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Abstract

Reconstructing a 3Dmodel of a human face fromamonocular video sequence is an important

problem in computer vision, with applications to recognition, surveillance, multimedia, etc.

However, the quality of 3D reconstructions using structure frommotion (SfM) algorithms is of-

ten not satisfactory. One of the reasons is the poor quality of the input video data. Hence, it is

important that 3D face reconstruction algorithms take into account the statistics representing

the quality of the video. Also, because of the structural similarities of most faces, it is natural

that the performance of these algorithms can be improved by using a generic model of a face.

Most of the existing work using this approach initializes the reconstruction algorithm with this

generic model. The problem with this approach is that the algorithm can converge to a solution

very close to this initial value, resulting in a reconstruction which resembles the generic model

rather than the particular face in the video which needs to be modeled. In this paper, we propose

a method of 3D reconstruction of a human face from video in which the 3D reconstruction algo-

rithm and the generic model are handled separately. We show that it is possible to obtain a rea-

sonably good 3DSfM estimate purely from the video sequence, provided the quality of the input

video is statistically assessed and incorporated into the algorithm. The final 3Dmodel is obtained

after combining the SfM estimate and the generic model using an energy function that corrects

for the errors in the estimate by comparing the local regions in the twomodels. The main advan-

tage of our algorithm over others is that it is able to retain the specific features of the face in the

video sequence even when these features are different from those of the generic model and it does

so even as the quality of the input video varies. The evolution of the 3D model through the

various stages of the algorithm and an analysis of its accuracy are presented.
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1. Introduction

Reconstructing 3D models from video sequences is an important problem in com-

puter vision with applications to recognition, medical imaging, video communica-

tions, etc. Though numerous algorithms exist which can reconstruct a 3D scene
from two or more images using structure from motion (SfM) [1,2], the quality of

such reconstructions is often unsatisfactory. The main reason for this is the poor

quality of the input images and a lack of robustness in the reconstruction algorithms

to deal with it [3]. One particularly interesting application of 3D reconstruction from

2D images is in the area of modeling a human face from video. Successful solution of

this problem has applications in multimedia, computer graphics, and surveillance. In

multimedia, 3D face models can be used in video conferencing applications for effi-

cient transmission. In computer graphics applications, 3D face models form the basic
building block upon which facial movements and expressions can be added. Being

able to build these models automatically from video data would greatly simplify such

animation tasks where models are now painstakingly built with significant human

intervention. In surveillance applications, 3D models can be used for recognition

across wide changes in viewing angles.

Various researchers have addressed the issue of 3D face modeling. In [4], the au-

thors used an extended Kalman filter to recover the 3D structure of a face which was

then used for tracking. A method for recovering non-rigid 3D shapes as a linear
combination of a set of basis shapes was proposed in [5]. A factorization based meth-

od for recovering non-rigid 3D structure and motion from video was presented in [6].

In [7], the author proposes a method for self-calibration in the presence of varying

internal camera parameters and reconstructs metric 3D structure. Romdhani et al.

[8] have shown that it is possible to recover the shape and texture parameters of a

3D morphable model from a single image. They used their 3D model for identifica-

tion of faces under different pose and illumination conditions. Our work is along the

lines of [9,10], where the authors proposed solving the problem of 3D face modeling
using a generic model. Their method of bundle-adjustment works by initializing the

reconstruction algorithm with this generic model. The difficulty with this approach is

that the algorithm often converges to a solution very near this initial value, resulting

in a reconstruction which has the characteristics of the generic model, rather than

that of the particular face in the video which needs to be modeled. This method

may give very good results when the generic model has significant similarities with

the particular face being reconstructed. However, if the features of the generic model

are different from those of the face being reconstructed, the solution obtained using
this approach may be unsatisfactory.

In this paper we deal with face modeling from monocular video, with special em-

phasis on the incorporation of the generic face model.
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Reconstructing from a monocular video. This is particularly important in unregu-

lated surveillance applications where the training data (from which the 3D model

needs to be estimated) may contain a few images or a video from one view (e.g.,

frontal), but the probe may be another view of the person (e.g., profile). Since the

motion between pairs of frames in a monocular video is usually small, we adopt
the optical flow paradigm for 3D reconstruction [11]. Also, estimating the motion

between the pairs of frames accurately may be a challenge in many situations be-

cause of differences in the quality of the input video. Our method learns certain

statistical parameters of the incoming video data and incorporates them in the al-

gorithm. Quality evaluation is done by estimating the statistical error covariance

of the depth estimate analytically from the optical flow equations. The details of

the statistical analysis can be found in [12,13].

Avoid biasing the reconstruction with the generic model. Mathematically speaking,
the introduction of the generic model is similar to introducing constraints on the

solution of the 3D estimation problem. In our method, we introduce the generic

model after obtaining the estimate using the SfM algorithm. The SfM algorithm

reconstructs purely from the video data after computing the optical flow. Instead

of directly fusing the depth values in the 3D estimate and the generic model, we

propose a cost function which identifies local regions where there are no sharp

depth discontinuities, looks for deviations in the trend of the values of the 3D es-

timate in these regions and then corrects for the errors. The optimization of the
cost function is done in a Markov Chain Monte Carlo (MCMC) framework using

a Metropolis–Hastings sampler [14]. The advantage of this method is that the par-

ticular characteristics of the face that is being modeled are not lost since the SfM

algorithm does not incorporate the generic model. However, most errors (espe-

cially those with large deviations from the average representation) in the recon-

struction are corrected in the energy function minimization process by

comparison with the generic model.

The issues of statistical analysis and reconstruction from monocular video have
been dealt with in detail in [13], and we will only provide a brief overview of the

method here. The main focus of this paper will be the use of the generic model in

face reconstruction.

We will now briefly discuss about our method for incorporating a generic model

in the 3D face modeling framework. For a detailed review of work on statistical error

analysis in 3D modeling from video, the interested reader can refer to our paper [13].

