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Abstract

An activity consists of an actor performing a series of
actions in a pre-defined temporal order. An action is an
individual atomic unit of an activity. Different instances
of the same activity may consist of varying relative speeds
at which the various actions are executed, in addition to
other intra- and inter- person variabilities. Most existing
algorithms for activity recognition are not very robust to
intra- and inter-personal changes of the same activity, and
are extremely sensitive to warping of the temporal axis due
to variations in speed profile. In this paper, we provide a
systematic approach to learn the nature of such time warps
while simultaneously allowing for the variations in descrip-
tors for actions. For each activity we learn an ‘average’ se-
quence that we denote as the nominal activity trajectory. We
also learn a function space of time warpings for each activ-
ity separately. The model can be used to learn individual-
specific warping patterns so that it may also be used for
activity based person identification. The proposed model
leads us to algorithms for learning a model for each ac-
tivity, clustering activity sequences and activity recognition
that are robust to temporal, intra- and inter-person varia-
tions. We provide experimental results using two datasets.

1. Introduction

Activity recognition has attracted tremendous interest in
recent years because of its potential in applications such as
surveillance, security, and human body animation. An ac-
tivity is a series of small atomic actions performed by an
actor. Walking, running, jogging, climbing, swimming etc.,
are some examples of activities. Each activity is composed
of atomic motion units we call actions. The temporal order
of these actions is pre-defined for each activity. For exam-
ple the activity ‘sit down’ consists of the following actions
- bend knee, lower body, settle on chair and rest back on
backrest, in that order. While the order of these actions is
pre-defined, the temporal rate at which these actions are ex-
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ecuted may vary. Results on gait based person identification
shown in [1] indicate that it is very important to study the
temporal variations in the execution of an activity.

Relation to Prior Work: Activity recognition has been
an active research area since the 90’s. The reader can refer
to the survey on activity recognition [4] for a detailed re-
view. Recently, [15] has explicitly identified three sources
that contribute to variability in human activities as a) View-
point change, b) Anthropometry of actors and c) Execution
rate. Related research efforts have typically concentrated on
accounting for the variability in viewpoint [12][10] either
by deriving view invariant features or by proposing algo-
rithms that are view-invariant. Some recent research efforts
have also looked at the variability due to anthropometry [3].
But very little has been done to account for the variabil-
ity in the execution rate of the actors. Previous research
[12][10][3] indicates that one can subsume the variability
due to viewpoint and anthropometry by clever choice of
features. In this paper, we explicitly model and learn the
variability due to execution rate, while also accounting for
other sources of variations. Our model is independent of
the choice of feature. Therefore as more sophisticated fea-
tures become available our model will be able to exploit the
characteristics of those features while retaining the ability
to deal with variations in execution rate.

Motivation: Consider f(¢) a function of time, composed
of two ramps as shown in Figure 1. Let g(¢) be a tempo-
rally warped version of f(¢), i.e., g(t) = f(w(t)), where
w(t) is the warping function. Though the structure of these
two functions are very similar, simple measures of similar-
ity like correlation that do not account for temporal warping
perform very poorly. For the problem of activity model-
ing, ignoring this temporal warping might lead to structural
inconsistencies apart from providing poor recognition per-
formance. The sequence of images shown in the first two
rows of Figure 2 correspond to two different instances of
the same individual performing the same activity. There is
an obvious temporal warping between the two sequences. If
this temporal warping is ignored, the distance between these
two sequences will be large, leading to incorrect matching.
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Figure 1. Original curve composed of two ramps and its time-
warped version.

Figure 2. Row 1, Row 2: Two instances of the same activity.
Row 3: A simple average sequence. Row 4:Average Se-
quence after accounting for time warps.

Moreover, if we are looking for some statistical description
of the activity like an average sequence, ignoring the tem-
poral warping could lead to structural inconsistencies like
the presence of four arms and two heads in the average se-
quence, shown in the third row of Figure 2. If we do ac-
count for the temporal warping then such inconsistencies
are avoided and the distance between the two sequences
is rightly small. The fourth row shows a typical average
sequence obtained by our method after accounting for the
time warping. Most current algorithms for activity recog-
nition do not explicitly model this temporal warping and
therefore suffer from the above-mentioned limitations. The
only algorithms that we are aware of that explicitly accounts
for this temporal warping for activity recognition are [5][9]
based on dynamic time warping [11]. While [9] computes
an average shape sequence, neither of these [5][9] learn the
nature of the warping functions.

