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Abstract

Understanding activities arising out of the interactions of
a configuration of moving objects is an important problem
in video understanding, with applications in surveillance
and monitoring. A special situation is when the objects are
small enough to be represented as points on a 2D plane.
In this paper, we introduce a novel method of representing
the activity by the deformations of the point configuration in
a properly defined shape space. Instead of inferring about
the activity directly from the motion tracks of the individual
points, we propose to model an activity by the polygonal
shape formed by joining the locations of these point masses
at any time

�
, and its deformation over time. Given the lo-

cations of the 2D points over a sequence of frames in the
video, the factorization theorem for matrices is used to ob-
tain a set of basis shapes for each activity. An unknown
activity can now be recognized by projecting onto these ba-
sis shapes. Also, once a specific activity is recognized, the
deviations from it can be modeled by the deformations from
the basis shape. This is used to identify an abnormal activ-
ity. We demonstrate the applicability of our algorithm using
real-life video sequences in an airport surveillance environ-
ment. We are able to identify the major activities that take
place in that setting and detect abnormal ones.

1 Introduction

Monitoring activities from video data is an important
surveillance problem, requiring the understanding of the in-
teractions of various objects, as well as their evolution over
time. Surveillance problems, therefore, provide rich appli-
cation areas for event recognition algorithms. In [1], the
authors proposed building a tracking and monitoring sys-
tem using a “forest of sensors” distributed around the site
of interest. Their approach involved tracking objects in the
site, learning typical motion and object representation pa-
rameters (e.g. size and shape) from extended observation
periods and detecting unusual events in the site. In [2], the
authors proposed a method for recognizing events involv-
ing multiple objects using Bayesian inference. The above

approaches use the motion tracks of individual objects and
their interaction with other objects in the scene for event
analysis. A special scenario arises in the case of very low
resolution surveillance video where the moving objects are
small enough to be modeled as point objects in a 2D plane.
Instead of inferring about the activity directly from the mo-
tion tracks of the individual objects, we propose a different
approach to the problem using the 3D non-rigid shape of the
configuration of moving points.

The term shape has been widely used in image under-
standing for a variety of applications and there exists a huge
body of work on shape tracking, analysis and similarity.
The problem of studying the similarity of two shapes was
posed in a theoretical framework in [3]. Many researchers
have adopted different frameworks for analyzing different
applications using shape theory. Evaluating the similarity
of two shapes by the transformations of the local deforma-
tions needed to change one into the other was presented in
[4]. A method of creating “active shape models” by learn-
ing patterns of variability which are characteristic of the
class of objects that it represents was proposed in [5]. Re-
cently, a method for activity analysis using Kendall’s statis-
tical shape theory [6] has been proposed [7]. In this paper,
we refer to the 3D shape that can be recovered from the mo-
tion tracks of points in a 2D image sequence. Towards this
end, we extend the idea in [8] for recovering 3D non-rigid
shape from 2D image sequences, to the domain of activity
analysis and monitoring.

Recognizing activities is an extremely complicated task
at which even humans are often less than perfect. It is im-
probable that there is one single algorithm that would be
able to recognize all kinds of activities. Also, pure vision
techniques will probably not lead to very robust recognition
algorithms. Nevertheless, vision tools can provide very ac-
curate solutions in some scenarios, and very good inputs to
higher level logical modules in others. In this paper, we look
at one such application where the physical setup offers cer-
tain constraints which enables us to apply known techniques
in computer vision to recognize certain kinds of activities.
Specifically, we consider a rigidly mounted video surveil-
lance camera observing the same kinds of activities happen
over and over again. As an example, consider an airport
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scenario where after the plane stops, passengers get off and
on, luggage carts are loaded and unloaded and the plane
is refueled. The activities are very regular and repetitive;
however, identifying any anomalies in this regular pattern
is an extremely important security issue. Our aim here is to
exploit the repetitiveness of the pattern of activities to auto-
matically recognize them and, subsequently, any significant
deviations from them.