1.1. Incorporating a generic model in an energy function minimization framework

Our 3D reconstruction framework based on the uncertainty calculations provides

a depth estimate using the input video data only (explained in detail later). However,

localized errors still remain which were not detected using the error correction

strategy outlined above. The reason is that while the error covariance calculations

can identify and correct for small errors, they are unable to correct the larger errors

due to outliers. We use a generic face model in order to overcome such errors. A reg-

ularization approach to incorporating the generic model is proposed by imposing



A.K. Roy Chowdhury, R. Chellappa / Computer Vision and Image Understanding 91 (2003) 188–213 191
smoothness constraints on the final 3D reconstruction. A pertinent question to ask

here is: why do we need the error correction strategy (in the SfM algorithm) and the

generic model? Is it not sufficient to have a simple multi-frame reconstruction algo-

rithm without the error correction strategies, followed by the generic model to cor-

rect for all the errors? The answer is negative, because if we use the generic model to
correct for all the errors, we run into the problem of over-smoothing the 3D struc-

ture estimate. This is similar to the situation when the generic model is incorporated

at the beginning of the SfM algorithm, as explained before. The aim here is to obtain

as precise a 3D model as possible from SfM and then use the generic model to correct

for the errors which still persist.

The idea of using energy functions (also known as variational methods, regular-

ization theory, and relaxation methods) to impose smoothness constraints has been

very influential in computer vision [15]. Regularization theory works by minimizing a
functional E½f ðxÞ� with respect to a function f ðxÞ. It usually contains one term (a

consistency or fidelity term) which ensures that the smoothed solution is close to

the data, and a second term (a regularization term) which imposes smoothness con-

straints on the solution. In most implementations, where the data is specified on a

regular lattice, the energy function is discretized as E½fi�.
In our problem, the 3D estimate obtained from the multi-frame reconstruction al-

gorithm needs to be smoothed in local regions where there are errors. These regions

are identified with the help of the generic model. After the 3D depth estimate and the
generic model have been aligned, the boundaries where there are sharp depth discon-

tinuities are identified from the generic model. Each vertex of the triangular mesh

representing the model is assigned a binary variable (defined as a line process, follow-

ing the terminology of [16]) depending upon whether or not it is part of a depth

boundary. Within each region inside the boundaries, the trend in the values of the

3D estimate is considered and any appreciable deviations are smoothed using an en-

ergy function minimization process. The energy function consists of two terms which

determine the closeness of the final smoothed solution to either the generic model or
the 3D depth estimate, and a third term which determines whether or not a particular

vertex of the mesh should be smoothed based on the value of the binary variable

representing the line process for that vertex. The combinatorial optimization prob-

lem is solved using simulated annealing and a Markov Chain Monte Carlo sampling

strategy [14].
2. 3D face reconstruction from monocular video using SfM

In this section, we explain the first part of our face reconstruction algorithm, i.e.,

evaluating the quality of the video data and estimating the 3D structure using SfM.

2.1. Uncertainty analysis of 3D reconstruction

Since the motion between adjacent frames in a video sequence of a face is usually

small, we will adopt the optical flow framework for reconstructing the structure [11].
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It is assumed that the coordinate frame is attached rigidly to the camera with the or-

igin at the center of perspective projection and the z-axis perpendicular to the image

plane. The camera is moving with respect to the face being modeled (which is as-

sumed rigid) with translational velocity V ¼ ½vx; vy ; vz� and rotational velocity

X ¼ ½xx;xy ;xz� (this can be reversed by simply changing the sign of the velocity vec-
tor). Using the small-motion approximation to the perspective projection model for

motion field analysis, and denoting by pðx; yÞ and qðx; yÞ, the horizontal and vertical

velocity fields of a point ðx; yÞ in the image plane, we can write the equations relating

the object motion and scene depth by [11]
pðx; yÞ ¼ ðx� fxf Þhðx; yÞ þ
1

f
xyxx � f

�
þ 1

f
x2
�
xy þ yxz;

qðx; yÞ ¼ ðy � fyf Þhðx; yÞ þ f
�

þ 1

f
y2
�
xx �

1

f
xyxy � xxz;

ð1Þ
where f is the focal length of the camera, ðxf ; yf Þ ¼ ðvx=vz; vy=vzÞ is known as the

focus of expansion (FOE), and hðx; yÞ ¼ vz=ðzðx; yÞÞ is the scaled inverse scene depth.

We will assume that the FOE is known over a few frames of the video sequence.

Under the assumption that the motion between adjacent frames in a video is small,

we compute the FOE from the first two or three frames and then keep it constant

over the next few frames [17]. For N corresponding points, using subscript i to
represent the above-defined quantities at the ith point, we define (similar to [17])
h ¼ ðh1; h2; . . . ; hN ÞTN�1;

u ¼ ðp1; q1; p2; q2; . . . ; pN ; qN ÞT2N�1;

ri ¼ ðxiyi;�ð1þ x2i Þ; yiÞ
T

3�1;

si ¼ ð1þ y2i ;�xiyi;�xiÞT3�1;

X ¼ ðwx;wy ;wzÞT3�1;

Q ¼ r1 s1 r2 s2 . . . rN sN½ �T2N�3;

P ¼
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ð2Þ

A ¼ P Q½ �2N�ðNþ3Þ;

z ¼
h

X

� �
ðNþ3Þ�1

:
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Then (1) can be written as
Az ¼ u: ð3Þ

Our aim is to compute z from u and to obtain a quantitative idea of the accuracy of
the 3D reconstruction z as a function of the uncertainty in the motion estimates u.

Let us denote by Ru the covariance matrix of u and by C the cost function
C ¼ 1

2
jjAz� ujj2 ¼ 1

2

Xn¼2N

i¼1

C2
i ðui; zÞ: ð4Þ
In [12,13], using the implicit function theorem [18], we proved the following result.