1.1. Contributions of the paper

e We propose a systematic generative model for activ-
ities that accounts for variations in speed profile of an ac-
tivity. We provide an approach to learn the space of time
warps for each activity while simultaneously allowing for
other intra- and inter-person variations.

e The model is composed of a nominal activity trajec-
tory and a function space capturing the permissible activity-
specific warping transformations. Given a sequence that is
not used in training, the function space of time warpings al-
lows us to ‘interpolate’ between the training sequences and
determine whether the sequence belongs to the activity.
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e We also provide algorithms for learning the model and
using the model for activity recognition, activity clustering
and organizing a database of activities.

Section 2 describes the model we call ‘the function space
of an activity’. Section 3 addresses issues in feature selec-
tion. Sections 4,5 and 6 discuss algorithms for recognition,
clustering and organization of a database respectively.

2. Time-warping model for activities

Let a(t) for 0 < ¢ < T, be a vector valued func-
tion of time. Let b(¢) for 0 < ¢t < Ty be a time-warped
version of a(t), with the warping function given by w(t),
ie, b(t) = a(w(t)), w(t) : [0 T] — [0 T,]. Now
w(t) can be decomposed as w(t) = T,f(t/T,) where
f:[0 1] — [0 1], i.e., a global linear dilation (or con-
traction) and a non-linear warping f. Without loss of gen-
erality we will use the word time-warping transformation to
synonymously denote the non-linear time warping function
given by f. We will also later indicate how the proposed
method can be used to deal with global linear time warping.

Our model for each activity consists of a nominal activity
trajectory given by a(t) and Wi, the set containing all the
time warping transformations permissible for that activity.
Each realization of an activity is given by a trajectory r(t) =
a(f(t)) where f € W,. To completely specify the model,
we need to know a probability distribution function over W
so that we may sample candidates f for each realization. In
the rest of this paper we assume that given a set W each
member f; € Wy is equally likely.

Physical Significance of the Model: The nominal ac-
tivity trajectory, a(t), and Wy, the activity specific func-
tion space, together capture all the possible realizations of
the activity and provide the description of the activity un-
der different variabilities. In general, the nominal activity
trajectories of two different activities will be vastly differ-
ent. The nominal activity trajectory for ‘walking’ would
consist of key postures like heel-strike, toe-off, mid-stance
etc., while that of ‘sit down’ would consist of the fol-
lowing actions - bend knee, lower body, settle on chair
and rest back on backrest. The activity-specific function
space of temporal warpings, W, represents the space of
all the permissible time-warping transformations for each
activity. By learning this space, we are able to ‘interpo-
late’ appropriately between training sequences. Suppose
there is a test sequence that is within this space, but was
not a part of the training sequences. Most template se-
quence based recognition techniques tend to misclassify
such test sequences. Learning the convex function space of
an activity provides our algorithm with the generalization
power necessary to correctly classify such test sequences.
Moreover, by learning this warping space formally, in a
class specific manner, we also obtain better discriminative
power than other heuristic techniques for handling time-
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warping. The model M={a(t), W} represents a function
space of activities whose elements are composed of func-
tions a(f(t)) V f € Ws.

2.1. Properties of the Function Space of Activities

Let A be the function space consisting of all the allowed
time-warping transformations. We will show some proper-
ties of the functions in this space by imposing certain phys-
ical constraints on the activities we model.

e The activity starts at time 0 and ends at time 1. There-
fore, if f : [0 1] — [0 1] € A be a time warping trans-
formation, then f(0) = 0 and f(1) = 1.

e The order of action units for each activity is pre-defined
and cannot change. Therefore if f € A, then f'(t) > 0Vt €
(0,1), i.e., every time warping transformation f is a strictly
monotone increasing function.

eNone of the action units may be skipped, i.e., every time
warping transformation f is a continuous function of time.
In fact there exists a finite maximum speed for the execution
of these action units, i.e there exists some finite constant ¢
such that f'(¢t) < ¢Vt e (0,1).

eAs a result of the previous properties we note that for
every f € A there exists an inverse f;,, € A such that
FFino(®) = fino(F(8) = £V L€ (0,1).

eWe also note that A is convex, i.e., V f1, fo € A and «
€0,1), f=afi+(1—a)fs€ A
2.2. Activity specifi time-warping space