Our input is a video sequence of the concerned activi-
ties that need to be monitored. The different objects that
comprise the activity (e.g. people, vehicles, etc.) are rep-
resented as points on the 2D ground plane. The locations
of these points over the entire video sequence is obtained
as a measurement matrix. In [8] (and in their earlier papers
on related work), the authors showed that the 2D measure-
ment matrix could be factorized into 3D pose, object con-
figuration and 3D basis shapes using singular value decom-
position (SVD). Their work was built on the well-known
factorization theorem of linear algebra for the product of
two matrices, which was originally used in [9] for solving
the structure from motion problem under orthographic pro-
jection assumptions. Many extensions of this method have
been proposed; the one most relevant for this work is that
of Costeira and Kanade that relaxes the single-body con-
straint [10]. We extend the method of [8] for our problem.
We hypothesize that each activity can be modeled by a ba-
sis shape corresponding to it. From training videos of the
various activities, these basis shapes can be learned. Given
a test video sequence containing the unknown activities, the
measurement matrix can be formed. The various activities
can be identified by computing the projections onto each of
the basis shapes. Once an activity is identified, any large de-
viation from the normal learned nature of that activity can
also be inferred in this shape space. Thus we are able to
identify the activity, as well as detect any appreciable devi-
ation from normalcy, for each one of them. We work under
the scaled orthographic projection approach, which is valid
since the objects are far enough from the camera. In this
work we assume that the total number of activities occur-
ring in the scene is known. This assumption will be relaxed
in future work.

In the next section, we present our theory for modeling
activity in 3D shape-space using the factorization theorem.
A synopsis of the algorithm is given in Section 3. Section
4 provides an experimental justification for our shape-based
activity model. Section 5 presents the experimental results
on a real-life video surveillance problem, and Section 6 con-
cludes the paper.

2 Shape-Space Theory for Activity
Modeling

We first explain how the problem of non-rigid shape and
structure estimation can be recast as an activity modeling
and inference problem. We show that it is possible to infer
about the nature of different activities, using the fact that 3D
non-rigid motion puts rank constraints on 2D image motion.
Next, we show how this idea can be used to detect abnormal
events within the class of each of those activities.

2.1 Factorization Algorithm for Multiple Ac-
tivities

Given � frames of a video sequence with moving points
representing � different activities, we can obtain the tra-
jectories of all these points over the entire video sequence.
An average trajectory for each of the activities can then be
obtained. The trajectory defines the particular activity. As
an example, consider people getting off an airplane. Each
person is represented by a point. An average trajectory over
all the people represents the activity of people getting of the
plane. If we have � different video sequences with differ-
ent instances of the same activity, we can obtain many such
example trajectories. Each of the example trajectories can
be sampled uniformly to produce a set of � points for each
video sequence. These � pairs of � points can be repre-
sented in a measurement matrix as

�����
	���
 �������
����� � ����������� ������ � ����������� �

...
...

...� � � ��������� � � �� � � ������� � � � �
!#"""""$&% (1)

where �(' � ) represents the x-position of the * th point in the+ th video sequence and ��' � ) represents the y-position of
the same point.

A comparison with the factorization theorem for struc-
ture and motion estimation is in order here. In [9], the au-
thors considered � points tracked across � frames in order
to obtain two �-,.� matrices / and 0 . Each row of / con-
tains the x-displacements of all the � points for a specific
time frame, and each row of 0 contains the correspond-
ing y-displacements. It has been shown previously in [10],
that for 3D rigid motion under orthographic camera model,

the rank, 1 , of 2 /043 has an upper bound of 5 . The rank con-

straint is derived from the fact that 2 /043 can be factored into

two matrices 6 �879	;: and < :=	�� , corresponding to the pose
and 3D structure of the scene, respectively. In [8], it was
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shown that for non-rigid motion, the above method could
be extended to obtain a similar rank constraint, but one that
is higher than the bound for the rigid case.