Theorem 2.1. Define
A�iip ¼ ½0 � � � 0� ðx�ii � xf Þ0 � � � 0� x�iiy�iið1þ x2�ii Þ � y�ii�
¼ ½�ðx�ii � xf ÞI�iiðNÞj � r�ii� ¼ ½A�iiphjA�iipm�;

A�iiq ¼ ½0 � � � 0� ðy�ii � yf Þ0 � � � 0� ð1þ y2�ii Þx�iiy�iiðNÞx�ii�
¼ ½�ðy�ii � yf ÞI�iiðNÞj � s�ii� ¼ ½A�iiqhjA�iiqm�;

ð5Þ
where �ii ¼ di=2e is the ceiling of i (�ii will then represent the number of feature points N
and i ¼ 1; . . . ; n ¼ 2N ) and InðNÞ denotes a 1 in the nth position of the array of length
N and zeros elsewhere. The subscript p in A�iip and q in A�iiq denotes that the elements of
the respective vectors are derived from the pth and qth components of the motion in (1).
Then
Rz ¼ H�1
X
i

oCT
i

oz

oCi

ou
Ru

oCT
i

ou

oCi

oz

 !
H�T ð6Þ

¼ H�1
XN
�ii¼1

AT
�iipA�iipRu�iip

� 
þ AT

�iiqA�iiqRu�iiq

�!
H�T ð7Þ
and
H ¼
XN
�ii¼1

AT
�iipA�iip

�
þ AT

�iiqA�iiq

�
; ð8Þ
where Ru ¼ diag½Ru1p;Ru1q; . . . ;RuNp;RuNq�.

Because of the partitioning of z in (2), we can write
Rz ¼
Rh Rhm

RT
hm Rm

� �
: ð9Þ
We can then show that for N points and M frames, the average distortion in the

reconstruction is
DavgðM ;NÞ ¼ 1

MN 2

XM
j¼1

traceðRj
hÞ; ð10Þ
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where the superscript in the index to the frame number. We will call (10) the multi-

frame SfM (MFSfM) rate-distortion function [19], hereafter referred to as the video

rate-distortion (VRD) function. Given a particular tolerable level of distortion, the

VRD specifies the minimum number of frames necessary to achieve that level. In

[20,34] we had proposed an alternative information theoretic criterion for evaluating

the quality of a 3D reconstruction from video and had analyzed the comparative
advantages and disadvantages. The above results do not require the standard as-

sumptions of Gaussianity of observations and is thus an extension of the error co-

variance results presented in [21].

2.2. SfM algorithm for face reconstruction

Fig. 1 shows a block-diagram schematic of the complete 3D face reconstruction

framework using SfM. The input is a monocular video sequence. We choose an ap-
propriate two-frame depth reconstruction strategy [17]. The depth maps are aligned

to a single frame of reference and the aligned depth maps are fused together using

stochastic approximation.

Let si 2 R3 represent the structure,1 computed for a particular point, from ith and

ðiþ 1Þst frame, i ¼ 1; . . . ;K, where the total number of frames is K þ 1.2 Let the

fused structure sub-estimate at the ith frame be denoted by Si 2 R3. LetXi andVi rep-

resent the rotation and translation of the camera between the ith and ðiþ 1Þst frames.

Note that the camera motion estimates are valid for all the points in the object in
that frame. The 3� 3 rotation matrix Pi describes the change of coordinates between

times i and iþ 1, and is orthonormal with positive determinant. When the rotational
1 In our description, subscripts will refer to feature points and superscripts will refer to frame numbers.

Thus xji refers to the variable x for the ith feature point in the jth frame.
2 For notational simplicity, we use i and ðiþ 1Þst frames to explain our algorithm. However, the

method can be applied for any two frames provided the constraints of optical flow are not violated.
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velocity X is held constant between time samples, P is related to X by P ¼ eX̂X.3 The
fused sub-estimate Si can now be transformed as T iðSiÞ ¼ PiSi þ ViT . But in order to

do this, we need to estimate the motion parameters V and X. Since we can determine

only the direction of translational motion ðvx=vz; vy=vzÞ, we will represent the motion

components by the vector m ¼ ½vx=vz; vy=vz;xx;xy ;xz�. Thus, the problems at stage
ðiþ 1Þwill be to (i) reliably track the motion parameters obtained from the two-frame

solutions and (ii) fuse siþ1 and T iðSiÞ. If flig is the transformed sequence of inverse

depth values with respect to a common frame of reference, then the optimal value

of the depth at the point under consideration is obtained as
3 F

The op

same v
u� ¼ argminumediani wi
lðli

�
� uÞ2

�
; ð12Þ
where wi
l ¼ ðRi

hðlÞÞ
�1
, with Ri

hðlÞ representing the covariance of li (which can be

obtained from (9)). However, since we will be using a recursive strategy, it is not

necessary to align all the depth maps to a common frame of reference a priori. We
will use a Robbins–Monro stochastic approximation (RMSA) algorithm (refer to

Appendix A) where it is enough to align the fused sub-estimate and the two-frame

depth for each pair of frames and proceed as more images become available.

For each feature point, we compute X iðuÞ ¼ wi
lðli � uÞ2; u 2 U. At each step of

the RM recursion, the fused inverse depth, ĥhkþ1, is updated according to (see Appen-

dix A for details)
ĥhkþ1 ¼ T̂T kðĥhkÞ � akðpkðĥhkÞ � 0:5Þ; ð13Þ

where ak is determined by (A.3), pkðĥhkÞ ¼ I½Xk 6 T̂T kðĥhkÞ�, I represents the indicator

function, and T̂T k is the estimate of the camera motion. When k ¼ K, we obtain the

fused inverse depth ĥhKþ1, from which we can get the fused depth value SKþ1. The

camera motion T̂T is estimated using a tracking algorithm as described in [12].
The reconstruction algorithm. Assume that we have the fused 3D structure Si ob-

tained from i frames and the two-frame depth map siþ1 computed from the ith and

ðiþ 1Þst frames. Fig. 2 shows a block diagram of the multi-frame fusion algorithm.

The main steps of the algorithm are:

Track. Estimate the camera motion using the camera motion tracking algorithm

[12].

Transform. Transform the previous model Si to the new reference frame.