Even though A represents the space of all plausible time-
warping transformations, every individual activity may only
be able to access a subset W of the candidate functions in
A because of the physical constraints imposed on the ac-
tor and the activity. For example, let us consider the ac-
tivity of ‘jumping’. The actor may in principle speed up
certain portions of the activity relative to the others. But,
during the actual moments the actor has no contact with the
ground, the only external forces on the actor are those from
gravitation and therefore, much as he might attempt to, he
will not be able to change the speed of his activity during
such times. There are thus physical, aesthetic and structural
constraints that restrict each activity to pick candidate time
warping transformations from W C A instead of A itself.
The constraints themselves vary with activity and therefore
the space W is different for each activity. Below, we dis-
cuss and visualize some properties of this activity specific
time warping space W.

e W isasubsetof A, ie., W C A.

e f(t) = tisacandidate functionin W,i.e., f(t) =t €
W . This represents no time warping.

e It is reasonable to assume that the function space is
pointwise convex, i.e., V f1, fo € W and V¢ € (0,1) and «
€ (0,1), there exists atleast one function f € W such that
F (&) = afi(t)+(1—a)f2(t). This also means that the class
specific time warping space W is a convex set. Moreover,
since the derivative is a linear operator, this means that if
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Figure 3. Non symmetrical model {a(t), Wul} and the correspond-
ing symmetrical version {@peuw(t)s Wunew,inew}. The warping
transformation between the two models is given by f.

the rate of execution of some action unit can be speeded up

by factors oy and v then it can also be speeded up by any

factor (3 in between «; and «p. This is not just reasonable

but in fact desirable. These properties imply that W can be

bounded above and below by functions u, [ € W such that

u(t) =t =1(t) vte(0,1) ¢))

u> 2LV eW Q)

where f>g= f(t) > g(t) Vte (0,1) 3)

So, we can now index any such convex space W by the
functions v and [ and call it W,,;.

2.3. Symmetric representation of an Activity Model

The representation of the activity model given by M; =
{a(t), Wy} is not unique. Let e (t) = f~'(u(t)) and
Lnew(®) = f~Y(I(t)) and let f be a member function in
Wi. Consider the new model My ={b(t), Wa...l0ew }=
{a(f(t)), Wu,.ulnew +- For every realization of the model
My, i.e., a(f1(t)) there exists a corresponding realization
of the model My given by b(f~1(fi(t))). Therefore the
two models M and M are equivalent (refer to Figure 3).

Before comparing two models, we need to account for
this non-trivial ambiguity. The ambiguity can be resolved
by arbitrarily specifying some notion of synchronizing time
that is consistent both within class and across classes. The
choice of any such synchronization time would perform
equally well. What is important is that having specified a
synchronizing time, we map the all the activity models ob-
tained to this synchronizing time. This serves as a sort of
‘reference frame’ on the temporal axis.

Specifically, let us choose synchronization time, f(t)
such that the upper bounding function e, is as much
above the identity warping function (¢) = ¢ as the lower
bounding function l,,.,, is below the identity warping func-
tion (t) = ¢. This synchronization time is appealing since
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this ensures that the average of all the warping functions in
W is the identity warping function. The symmetric repre-
sentation of the model is such that t,c., (£) —t = t—lpew (t)-
Therefore the activity specific warping space can be repre-
sented as Wy = Wy, .1 where $(t) = Unew(t) — t =
t —lnew(t), represents the extent of possible temporal warp-
ings. This symmetric representation of the model is unique,
ie., if M; = {al(t), Wsl} and My = {az(t), ng}, then
My = My <= a1 = as and s1 = $o.
Given a non-symmetric representation of the model, i.e.,
= {a(t), Wy}, we still need to determine a time-
warping function f such that the upper bounding and the
lower bounding functions of the new model are symmetric
about the diagonal. This is achieved as

Unew(t) =t =1 —lnew(t) )
= ) -t =t— )
= [ -uwi() =uT ) - fTHUTHR)
(applying the u~! operator)
= ) =2u"H(t) — fH(uTH())
= ft) = {2071 (t) — FH U )

The implicit function equation can be solved by fixed

point iterations as
foy @) = {2071@) = [l ™ ON )

where f(i) represents the approximation of f in the ith it
eration. We initialize the iteration with f(oy(t) = %H(t)
‘We observe that it converges within very few iterations with
such an initialization.