Assume that the set of � points in (1) can be represented
in the 3D world in terms of a set of basis shapes � � % ����� % ��� ,
where each ��� is a � , � matrix describing � points. The
overall configuration of the � points is represented as a lin-
ear combination of the basis shapes, i.e.,

� 
 �	 ��
 ��� � � � % � % � ��
���� 	�� % � 
�� � (2)

The method described in this paper consists of two parts:
a training part and a testing part. During training, given
different video sequences of the same activities, these ba-
sis shapes are learned. It is assumed that each activity can
be represented by a single average shape, with variations
modeled as deformations about that shape. We later present
experimental justification for this assumption. Thus for �
training activities, there are � basis shapes, � � % ����� % ��� , i.e.� 
 � . The representation can take into account the
fact that deformations from the basis shape will also take
place and these are represented by projections onto the ba-
sis shapes for the other activities. During testing, given a
video sequence with an unknown activity, the activity is first
identified using the learned basis shapes for known activi-
ties, followed by detection of an abnormality by analyzing
the projections onto the basis shapes.

We next consider the measurement matrix
�

of size� � , � in (1). For the moment, assume that we can
somehow arrange

�
such that the columns representing the

points belonging to the same activity are organized together.
As an example, assume that the scene consists of only two
activities. Also, assume that the set of � points consists of� � points from the first activity and � � points from the sec-
ond one. Imagine for the moment that we know which point
belongs to which activity and we can arrange

�
such that

the first � � columns represent the first activity and the next� � columns the second activity. Under weak perspective
projection, the � points of a configuration in a training ex-
ample + , are projected onto 2D image points � � ' � � % � ' � ���as � � ' � ��������� ' � �� ' � � ����� � ' � ��� 
�� '�� �	 ��
 ��� ' � � � �! #"%$ ' % (3)

where, � ' 
 � 1 � 1 � 1 �1'&�1'( 1*) � � (4)� ' represents the first two rows of the full 3D camera rota-
tion matrix and $ ' is the camera translation. The transla-
tion can be eliminated by subtracting out the mean of all the
2D points, as in [9]. We now form the measurement matrix

�
, which was represented in (1), with the means of each

of the rows subtracted out.
The weak perspective projection assumed in (3) is usu-

ally valid if the range of depths of the object is small com-
pared to its distance from the camera. In that case, it is rea-
sonable to replace the scaling factor +,.-0/213, for perspective

projection by an average scaling factor +, - . Since we as-
sume that the objects are far enough from the camera to be
treated as points on a 2D plane, this is a valid assumption.
The weak perspective scaling factor is implicitly coded in
the configuration weights, 4 � ' � �65 .

Using (1) and (3), it is now easy to show that

� 
 ����� � ��� � � � ����� � ��� � � �� � � � � � ����� � � � � � �...
...

...� � � � � � ����� � � � � � �
!#"""$
����� � �� �...���

!#"""$ (5)
 7 � � 	 � � � 8 � � 	;� � (6)

Thus the measurement matrix has a maximum rank of� � 
 � � , where � is the total number of activities in the
sequence. The matrix

7
contains the pose for each repre-

sentation of the average trajectory and the weights � � % ����� % � � .
The matrix 8 contains the basis shapes corresponding to
each of the activities.

In [8], it was shown that
7

and 8 can be obtained using
singular value decomposition (SVD) as� � 79	;�-
 /:9 0<; (7)

and
7 
 /=9?>@ and 8 
 9A>@ 0 ; . Obtaining the basis

shapes for each of the activities in this way assumes that
the columns of

�
are arranged according to the different

activities, as explained earlier. We will get back to this point
a little later.

We still need to obtain the weights � ' � � % ����� % � ' � � and the
rotation matrices

� ' for each + . In [8], it was shown that
by considering a reordering of a row of the matrix

7
, it was

possible to obtain these factors, again using SVD. A modi-
fication of the SVD approach was also proposed in [8]. We
follow a similar approach in order to obtain the configura-
tion weights and rotation matrices. The steps in the mathe-
matical calculations remain the same and we do not feel that
it is necessary to repeat them again here. Suffice it is to say
that for each activity B we can obtain the rotation matrices� ' % + 
DC % ����� % � and the basis shape ��� corresponding to
that activity.