Update. Update the transformed model using siþ1 to obtain Siþ1 from (13).
Evaluate reconstruction. Compute a performance measure for the fused recon-

struction from (10).

Iterate. Decide whether to stop on the basis of the performance measure. If not,

set i ¼ iþ 1 and go back to Track.
or any vector a ¼ ½a1; a2; a3�, there exists a unique skew-symmetric matrix

âa ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5: ð11Þ

erator âa performs the vector product on R3: âaX ¼ a� X 8X 2 R3. With an abuse of notation, the

ariable is used for the random variable and its realization.



Si-1

im
iy

si

S i-1T( ) Si
Camera Motion Coordinate

TransformationEstimation
RMSA Fusion

Algorithm

Fig. 2. Block diagram of the multi-frame fusion algorithm.

196 A.K. Roy Chowdhury, R. Chellappa / Computer Vision and Image Understanding 91 (2003) 188–213
3. Incorporating the generic model

In this section, we present our method of incorporating the generic model after

obtaining the 3D estimate from the video sequence using the SfM algorithm de-

scribed in the previous section. We propose an optimization framework for combin-
ing the two models in such a way that the errors in the 3D estimate are corrected by

comparison with the generic model.

The optimization function. Both the generic model and the 3D estimate have a tri-

angular mesh representation with N vertices and the depth at each of these vertices is

known. (We will explain how this can be obtained in a later section). Let

fdgi ; i ¼ 1; . . . ;Ng be the set of depth values of the generic mesh for each of the N
vertices of the triangles of the mesh. Let fdsi ; i ¼ 1; . . . ;Ng be the corresponding

depth values from the SfM estimate. We wish to obtain a set of values
ffi; i ¼ 1; . . . ;Ng which are a smoothed version of the SfM model, after correcting

the errors on the basis of the generic mesh.

Since we want to retain the specific features of the face we are trying to model, our

error correction strategy works by comparing local regions in the two models and

smoothing those parts of the SfM estimate where the trend of the depth values is sig-

nificantly different from that in the generic model, e.g., a sudden peak on the fore-

head will be detected as an outlier after the comparison and smoothed. This is

where our work is different from previous work [9,10], since we do not intend to fuse
the depth in the two models but to correct errors based on local geometric trends.

Towards this goal, we introduce a line process on the depth values. The line process

indicates the borders where the depth values have sudden changes, and is calculated

on the basis of the generic mesh, since it is free from errors. For each of the N
vertices, we assign a binary number indicating whether or not it is part of the line

process. This concept of the line process is borrowed from the seminal work of

Geman and Geman [16] on stochastic relaxation algorithms in image restoration.

The optimization function we propose is
Eðfi; liÞ ¼
XN
i¼1

ðfi � dsiÞ
2 þ ð1� lÞ

XN
i¼1

ðfi � dgiÞ
2 þ l

XN
i¼1

ð1� liÞ
X
j2N i

ðfi � fjÞ21ds 6¼dg ;

ð14Þ
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where li ¼ 1 if the ith vertex is part of a line process and l is a combining factor which

controls the extent of the smoothing. N i is the set of vertices which are neighbors of

the ith vertex. 1ds 6¼dg represents the indicator function which is 1 if ds 6¼ dg, else 0. In
order to understand the importance of (14), consider the third term. When li ¼ 1, the

ith vertex is part of a line process and should not be smoothed on the basis of the
values in N i; hence this term is switched off. Any errors in the value of this particular

vertex will be corrected on the basis of the first two terms, which control how close the

final smoothed mesh will be to the generic one and the SfM estimate. When li ¼ 0,

indicating that the ith vertex is not part of a line process, its final value in the

smoothed mesh is determined by the neighbors as well as its corresponding values in

the generic model and SfM estimate. The importance of each of these terms is con-

trolled by the factor 0 < l < 1. In the case (largely academic) where ds ¼ dg, the
smoothed mesh can be either ds or dg and this is taken care of in the indicator function
in the third term in (14). The line process li has a value of 1 or 0, depending on whether

there is a sudden change in the depth in the generic model at the particular vertex i.
Obtaining such changes relies on derivative computations, which are known to be

noise prone. Hence, in our optimization scheme, we allow the line process to be

perturbed slightly around its nominal value computed from the generic model.

The design of the cost function follows conventional ideas of regularization the-

ory [15], whereby the energy function usually consists of a data term requiring the

solution to be close to the data and a regularizer which imposes a smoothness on
the solution. Various other forms of the different terms in (14) could be considered.

One interesting variation would be to impose a penalty term for the discontinuities.

The graduated non-convexity algorithm of [22] is an appropriate method for solving

such problems. It works by first finding the minimum of a convex approximation to

the non-convex function, followed by minimization of a sequence of functions, end-

ing with the true cost function. However, based on experimental analysis of the so-

lution of our reconstruction algorithm, we decided that we could work with the

simpler version of (14), which does not have the penalty term. This is because, during
the optimization, the line process does not move very far from its nominal value, and

hence, the penalty term does not have any significant contribution.

Eq. (14) can be optimized in various ways. If the li are fixed, this is equivalent to
solving a sparse linear system of equations [23, Chapters 9 and 10]. In the parlance of

classical deterministic optimization, we then assume that we have perfect informa-

tion about the loss function and that this information is used to determine the search

directions in a deterministic manner in every step of the algorithm. However, as ex-

plained before, one of the major sources of noise in (14) is the estimate of li. If the li
are not known perfectly, we need to optimize over this variable also. The cost func-

tion can no longer be represented as a linear system of equations. More complicated

optimization schemes need to be investigated for this purpose.