Once we have obtained this symmetrizing time warp
f then any non-symmetric model parameters M; =
{a(t), W} can be transformed to its symmetric (unique)
counterpart as M = {b(t), Wy}, where b(t) = a(f(¢)) and
5(t) = Unew(t) —t =t — lyew(t) = f~1(u(t)) — t. Figure
3 illustrates such a symmetrizing transformation.
2.4. Learning Model Parameters

The unique symmetric representation of the model is
given by M = {a(t), W,}. Learning the model parame-
ters amounts to learning both the nominal activity trajectory
a(t) and the symmetric bounding function s(t) for the ac-
tivity specific warping set Ws. Let b;(¢) fori = 1,2,...N
be N realizations of an activity {a(t), Ws}. Suppose we
knew the time-warping functions for each realization, i.e.,
we knew that b;(t) = a(fi(t)) fori = 1,2,..., N. Now,
since we know both the actual realizations and the corre-
sponding time-warping functions, we can invert the effect
of time-warping to obtain an estimate of the unwarped nom-
inal activity trajectory a( ) as

- Z bl

a(t) = E(b;(f;'(

where F(.) represents the expectatlon operator In fact, in
[8], they denote such time synchronised averages as “func-
tional convex average” and address in detail some of the

(6)
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properties of such functional averages. They prove that for
any given (convex) family of time-synchronizing mappings
the functional convex mean exists and can be estimated as
above if we knew the time-synchronisation. In particular,
they look at time-synchronising maps like the area under
the curve synchronisation. But the results on the convex
operations, convex averages and asymptotics they derive are
actually valid for any given synchronising map.

In practice though, we would be able to observe only the
actual realizations b;(¢) for ¢ = 1,2,...N while the time
warping transformations f; would not be explicitly avail-
able. If we have a method to synchronize two warped ac-
tivity trajectories, then as shown in [8] we can estimate the
functional convex mean of the set of activity trajectories by
averaging the time-synchronised versions of these realiza-
tions. The DTW algorithm [11] allows us to do this. It
is a method for computing a non-linear time normalization
(warping) between a template sequence and a test sequence.
The DTW algorithm which is based on dynamic program-
ming computes the best non-linear time normalization of
the test sequence in order to match the template sequence
by searching over the space of all time-warpings. The ad-
vantage of using DTW is that by cleverly using dynamic
programming the complexity of the search space is consid-
erably reduced. Since this space of all time-warpings over
which the DTW algorithm searches must match a discrete
version of the function space of time-warpings (A), the tem-
poral consistency constraints used in the DTW algorithm
must correspond to the properties of functions in A. The
temporal consistency constraints used in our work are:

e End Point constraints: The ‘start’ and the ‘end’ of the

activity trajectories must match exactly.

e Monotonicity: The warping function should be
monotonically increasing, i.e., the sequence of action
units must be unchanged.

e Continuity:The warping function must be continuous.

Let us assume without any loss of generality that by () is
the template sequence. Then DTW would find functions
gi such that b;(t) ~ b1(g;(t)). Now, the time synchronized
activity trajectories can be obtained as b;(g; *(t)) and there-
fore the nominal activity tra]ectory Can be estimated as

b(t) = E(bi(g;( Z bi(

Moreover, the upper and the lower boundlng functions for
the activity specific time-warping set can also be estimated
from g;(i = 1,2,...N) as

@)

u(t) = maxNgi(t) vt € (0,

1=1,2,... 1) (8)
i gi(t) vt € (0,1)

I(t) = ©)

Since each g; is constrained to be monotonously increas-
ing and the end points are fixed, it is easy to see that the
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estimates @(¢) and I(t) also inherit these properties. More-
over, by constrgction, the estimates @ and [ are such that
a(t) > t > I(t) vt € (0,1). Therefore a(t),l(t) are
valid upper and lower bounding functions for the convex
activity specific time warping set and therefore W,,; ex-
ists and is well defined. Thus the estimated model M is
given by M = {b(t), W,;}. This model parameters corre-
spond to the non-symmetric version of the model and can
be easily transformed to the equivalent symmetric version
of the model given by M, = {a(t), W,}. This is done by
finding a time warping function f such that the new upper
and lower bounding functions t,eq, (1), lnew (t) of the new
model are symmetric about the diagonal and then setting
a(t) = b(f(t)) and s(t) = Unew(t) —t =t — lpew(t) =
f~Y(u(t)) — t. The procedure for determining f was dis-
cussed in Section 2.3.