We have now laid the groundwork for modeling activity
using a set of basis shapes. We have shown that it is possible
to recover non-rigid 3D structure of the model representing
the activity. Next, we show how this can be used to train
and classify various activities and deviations from them.
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2.2 Activity Recognition

2.2.1 Training

The first step in the activity recognition algorithm is to ob-
tain the set of basis shapes representing each of the activi-
ties. We consider a video surveillance scenario where the
camera is fixed and rigidly mounted. The activities that
we wish to monitor follow certain nominal trajectories, a
mathematical representation of which we seek to learn. Us-
ing the method described above, we can obtain the basis
shapes � � % ����� % ��� and the rotation matrices

� � % ����� % � � .
For each such video sequence, we consider the rotation ma-
trix and the average shapes. For the + th video sequence,
the weights � ' � � % B 
 C % ����� % � , + 
 C % ����� % � , can be com-
puted as follows. Consider the rows � � + � C � and

� + of
the matrix

�
, and represent it by

� ' . It represents the av-
erage trajectory in the + th training sequence. From (3), we
see that � ' � � can be computed by taking the inner product
of
� ' with

� ' ��� , i.e.� ' � � 
���� ' % � ' � ��� (8)

for each activity B 
DC % ����� % � and for each training video se-
quence + 
 C % ����� % � . Thus for each activity B , we have �
values of � � . These multiple values of � � represent a signifi-
cant part of the range of values that can be taken by different
instances of these activities. Since a fixed camera is looking
at the same set of activities, the rotation matrices will not be
very different between the different instances of the same
activity. Hence, all the � � for each activity cluster together
and can be used for recognition.

2.2.2 Identifying Multiple Activities and Detecting Ab-
normalities

Given a video sequence with unknown activities, the proce-
dure described above can be re-applied to the set of tracked
points in the sequence in order to obtain the rotation ma-
trix, basis shapes and configuration weights. The cluster to
which the computed � � belong are can be used to identify
the activity. However, detecting an abnormality using this
method can lead to errors. This is because, if we follow the
method described above, the rotation matrices and � � may
be different because of the large deviation as a result of the
abnormal behavior, yet the � � may lie in one of the differ-
ent clusters and be detected as normal. Thus the procedure
needs to be modified slightly for the detection and verifica-
tion of the activities.

The points corresponding to the different objects are
tracked across the video sequence. The average trajectory
of each such object is considered and sampled appropriately
so as to obtain a matrix similar to the left hand side of (3).
The matrix has two rows consisting of the x and y positions
of the sampled points on the trajectory of the object. Let

us denote it by
�	��

���

. For each possible activity B , the in-
ner product of

����

���
with

� ' � � , for every rotation matrix� ' , is computed according to (8). The intuitive idea is that
the set of rotation matrices learned from the training exam-
ples cover most of the possible ones for normal activities,
because of the constrained nature of the problem explained
before. Thus if we test the unknown activity with all pos-
sible rotation matrices and if each of the projections lies
within a cluster for one of the activities, then we can claim
to have recognized that particular activity. In practice, we
can set a threshold, � � � , for the number of projections
that need to lie within a cluster for the activity to be be rec-
ognized as such. By this method, the activity of each object
is individually detected and verified in this 3D shape space.

We consider a simple example to clarify the above pro-
cedure. Consider the activity corresponding to passengers
getting off the airplane. Each passenger is tracked and the
tracks are given as an input to our recognition algorithm.
If the passenger follows a normal path, his/her trajectory
would be similar to one of the learned ones and can be mod-
eled by the learned average shape of the path taken by de-
planing passengers and the learned rotation matrices. Hence
the projections would also lie close to the learned ones. If
there is a substantial deviation from the normal trajectory,
the learned values of the projections can no longer model
it, and it will be detected as an abnormality. The procedure
can be repeated for the tracks of all objects, passengers and
vehicles alike. In fact, it can be used to identify the object
as a passenger or a vehicle, under the assumption that their
motion tracks would be very different.

