCF and
GKCF schemes converge if multiple iterations are allowed before
getting new measurements or propagating in time. The y-axis of
this graph is the mean squared distance from the ground truth state
and the x-axis is the number of iterations.

MSE for each method is shown.
In Fig 5, we show the convergence analysis for the

KCF and GKCF algorithms. At a random iteration of the
simulation, we programmed the algorithms to keep iterating
without getting any new measurement or propagating in time.
By doing this, we can see to which values these consensus
schemes converge. The x-axis of the graph is the iteration
number and the y-axis is the mean squared distance from
the ground truth state. We have already shown in Fig 1 that
statistically, the weighted average estimate is closer to the
ground truth than the average estimate or the converging
value of the KCF approach. This effect can also be observed
in this graph, i.e. the GKCF algorithm is converging to a
value much closer to the ground truth and that value is the
weighted average indeed.

The states in the GKCF algorithm converged much faster

and closer to the ground truth state. The average number
of iterations needed to converge for the GKCF algorithm
is 2.707 whereas it is 36.278 for the KCF algorithm. If
within the ith to (i + 10)th iterations, the state did not
change more than 0.1% of the value at the ith iteration,
it was considered to have converged at the ith iteration. This
statistic was generated from 1000 simulation runs. It shows
that the convergence of the GKCF method is much faster
than the KCF method.

VI. CONCLUSION

In this paper, we introduced a novel method for distributed
state estimation based on the Kalman Consensus Filter
(KCF). We discussed under what circumstances the assump-
tions of KCF are not valid and hence modifications are
necessary. This is especially true in camera networks where
each sensor has a limited FOV and they are geographically
separated by distances that do not allow full communication.
Then we proposed a generalized framework, Generalized
KCF, which outperformed the KCF approach under such
conditions. We showed the theoretical derivation of our
framework and also showed simulation results to compare
the performance of our algorithm with other approaches.

REFERENCES

[1] R. Olfati-Saber, “Kalman-consensus filter: Optimality, stability, and
performance,” in IEEE Conference on Decision and Control, 2009.

[2] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in IEEE Conference on Decision and Control, 2005.

[3] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in American Control Conference, 2003.

[4] B. Song, A. T. Kamal, C. Soto, C. Ding, A. K. Roy-Chowdhury, and
J. A. Farrell, “Tracking and Activity Recognition Through Consensus
in Distributed Camera Networks,” in IEEE Trans. on Image Process-
ing, 2010.

[5] B. Song, C. Ding, A. T. Kamal, J. A. Farrell, and A. K. Roy-
Chowdhury, “Distributed Wide Area Scene Analysis in Reconfigurable
Camera Networks,” in IEEE Signal Processing Magazine - Special
Issue on Distributed Image Processing and Communications, May
2011.

[6] A. Morye, C. Ding, B. Song, A. R. Chowdhury, and J. A. Farrell,
“Optimized Imaging and Target Tracking within a Distributed Camera
Network,” in American Control Conference, 2011.

[7] R. Olfati-saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” in Proceedings of the
IEEE, vol. 95, Jan 2007.

[8] R. Olfati-Saber and N. F. Sandell, “Distributed tracking in sensor net-
works with limited sensing range,” in American Control Conference,
2008.

[9] W. Ren, A. W. Beard, and D. B. Kingston, “Multi-agent Kalman
consensus with relative uncertainty,” in American Control Conference,
2005.

[10] M. Alighanbari and J. P. How, “An unbiased Kalman consensus
algorithm,” in American Control Conference, 2006.

[11] N. Sandell and R. Olfati-Saber, “Distributed data association for multi-
target tracking in sensor networks,” in IEEE Conference on Decision
and Control, 2008.

[12] M. Junger, T. M. Liebling, D. Naddef, G. L. Nemhausera, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, 50 Years of
Integer Programming 1958-2008. Springer-Verlag Berlin Heidelber,
2010.