2.5. Global Speed of activity

We have restricted our attention to time-warping func-
tions that do not contract or dilate the duration of the ac-
tivity, i.e., we have concentrated on variations in speed pro-
file. But this is not restrictive, since any other time-warping
transformation can be decomposed into two parts: a lin-
ear global scaling of the temporal axis and the non-linear
time-warping functions that we have addressed so far. In all
our experiments we have first identified the global tempo-
ral scaling factor by identifying the start and stop instants
of each activity. The identification of the start and stop in-
stants of each activity is also done automatically by tem-
plate matching. Once the global temporal scaling factor is
found, each realization of the activity is temporally dilated
or contracted linearly so that the total duration of the activ-
ity is a constant for all realizations of the activity.

3. Features for describing action units

Choice of appropriate features: In principle, the fea-
ture chosen to describe the action units must have physi-
cal significance and one must be able to directly identify
the relationship between the features extracted and the ba-
sic human pose. For the problem of activity recognition,
3-D joint angles would be ideal features. Moreover, since
the model for learning the function space time-warpings is
not explicitly dependent on the choice of features, one could
potentially use the same model to learn individual specific
function spaces in order to perform activity based person
identification. The only difference would be that we would
choose a feature that is person-specific (e.g., silhouette).
The nominal activity trajectory would be individual specific
in this case. The function space of temporal warpings for
each individual will now amount to learning the person spe-
cific warping functions. Unfortunately, estimating features
like 3-D joint angles from images is extremely difficult and
unreliable. So researchers have used several other features
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for describing the action units[12][9][14][6]. We use the
shape of the silhouette as a feature[16].

Kendall’s Statistical Shape Feature: “Shape is all the
geometric information that remains when location, scale
and rotational effects are filtered out from the object”[2].
We use Kendall’s statistical shape as the shape feature. The
binarized silhouette denoting the extent of the object in an
image is obtained. A shape feature is extracted from this
binarized silhouette. This feature vector must be invariant
to translation and scaling since the objects identity should
not depend on the distance of the object from the camera.
This yields the pre-shape of the object in each frame. Let
the configuration (X') of a set of k landmark points be given
by a k-dimensional complex vector containing the positions
of the landmarks. Centered pre-shape is obtained by sub-
tracting the mean from the configuration and then scaling to
norm one as,

cx where C =1 — %

Z, : 1,17,
[CX | mk

(10)
where I}, is a identity matrix and 1 a vector of ones.

Distance between shapes: The pre-shape vector lies on
a spherical manifold. Therefore a concept of distance be-
tween two shapes must include the non-Euclidean nature of
the shape space. Several distance metrics have been defined
in [2] of which we use the partial Procrustes distance. Con-
sider two complex configurations X and Y with correspond-
ing preshapes « and /3. The partial Procrustes distance be-
tween configurations X and Y is obtained by matching their
respective preshapes « and 3 as closely as possible over ro-
tations, but not scale.

dp(X,Y) = inf

TeSO(m)

| 8—al]. (11)
The interested reader may refer to [2] for a detailed descrip-
tion of partial Procrustes distance.

4. Activity Recognition

Suppose we have M different activity models given by
M; = {a;(t),Ws,} for i = 1,..M. Given a test sequence
h(t), the activity recognition problem is one of identifying
the model that generated the test sequence h(t). We do this
in two steps. Firstly, assuming that the test sequence h(t) is
generated from the model 1/;, we estimate the best warping
transformation fz from Wy, that would warp a; to h, i.e.,

= min dist(h(t), a:(f(1))) (12)
I= argi:rlrli?M dist(h(t), av(fz(t))) (13)

Activity recognition is performed by minimizing the
warping error between the nominal activity trajectory and
the test sequence. Note that the search of warping func-
tions is performed only over the corresponding activity spe-
cific warping set. The above-mentioned intuitive idea for
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activity recognition can be easily implemented by a simple
variation of the DTW. In the DTW algorithm, instead of ar-
bitrarily limiting the warping function to lie within some
window (typical choices are uniform window and paral-
lelogram window), we replace the window constraints by
the upper and lower bounds for the warping function that
we have learnt for each model. Thus, the DTW algorithm
with the window width being given by u(t) = s(t) + ¢ and
I(t) = t — s(t) computes the distance that is being mini-
mized in Equation (13).