One issue still remains, that of arranging
�

such that the
points corresponding to the same activity occur in adjacent
columns. This is required in the training phase when the dif-
ferent basis shapes and rotation matrices need to be learned.
Since this is done off-line during training, any method, in-
cluding a manual one, can be used. However, we would
like to point out that this problem was considered in the
multi-body factorization problem in [10] and a method was
proposed by considering the effects of swapping the rows
and columns of a matrix

7�
 0 0 ; (from (7)). However,
this is a computationally complex process and we did not
use it in our experiments. During the testing phase, the al-
gorithm works by considering the trajectory of each object
and verifying its motion. Hence, the question of arrang-
ing the columns of

�
according to each activity does not

arise. However, if the trajectories corresponding to all the
activities are considered together in a single matrix

�
, the

method in [10] can be used to group the points for each sep-
arate activity together into adjacent columns of

�
.

3 Algorithm

Training:
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1. Given � training video sequences consisting of �
possible activities, form the matrix

�
in (1) using the

average trajectories defining each activity.
2. Obtain � � % ����� % ��� and

� � % ����� % � � as explained in
Section 2.
3. Obtain the set of weights � ' � � according to (8) for all+ 
 C % ����� % � and B 
 C % ����� % � . For each activity B , all the
values of � � form a cluster.
Testing:
1. Given the motion track of an unknown activity, obtain the
projections

� ' � � , for all + 
DC % ����� % � and B 
DC % ����� % � .
2. If � � � projections lie in one of the clusters, the
activity belongs to that cluster,
3. If an activity does not lie in any of the clusters, it is
inferred to be an abnormal one.

4 Experimental Justification for
Shape-Based Activity Model

Figure (1) shows two example frames from two different
video sequences representing the different activities around
an aircraft standing near the airport terminal. After a plane
arrives at the gate, a number of activities take place and are
viewed by a camera mounted at a high elevation. Figure
(1)(a) shows the average motion trajectory of the two main
activities, the path followed by the passengers and the path
followed by the luggage cart or the fuel tank. These tra-
jectories are an example of one single instance of these ac-
tivities occurring. In (1)(b), we show an example of what
would be treated as an abnormal event and get flagged as
an abnormal activity. We would like to clarify that this kind
of activity is simulated by pulling one point away from the
normal trajectory. This is because we do not have a video
sequence where such an abnormal behavior actually occurs.
In this case a passenger moves away significantly from the
normal path.1

Event analysis for the type of problem that we deal with
in this paper typically involves analyzing the trajectories of
the various objects and drawing conclusions based on these,
as in [1]. Using a shape model is a higher level abstrac-
tion of the individual trajectories and provides a method of
analyzing all the points of interest together, thus modeling
their interactions in a very elegant way. In Figure (2)(a),

1Whether this is truly an abnormal event is a matter that probably can-
not be resolved using purely vision techniques, as we discussed in the In-
troduction. It is possible that a passenger deviates from the normal path for
a perfectly valid reason, e.g. to talk to someone. However, such a conclu-
sion can only be drawn using higher level logical reasoning modules. But
a vision algorithm can give precious input to such higher level reasoning
modules which can draw the final conclusion. Vision algorithms can as-
sist in simplifying the logical reasoning algorithms, thus leading to greater
accuracy of the overall recognition system.

we plot the average centered shapes (i.e. after the mean of
every row of

�
is subtracted out) for the two major activi-

ties described above. It is clear from the plot that the shapes
are very different, and successfully exploiting them can lead
to a good classification algorithm for the various activities.
Also, when an abnormal event occurs (Figure (1)(b)), the
trajectory, as represented by the shape, is significantly de-
formed and can be identified. This is precisely the main idea
of the paper.