We use the technique of simulated annealing built upon the MCMC framework

[14]. MCMC is a natural method for solving energy function minimization problems

[15]. The MCMC optimizer is essentially a Monte Carlo integration procedure in

which the random samples are produced by evolving a Markov chain. Let

T1 > T2 > � � � > Tk > � � � be a sequence of monotone decreasing temperatures in
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which T1 is reasonably large and limTk!1 ¼ 0. At each such Tk, we run Nk iterations

of a Metropolis–Hastings (M–H) sampler [14] with the target distribution repre-

sented as pkðf ; lÞ / expf�Eðf ; lÞ=Tkg. As k increases, pk puts more and more of

its probability mass (converging to 1) in the vicinity of the global maximum of E.
Since minimizing Eðf ; lÞ is equivalent to maximizing pðf ; lÞ, we will almost surely
be in the vicinity of the global optimum if the number of iterations Nk of the M–

H sampler is sufficiently large. The steps of the algorithm are:

• Initialize at an arbitrary configuration f0; l0 and initial temperature level T1. Set
k ¼ 1.

• For each k, run Nk steps of MCMC iterations with pkðf ; lÞ as the target distribu-

tion. Consider the following update strategy. For the line process, consider all the

vertices (say L < N ) for which the nominal value, li;nominal ¼ 1, and their individual

neighborhood sets, N1; . . . ;NL. For each li ¼ 1, consider the neighborhood set
among N1; . . . ;NL that it lies in, randomly choose a vertex in this neighborhood

set whose value is not already set to 1, and switch the values of li and this chosen

vertex. Starting from li ¼ li;nominal, this process ensures that the values of li do not

move too far from the nominal values. In fact, only the vertices lying in the neigh-

borhood sets N1; . . . ;NL can take a value of li ¼ 1. Next, randomly determine a

new value of f , using a suitable transition function [14]. With the new values,

fnew; lnew of f ; l, compute d ¼ Eðfnew; lnewÞ � Eðf ; lÞ. If d < 0, i.e., the energy de-

creases with this new configuration, accept fnew; lnew; else, accept with a probability
q. Pass the final configuration of f ; l to the next iteration.

• Increase k to k þ 1.

Mesh registration. The optimization procedure described above requires a one-

to-one mapping of the vertices fdsig and fdgig. Once we obtain the estimate from

the SfM algorithm, a set of corresponding points between this estimate and the ge-

neric mesh is identified. This can be done manually as in [9] or [10] or automatically

as described next. This is then used to obtain a registration between the two models.

Thereafter, using proper interpolation techniques, the depth values of the SfM
estimate are generated corresponding to the ðx; yÞ coordinates of the vertices of

the triangles in the generic model. By this method, we obtain the meshes with the

same set of N vertices, i.e., the same triangulation.

If we want to perform the registration automatically, we can follow a simple var-

iant of our method for registering wide baseline images [24]. In that paper, we

showed that it is possible to register two face images obtained from different viewing

directions by considering the similarity of the shape of important facial features (e.g.,

eyes, nose, etc.) and compensating for the variability of the shape with viewing direc-
tion by considering prior information about it. Applying it to this problem is actually

simpler because the two meshes are from the same viewing angle. We can consider

the 2D projection of the generic mesh and identify the shape of some important fa-

cial features a priori. Once the 3D estimate from SfM is obtained, we can take its 2D

projection from the same viewing direction (e.g., from the front view), automatically

extract the shape of the important features (as described in the paper by using a cor-

ner-finder algorithm and k-means clustering [25]) and then register by computing the

similarity of the set of two shapes.
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Fig. 3. A block diagram representation of the complete 3D modeling algorithm using the generic mesh

and the SfM algorithm.
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Choice of l. There exists substantial literature on how to optimally choose the

constant l for energy functions similar to (14) [15, Chapter 3]. For our problem,

we decided to choose the value based on a qualitative analysis of (14). When

li ¼ 1, the third term in the optimization is switched off. These are the points where

there are sharp changes in the depth (see Fig. 7). These changes are important char-

acteristics particular to a person�s face and need to be retained. However, any errors

in these regions should also be corrected. From these considerations, the value of l is

chosen to be between 0.7 and 0.8. When li ¼ 0, the most important term is the third
term of (14), which controls local smoothing. The errors should be corrected by com-

paring with neighboring values of the 3D estimate, rather than by fusing with the

depth values of the vertices of the generic model. With this in mind, we again choose

a value of l between 0.7 and 0.8. This also ensures that the generic model is not given

undue importance leading to over-smoothing.

The generic mesh algorithm. The main steps of the algorithm for incorporating the

generic mesh are are as follows.

1. Obtain the 3D estimate from the given video sequence using SfM (output of the
reconstruction algorithm of Section 2).

2. Register this 3D model with the generic mesh and obtain the depth estimate

whose vertices are in one-to-one correspondence with the vertices of the generic

mesh.

3. Compute the line processes and to each vertex i assign a binary value li.
4. Obtain the smoothed mesh f from the optimization function in (14).

5. Map the texture onto f from the video sequence.

The final 3D model: The complete 3D reconstruction paradigm is composed of a
sequential application of the two algorithms (3D Reconstruction Algorithm and the

Generic Mesh Algorithm) we have described in Sections 2 and 3. Fig. 3 represents in

a block diagram the complete 3D modeling algorithm.
4. Experimental results

We first present the results of our 3D modeling algorithm on three different video
sequences. We present the detailed results of our algorithm on one of these sequence.
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Then we present a comparative evaluation of our method using examples where the

ground truth (i.e., the true depth values) is available.

4.1. SfM algorithm

Figs. 4a and d show two images from the video sequence which is the input to the

SfM algorithm. We use an algorithm that computes the structure from the optical

flow [17] using two frames and then integrates the multiple two-frame reconstruc-

tions over the video sequence using robust estimation techniques (Section 2). The er-

ror covariance of the optical flow was estimated a priori over the first few frames of

the video sequence, which were not used in the reconstruction. It was done over a

sampled grid of points (rather than the dense flow) so as to simplify calculations.

The technique used is similar to the gradient-based method of [26], except that,
for more accurate results, it was repeated for each of these initial frames and the final

estimate was obtained using bootstrapping techniques [27]. This is the stage where

the quality of the video data is estimated and incorporated into the algorithm. As-

suming that the statistics remain stationary over the frames used in the reconstruc-

tion, the error covariance of the 3D reconstruction, Rz in (7), was computed. The
Fig. 4. Two frames from each of the three video sequences of subjects a, b, and c which are used in our

experiments.