I=

min 4DTW(ai7 h, s), (14)

i=1,...

where, DT'W (a;, h, s) stands for the implementation of the
DTW algorithm with the warping window constraints given
by u(t) = s(t) + tand I(t) =t — s(t).

4.1. Relationship with other algorithms

It is interesting to note how the recognition algorithm
(that arises from the model) is related to other algorithms
designed with similar intent. Most methods that attempt to
tackle time-warping have not been based on a model where
observed trajectories are viewed as a realization of a sto-
chastic process. Instead they were typically based on a tem-
plate (eg., DTW[11]). A method for computing an average
shape for a set of dynamic shapes is provided in [9]. A
functional curve synchronisation model to estimate a longi-
tudinal average (referred to as “functional convex average”)
is presented in [8]. Neither of these methods address the is-
sue of learning the nature of time-warping transformations
for each class from the data. Our model can be viewed as a
generalization of these methods where we also learn the na-
ture of the time-warping transformations for each class. A
method to learn the best class of time-warping transforma-
tions for a given classification problem is proposed in [13].
Their algorithm is based on an optimization of recognition
performance over a training set. Our recognition algorithm
can also be viewed as class-specific, model based general-
ization of their algorithm. Template based recognition al-
gorithms are very effective when the test sequence is one
among those in the gallery. But they usually have very poor
generalization power. Our algorithm has sufficient general-
ization power since we explicitly make the function space
of an activity convex.

4.2. Common Activities Dataset

We collected a dataset of common activities to perform
preliminary experiments to validate our model. The dataset
consists of 10 activities and 10 different instances of each
activity. These activities were captured using two synchro-
nized cameras that were about 45 degrees apart. We per-
form a round-robin activity recognition experiment on this
database. We partition the dataset into 10 disjoint sets each
containing 1 instance of every activity. In order to test the
recognition for each set, we first learn the model parameters
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(&) Pick up Object (f) Kick

(b} Jog in place (0) Bend to the side
(¢} Push (h) Throw

(d) Squat (i Turn Around

(&) Wave (j) Talk on Celiphone

Figure 4. 10 X 100 Similarity matrix of 100 sequences and 10
different activities.

from the remaining nine sets and then perform recognition
for the test sequences. We repeat the process for each of the
10 sets. Thus we ensure that there is no overlap between the
training set and the test sequences. Figure 4 shows the 10
X 100 similarity matrix for this experiment. Each column
corresponds to a different test sequence while each row cor-
responds to a different activity. The strongly block diagonal
nature of the similarity matrix indicates that the recognition
algorithm performs well. In fact, on this database we ob-
tained 100% recognition using our algorithm.

4.3. USF Gait Database

Since the model for learning the function space of time-
warpings is not explicitly dependent on the choice of fea-
tures, we use the same model to learn individual specific
function spaces in order to perform activity based person
identification. The nominal activity trajectory is now indi-
vidual specific. Various external conditions (like surface,
shoe) induce systematic time-warping variations within the
gait signatures of each individual. The function space of
temporal warpings for each individual amounts to learning
the class of person specific warping functions. By learning
the function space of these variations we are able to account
for the effects of such external conditions.

In order to compare the performance of our algorithm
with the current state of the art algorithms, we also per-
formed a gait based person identification experiment on the
publicly available USF gait database [14]. The USF data-
base consists of 71 people in the Gallery. Various covari-
ates like camera position, shoe type, surface and time were
varied in a controlled manner to design a set of challenge
experiments [14].The results are evaluated using cumula-
tive match scores(CMS) curves and the identification rate.
We performed a round-robin recognition experiment as be-
fore. Table 1 shows the identification rate of our algorithm,
the baseline algorithm [14], simple DTW on shape features
[16] and the image based HMM [6] algorithm on the USF
dataset for the 7 probes A-G. Since most of these other
algorithms could not account for the systematic variations
in time-warping for each class the recognition experiment
they performed was not round robin. Therefore, to ensure
a fair comparison, we also implemented a round-robin ex-

YFF.F.

COMPUTER

SOCIETY



Comparison of Average CMS of various algorithms.
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Figure 5. Average CMS of various algorithms on the USF dataset.

periment (DTW R-R) using the normal DTW algorithm and
using the average shape sequence as the feature.