Another important aspect of the paper on which the al-
gorithm hinges is the assumption that the rotation matrices
obtained for the different instances of the activities are nu-
merically close together. Thus, the set of training examples
would cover the space of these matrices, which can then be
applied on the test sequences. This is important because
it ensures that the distinction between the different activ-
ities occurs based on the shape only, and not the rotation
parameter. To prove this point, we plot the two rows of the
different instances of the rotation matrices, obtained from
the training examples, as two 3D plots in Figure (2)(b), i.e.
the red circles represent � 1 C % 1 � % 1 ��� and the blue squares
� 1 5 % 1�� % 1���� in equation (4).2 From the numerical values in
the plots, it is clear that the difference between the different
instances of

�
is small.

5 Experimental Results

We now present the results of our method for recognizing
activities in a real-life problem. We consider an airport
surveillance situation and present the details of our method
using this example. A description of the experimental data
used as input to our algorithm was given in the previous
section. The video obtained in this situation is of low res-
olution and given this input, only certain kinds of activities
can be monitored. However, it can provide important in-
dications for areas of interest to focus attention on. While
the resolution of the video is not sufficient to infer about the
interaction between different individuals and/or objects, as
in [2], it is of sufficient quality to infer about the activities
carried out by groups of people or objects or both. Given
the video sequence of what the camera sees, there are two
main activities that need to be recognized and verified. They
are: i) passengers boarding or getting off the plane and ii)
the luggage cart or the fuel tank arriving and leaving. Since
we work with motion trajectories, we do not bother about
the direction of motion. The motion trajectories are pre-
computed by a tracking algorithm and, for the purposes of
this paper, we assume are available to us. An activity is de-
tected as an abnormal one if the deviations from both of the
above ones are greater than a certain threshold. Other than

2Two separate plots are required to show the 6 components; however,
we use the same axes for both the plots.
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Figure 3: Plot of the projections of the various instances of the
two activities, as available in the training data, onto the rotated
basis shapes.

the two activities described above, there is random move-
ment of airport personnel. Since there is no pattern to their
motion, we cannot hope to learn and recognize their activ-
ities. Such personnel can be identified by their clothing, or
by other means, and neglected for the purposes of the activ-
ity analysis method.

Training for Normal Activities

During the training phase, different instances of the above
activities are considered. In our video sequences, we had a
few instances of people boarding or deplaning, as well as
the luggage cart or fuel tank approaching or receding from
the aircraft. The trajectories for these cases were considered
for the training set. More examples were created by per-
turbing these trajectories to simulate similar behavior. The
trajectories, formed by tracking the different objects (pas-
sengers and vehicles), are sampled at � points in order to
form the matrix

�
in (1). Once

�
is formed, the SVD

procedure can be applied to obtain the rotation matrices and
basis shapes as explained in Section 2, and plots of which
are shown in Figure 2. The entire procedure is extremely
fast and takes just a few seconds in a MATLAB implemen-
tation with 150 training examples. The projections of the
different instances of the trajectories onto the rotated basis
shapes can be obtained using equation (8). Thus we ob-
tain the various values of � ' � � , where + 
 C % ����� % C ��� andB 
DC % � . The plot of the various values of � ' � � and � ' � � for
all + is shown in Figure 3, thus showing the clear demarca-
tion between the two activities. Since this is done for a large
number of training examples, it can be reasonably expected
that the projections for the test sequence will lie in one of
the above two clusters, if the activity is normal.

Identifying Normal Activities

Given a test video sequence with unknown activities, we
obtain the motion trajectories over the entire sequence of
the video. The problem is to verify the activity of each ob-
ject, described by its trajectory, with respect to the training
classes. The trajectories are sampled and the matrix

�
with

just two rows (similar to equation (3)) is formed with the
sampled points. The projections of this matrix with the ro-
tated basis shapes are obtained according to (8). In Figure
(4)(a), we show the plots of the projections of the activ-
ity of passengers deplaning on the two sets of rotated basis
shapes, learned during the training phase, i.e.