Fig. 6. (a) represents the VRD of the SfM algorithm, i.e., the change in the average distortion with the

number of images; (b) depicts one view from the reconstructed model at this stage of the algorithm.

Fig. 5. Plot of the variance of the inverse depth for different features in a face sequence. The diameter of

the circle at each feature point is proportional to the variance at that feature point. In the second plot, the

diagonal elements of Rh are shown.
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variance in the inverse depth computed using our theoretical analysis of Section 2 is

shown in Fig. 5. The diameters of the circles indicate the variance in the inverse

depth estimate for the points which were tracked across the video sequence.4 A plot

of the covariance matrix is also shown in the same figure so that it is possible to

compare the relative magnitudes of the errors. The quality evaluation of the fusion
4 For some points with relatively smooth texture, the variance is small, which is counter-intuitive.

However, on close observation, it becomes clear that these regions have brighter illumination, and hence

the points are tracked better. Also, extremely small variances are not reliable and are not used.
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algorithm was done using the rate-distortion function of (10). Fig. 6a plots the VRD

curve for 30 frames of the video sequence.

4.2. Reconstruction example without generic model

Fig. 6b shows one particular view from the reconstructed model obtained after

completion of the 3D reconstruction algorithm using SfM but without the generic

model. The output, without texture mapping, of the multi-frame SfM algorithm is

also shown in Fig. 8b, where the model is represented using a triangular mesh.

The model shown is obtained after the registration process which was explained in

Section 3.5 It is evident from these plots that the general characteristics of the face

are represented; however, it is also clear that a pure SfM algorithm is not enough

for a completely satisfactory reconstruction of the face. We now present the effect
of the introduction of the generic model into the reconstruction strategy.

4.3. The line process and neighborhood set

Fig. 8a represents the generic model. The line process was calculated on the basis of

this generic mesh. In Fig. 7, the vertices of the generic mesh that indicate the bound-

aries between regions with sharp changes in depth are marked with black �x�s. For
these vertices, li ¼ 1 (in (14)). The local directional derivatives were calculated at each
of the vertices of the generic mesh. The vertices at which there was a sharp change in

the magnitude of the depth were selected to indicate that they belong to a line process.

Thus, the line processes form the boundaries between regions having different depth

values and divide the set of vertices into different equivalence classes.

For each vertex, we need to identify a neighborhood set of vertices for the opti-

mization function in (14). The vertices which are within a certain radial distance

are identified as belonging to the neighborhood set of the central vertex. However,

if a line process is encountered within this region, only those vertices which are in
the same equivalence class as the central one are retained in the neighborhood. Since

the entire process of determining the line processes and neighborhood sets is done

on the generic mesh, it need not be done separately for each 3D model.

In order to optimize over the line process, we adopt the following procedure. For

each li whose nominal value is 1, we consider the vertices in its neighborhood set.

Some of these vertices are perturbed randomly as the optimization proceeds.

4.4. The optimization procedure

The combinatorial optimization function in (14) was implemented using the simu-

lated annealing procedure based on a Metropolis–Hastings sampler. At each temper-

ature we carried out 100 iterations and this was repeated for a decreasing sequence

of 20 temperatures. Although this is much below the optimal annealing schedule
5 The ear region was not obtained from the SfM algorithm but was later stitched on for easy

comparison with the other models.



Fig. 7. The vertices which form part of the line processes indicating a change in depth values are indicated

with black ���s.

Fig. 8. Mesh representations of the 3D models obtained at different stages of the algorithm. (a) represents

the generic mesh, (b) the model obtained from the SfM algorithm (the ear region is stitched on from the

generic model in order to provide an easier comparison between the different models), (c) the smoothed

mesh obtained after the optimization procedure, and (d) a finer version of the smoothed mesh for the pur-

pose of texture mapping.
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suggested by Geman and Geman [16] (whereby the temperature Tk should decrease

sufficiently slowly as Oðlogð
Pk

i¼1 NiÞ�1Þ, Ni being the total number of iterations at

temperature Ti), it does give a satisfactory result for our face modeling example. This
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is because the optimization algorithm was initialized with the SfM reconstruction ob-

tained from Section 2. A comparative analysis of the results is shown next. We used a

value of l ¼ 0:7 in (14). The final smoothed model is shown in Fig. 8c.

4.5. Texture mapping

Next, we need to map the texture onto the smoothed model in Fig. 8c. This is done

using an image from the video sequence corresponding to the front view of the face.

Direct mapping of the texture from the image is not possible since the large size of the

triangles smears the texture over its entire surface. In order to overcome this problem,

we split each of the triangles into smaller ones. This is done only at the final texture

mapping stage. The initial number of triangles is enough to obtain a good estimate of

the depth values, but not to obtain a good texture mapping. This splitting at the final
stage helps us save a lot of computation time, since the depth at the vertices of the

smaller triangles is obtained by interpolation, not by the optimization procedure.

The fine mesh onto which the texture is mapped is shown in Fig. 8d. Different views

of the 3D model after the texture mapping are shown in Fig. 9.

It should be noted that the number of vertices at which we compute the depth is

only 638. This is enough to get a good 3D reconstruction largely because of the de-
Fig. 9. Different views of the 3D model after texture mapping.
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tailed statistical analysis. However, texture mapping with this relatively sparse set of

points produces a smearing effect over the surfaces of the triangles in some parts of

the face (e.g. in Fig. 4a, the part at the boundary of the face and the beard). Hence

we require the sub-division into smaller triangles. Since it is done at the very last

stage of the algorithm, the increase in computational cost is small. However, with
some of the latest computer graphics software available, this step may not be neces-

sary any more. However, we include it in the paper since it was part of our system

when we developed it.