� ' � � and� ' � � , for + 
DC % ����� % C ��� . Another test case is considered,
that of the motion of the luggage cart. Its projections on the
two sets of rotated basis shapes is shown in Figure (4)(b).
These projections when represented in a two-dimensional
plot yields two clusters similar to Figure (3). The plots in
Figure (4) can be used to distinguish between the two activ-
ities, given just their motion trajectories. This can be done
by setting an appropriate threshold and declaring an activity
to be either one or two, depending on the number of points
on either side of the threshold. We can thus automatically
verify whether each of the different tasks, like passengers
boarding a plane or luggage loaded into the cargo hold and
the cart departing, were completed successfully or not.

Identifying Abnormal Activities

The next task is to determine if either of these activities was
not completed successfully. By this we mean the detection
of the case shown in Figure (1)(b). Such a decision can be
made in isolation to identify an abnormal behavior, or to
trigger an alarm in higher level reasoning modules in order
to find out whether a prohibited activity has really occurred.
Since the testing is done for each object at a time, the pro-
cess can identify the suspicious individual or object. Again,
since we did not have real video sequences of such behav-
ior, we simulated it by pulling certain points away from the
normal path.

Similar to the above example, the trajectory is obtained
from a tracking algorithm and sampled to form the two rows
of the

�
matrix. The projections onto the rotated basis

shapes
� ' � � and

� ' � � , for + 
 C % ����� % C ��� , are com-
puted. Figures (5)(a) and (b) plot the projections for the ab-
normal activity and a normal one on both sets of rotated ba-
sis shapes. The deviations from the rotated basis shapes for
activity one are larger than the deviations from the rotated
basis shapes for activity two. We know that activity one is
modeled primarily by the projections onto the learned basis
shapes for that activity, while the the projections onto the
basis shape of activity two models the residuals. The fact
that the projections of the abnormal activity on the principal
component is large indicates that it is a significant deviation
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(a) (b)

Figure 1: (a): Two examples of normal activities represented by their trajectories. (b): An example of an abnormal activity where the
average trajectory is distorted to simulate an abnormal behavior.
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Figure 2: (a) Plot of the centered shapes formed from the average trajectories of the two activities. (b) Plot of the first and second rows of
the rotation matrices.
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Figure 4: Projections of the two activities on the rotated basis shapes for the first one are shown in (a), while the projections on the rotated
basis shapes for the second one are shown in (b).

from normalcy.

The Receiver Operating Characteristic (ROC) of the ac-

tivity detection algorithm, as explained in Section 3, is
shown in Figure 6. The plots are obtained through sim-
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Figure 5: Projections of the abnormal activity and a normal one on the rotated basis shapes for the first activity are shown in (a), while the
projections on the rotated basis shapes for the second activity are shown in (b).
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Figure 6: ROC plots for the two normal activities and the abnor-
mal one.

ulations by varying the threshold of detection for the two
normal activities, as well as the abnormal one. For classifi-
cation between the two activities, a detection occurs when a
test activity, say A, is recognized correctly from the projec-
tions onto the set of rotated basis shapes of A, while a false
alarm is defined as the case when the projections onto the
rotated basis shapes of A of some other activity exceeds the
detection threshold. For an abnormal activity, a detection
occurs when it is correctly identified as abnormal, while a
false alarm occurs when a normal activity is flagged as ab-
normal.

6 Conclusion

We have proposed a method for representing the activity
of a dynamic configuration of objects by the shape formed
by the trajectories of these objects. The advantage of this
method is that it provides an elegant way of treating the
interactions between the different objects. We consider a

surveillance application using low resolution video, where
each moving object can be modeled as a point. Using ideas
on the estimation of non-rigid 3D shapes, we show that we
can estimate our model parameters (3D shape and rotation)
from a set of training examples showing different instances
of the activities. This is done by extending the well-known
factorization theorem to the domain of activity recognition.
Given an unknown activity, the projection of the tracked
points onto the model parameters can be used to automat-
ically identify the activity, as well as detect any abnormal
behavior. We presented detailed results of our method on a
real life video surveillance problem involving the activities
that occur near an aircraft after it arrives at its gate. One of
our future areas of research is to automatically identify the
number of such significant activities.
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