4.6. Computational load

The computational complexity of the entire system can be analyzed by its individ-

ual parts. For the two-frame algorithm [17], given a N � N flow field, the complexity
is OðN 2 logNÞ. For M frames, the complexity of the fusion algorithm is OðN 2MÞ. If
the statistics are computed at N 0 < N 2 points, it takes computational power of the

order of OðN 02Þ. The computational time for the final optimization will be deter-

mined by the actual annealing schedule chosen.

We have a running demonstration of the face modeling software. The software

runs on a 1.9GHz P4 PC with 1GB memory. A JVC DVL9800 video camera is

attached to the PC to capture the video. Using a combination of C and MATLAB

implementations, the entire reconstruction (from capturing the video sequence, pre-
processing it to creating of a final 3D Graphics model) takes about 5min. This can

be substantially reduced by optimizing the code, converting it entirely to C and au-

tomating certain pre-processing stages (like identifying the relevant part of the input

video sequence). We hope to build a completely automated end-to-end face modeling

system in the near future.

4.7. Accuracy analysis of 3D reconstructions

We have applied our algorithm to several video sequences. We present here the

results on three such sequences, example images from which are shown in Fig. 4.

We will name the three people as subjects A, B, and C. The details, which have

been presented for Subject A, are similar for the other examples too. Since the line

processes and the neighborhood set are calculated from the generic model, the pre-

computed results from the previous model were used for this experiment also. Fig. 10

shows two views of the reconstruction for Subject B, two of the original images being

depicted in Figs. 4b and e. Similarly, for Subject C (Figs. 4c and f), the reconstruc-
tion is shown in Fig. 11.

We computed the accuracy of the 3D reconstruction for these three cases by

comparing the projections of the 3D model with the images from the original video

sequence. Fig. 12 plots the root mean square (RMS) projection errors as a percent-

age of the actual values in the original images. In order to depict the change of the

error with the viewing angle, the horizontal axis of the figure represents this angle,

with 0 indicating the front view. We considered all the combinations between the

three subjects, i.e., A–A, A–B, A–C, B–B, B–C, and C–C. From the plots, we see that



Fig. 11. Different views of the 3D model after texture mapping on the third video sequence.

Fig. 10. Different views of the 3D model after texture mapping on the second video sequence.
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Fig. 12. Percentage errors between the projections of the 3D models of subjects A, B, and C and their im-

ages obtained from the video sequences, i.e., AA represents the error between the projections of 3D model

of A and the images of A; similarly for AB, AC, BB, BC, and CC. BB(A) represents the projection error

when B�s texture is overlaid on A�s model and the projections are compared to B�s images; similarly for

CC(A). The error is plotted as a function of the viewing angle which is represented on the x-axis.
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the average error in the reconstruction at the front view is about 1%. The error

increases with viewing direction, as would be expected. Also there are certain

preferred viewing directions, a fact which has been reported before in the literature

[28]. In order to obtain an understanding of the role the depth (as opposed to the

texture) plays in projections, we considered the case where the texture of B and C

are overlaid on the model of A and the projections are compared to the images of

B and C, respectively. The experiment was also repeated for the models of B and

C with similar results; however, for the sake of clarity, the plots are not shown in
Fig. 12. The separation between the error curves for the different combinations holds

out hope that 3D models can be used for recognition across pose variations. For

example, given the model of Subject A with its proper texture, the projection errors,

at any viewing angle, with other subjects is much more than it is with itself.

There are many issues that contribute to the error in face recognition across pose.

Accuracy of the 3D model is only one of them. Others are issues of registration of the

projections of the model with the image, changes of illumination, etc. This is a sep-

arate research problem by itself and is one of our future directions of work. For the
experiments in this paper, most of these issues were taken care of manually so that

the error values represented in Fig. 12 are mostly due to errors in 3D models (though

errors due to other sources cannot be completely eliminated).
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4.8. Comparative evaluation of algorithm

In order to analyze the accuracy of the 3D reconstruction directly (as opposed to

comparing the 2D projections), we require the ground truth of the 3D models. We

experimented with a publicly available database of 3D models obtained from a
Minolta 700 range scanner. The data are available on the World Wide Web

at http://sampl.eng.ohio-state.edu/sampl/data/3DDB/RID/minolta/faces-hands.1299/

index.html. We will report numerical results from our algorithm on some of the data

available here, though we will not publish the images or 3D models of the subjects.

In order to perform an accurate analysis of our methods, we require a video se-

quence of the person and the 3D depth values. This, however, is not available on this

particular database or on any other that we know of. Thus we had to generate a se-

quence of images in order to apply our algorithm.6 This was done using the 3D
model and the texture map provided on the web-site. Given these images we per-

formed the following experiments:

• Obtain the 3D reconstruction without using the generic model (Section 2).

• Introduce the generic model at the beginning of the 3D reconstruction algorithm,

by initializing (12) with the the values at the vertices of the generic model.7 Note

that the statistical error analysis of the video data is still done.

• Apply the algorithm in this paper, which postpones the introduction of the generic

model.
We considered the error in the 3D estimate in all these methods compared to the

actual 3D values. Fig. 13 plots the percentage RMS errors (percentage taken with

respect to the true value) as a function of the percentage difference of the specific

3D model (as obtained from the website) and the generic one. The percentages on

the horizontal axis are calculated with respect to the generic model, while those on

the vertical axis are computed with respect to the ground truth of the 3D model

of the particular subject. The first five subjects on that website, referred to as

‘‘frame001’’–‘‘frame005,’’ were considered. The percentage differences of the specific
3D models with the generic one are tabulated in Table 1. From the figure, it is clear

that if the generic model is introduced at an early stage of the algorithm, the error in

the reconstruction increases as the model of the subject deviates from the generic

one. On the other hand, if the generic model is introduced later (as in our algorithm),

the error in the reconstruction remains approximately constant. However, the recon-

structions for the case where the generic model is introduced earlier (e.g., [9,10]) are

visually very pleasing.

An idea of the progress of the optimization can be obtained from the following
experiment, the results of which are shown in Fig. 14. The experiment was done
6 The optical flow computed with the generated sequences may be more accurate than in a normal

setting. However, for all the methods that are compared, the images used are the same. Hence, it is

reasonable to assume that the effect of the image quality would be similar in all three cases. Hence the

comparison of the 3D reconstruction accuracy, keeping all other factors constant, should still be useful.
7 We cannot compare it directly with [9] or [10] because of substantial differences in the input data.

http://sampl.eng.ohio-state.edu/sampl/data/3DDB/RID/minolta/faces-hands.1299/index.html
http://sampl.eng.ohio-state.edu/sampl/data/3DDB/RID/minolta/faces-hands.1299/index.html


Table 1

Average percentage difference of the 3D models from the generic model

Subject index Percentage difference

1 (frame 001) 10.2

2 (frame 002) 8.5

3 (frame 003) 4.6

4 (frame 004) 6.6

5 (frame 005) 6.9
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Fig. 13. The error in 3D reconstruction when (a) no generic model (GM) is used; (b) the generic model is

used to initialize the reconstruction algorithm; (c) the generic model is used later as described in this paper.

The error is plotted as a function of the difference of the specific 3D model with the generic one. Five sub-

jects were considered in this experiment.
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on Subject 1 of Table 1, which is an interesting case since the face is very different

from the generic one. We considered 10 significant points on the face (similar to

fiducial points). They are the left eye, the bridge between the eyes, the right eye,

the left extreme part of the nose, the tip of the nose, the right extreme part of the
nose, the left and right ends of the lips, and the center of the left and right cheeks.

We considered a window around each of these points and computed the average

depth in each of them for the various reconstructions. Fig. 14 plots the average depth

at each of these points for the following cases: true depth, depth with generic model

introduced later (our algorithm), depth with generic model used as the initial value,
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Fig. 14. Plots of (a) the true depth, (b) the depth with generic model introduced later (our algorithm), (c)

the depth with generic model used as initial value, (d) the depth of the generic model, and (e) the SfM

reconstruction with no generic model. The depths are computed in local neighborhoods around a set of

fiducial points on the face for Subject 1.
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depth of the generic model, and the SfM reconstruction with no generic model. The

depth values are normalized between 0 and 255, as in a depth map image. The plots

provide some very interesting insights. When the reconstruction is initialized with the

generic mesh, the solution at these points do not move very far from the initial value.
On the other hand, the SfM estimate with no generic mesh gives a solution not very

far from the true value, which is improved further by considering the generic model.

Moreover, we find that the average error of the final reconstruction in these fiducial

regions is less than the overall average error of Fig. 13. This is very interesting since it

shows that these significant regions of the face are reconstructed accurately.
5. Conclusion

In this paper we have presented a novel method of 3D modeling of a face from a

monocular video sequence using an SfM algorithm and a generic face model. In pre-

vious approaches, the generic model was used to initialize the SfM algorithm. Using

this method, the final solution often converged very close to the initial value, result-

ing in a reconstruction which had the characteristics of the generic model rather than



A.K. Roy Chowdhury, R. Chellappa / Computer Vision and Image Understanding 91 (2003) 188–213 211
those of the particular face in the video which needs to be modeled. One of the main

contributions of our work lies in the fact we incorporated the generic model after the
SfM algorithm, which obtains the 3D estimate purely from the input video sequence.

The other main contribution of this work was that the quality of the specific video

data was analyzed and information about it incorporated into the 3D modeling
algorithm. The 3D structure estimation process was based on fusing the estimates

obtained from pairs of frames from the video sequence, after computing the uncer-

tainties of the two-frame solutions. In order to combine the generic model with this

3D estimate, we used an energy function minimization procedure. The results of our

method at different stages of the algorithm and a comparative study with other

methods were presented. Extensions of the work would involve applications to face

recognition across pose, facial animations from video, multimedia communications,

etc.
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Appendix A. Stochastic approximation

The method of stochastic approximation (SA) is useful for certain sequential pa-

rameter estimation problems [29]. Let feðkÞg be a sequence of random variables with

the same distribution indexed by a discrete time variable k. A function Qðx; eðkÞÞ is
given such that
E½Qðx; eðkÞÞ� ¼ gðxÞ ¼ 0; ðA:1Þ

where E denotes expectation over e. The distribution of eðkÞ is not known; the exact
form of the function Qðx; eÞ may also be unknown, though its values are observed

and it can be constructed for any chosen x. The problem is to determine the solution

of gðxÞ ¼ 0. Robbins and Monro (RM) [30] suggested the following scheme for

solving (A.1) recursively as time evolves:
x̂xðkÞ ¼ x̂xðk � 1Þ þ akQðx̂xðk � 1Þ; eðkÞÞ; ðA:2Þ

where the gain sequence fakg must satisfy the following conditions [29,31,32]:
ak P 0; ak ! 0;
X1
k¼1

ak ¼ 1;
X1
k¼1

a2k < 1: ðA:3Þ
A popular choice of the gain sequence, which was used in our experiments also, is

ak ¼ a=ðk þ 1Þ0:501. It can be shown that the estimate obtained from SA is unbiased,

consistent, and asymptotically normal, and in many cases, also efficient [31,33].
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Using the above ideas, the recursion of (13) can be derived. Our aim is to compute

the median (say h) of X 0; . . . ;XK , i.e., to obtain h such that gðhÞ ¼ FX ðhÞ � 0:5 ¼ 0,

where FX ðhÞ is the distribution function of h. Define Y kðĥhkÞ ¼ pkðĥhkÞ � 0:5, where
pkðĥhkÞ ¼ I½Xk 6 T̂T kðĥhkÞ� (I represents the indicator function, T̂T k is the estimate of the

camera motion and ĥhk is the estimate obtained at the kth stage). Then
E½Y kðĥhkÞjĥhk� ¼ E½pkðĥhkÞjĥhk� � 0:5 ¼ E½I½Xk 6 T̂T kðĥhkÞ�� � 0:5 ¼ P ðX k
6 T̂T kðĥhkÞÞ � 0:5

¼ FX ðĥhkÞ � 0:5 ¼ gðĥhkÞ:
Hence Eq. (13) follows from (A.2).
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