Table 1. Comparison of Identification rates on the USF dataset

Pr- | Base- | DTW | HMM | HMM | DTW Our
obe line Shape | Shape | Image | R-R | method
Avg. 42 42 41 50 42 59
A 79 81 80 96 52 70
B 66 74 72 86 52 68
C 56 52 56 74 72 81
D 29 29 22 32 33 40
E 24 20 20 28 26 64
F 30 19 20 17 26 37
G 10 19 19 21 36 53

The average performance of our algorithm is better
than all the other algorithms that use the same feature,
(DTW/HMM (Shape)[16] and DTW R-R) and is also bet-
ter than the baseline[14] and HMM]6] algorithms that use
the image as a feature. The image based HMM algorithm
[6] outperforms our algorithm for a probes A and B. One
reason for this is that the image as a feature performs better
than shape as a feature for the USF dataset. But, it is a com-
putationally very intensive feature (of the order of number
of pixels) and consequently leads to algorithms that are very
slow. Therefore, we prefer to use the shape as a feature. In-
spite of this obvious handicap, our algorithm outperforms
the image based HMM algorithm for most probes. Another
noteworthy fact is that the Probes A and B are very simi-
lar to the Gallery used for testing the image based HMM
algorithm[14]. Therefore, the HMM algorithm is well tuned
to the Probes A and B. Since our learning algorithm ac-
counts for the variations in gait by learning the space of
an activity using all the available data, it is not specifically
tuned to any of the probes and performs ‘equally well’ for
all the probes. Figure 5 shows the average CMS plot of the
various algorithms compared.

5. Clustering Activity Sequences

Algorithm for Clustering The clustering algorithm,
based on expectation maximization (EM) is very similar
to the Lloyd-Max algorithm and can be used to organize a
database of sequences for efficient retrieval. Let us assume

that we know the number of clusters, /N and the cluster cen-
ters cq, co,...cy. Then, each of the sequences in the data-
base can be associated with one of the N clusters. This can
be done using a maximum-likelihood approach as described
earlier in Equation (14). This forms the Maximization step
of the EM algorithm. The Expectation step of the algorithm
involves recomputing the new cluster centers from cluster
memberships evaluated during the Maximization step. We
iterate these 2 steps until convergence. In all our experi-
ments, we initialized the cluster centers randomly.

Clustering on Common Activities Dataset We per-
formed a clustering experiment on the 100 activity se-
quences collected as a part of the Common Activities
dataset. We chose the number of clusters NV to be 10 since
there were 10 different activities. If clustering were perfect,
then the 100 activity sequences would be clustered into 10
different clusters, each cluster containing 10 sequences that
correspond to that particular activity. But in reality, clus-
tering would be imperfect and some of the 100 sequences
would be misaligned in the wrong cluster. We repeated the
clustering experiment several (about 50) times, with a ran-
dom initialization of cluster centers during each trial. On
an average, the algorithm converged in about 10 iterations
and about 92% of the sequences were clustered correctly.
In order to evaluate the robustness of the algorithm to initial
conditions, we initialized the algorithm with the 10 clus-
ter centers being 10 different instances of the same activity.
This is one of the most adverse initializations possible for
the clustering algorithm. Even during this trial, when the
algorithm converged, the 10 clusters represented the 10 dif-
ferent activities. Moreover, 80 out of the hundred sequences
were correctly clustered. This shows that the algorithm is
fairly robust to initialization.

6. Organizing a Large Database of Activities

With the decreasing cost of storage, the size of activ-
ity databases is increasing rapidly. For example, the com-
plete USF gait database [14] consists of about 122 classes
and a total of more than 1000 sequences. As the size of
the database increases, the number of ‘distance’ computa-
tions that must be performed on every query also increases
linearly with the size of the database. This poses a signif-
icant bottleneck for practical activity recognition systems.
We show that organizing the database of sequences using
the clustering algorithm described in Section 5 decreases
this computational burden significantly. The price paid is
a small decrease in recognition performance. We organize
the database of activities in the form of a dendrogram as
shown in Figure 6. At each level of the dendrogram the
number of branches (B) was set to 3. The number of levels
to which the dendrogram is ‘grown’ determines the trade-
off between computation and accuracy. As the number of
levels is increased, the number of ‘distance’ computations
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that must be performed before finding the class membership
of a given test sequence decreases. Therefore, the computa-
tional burden of the algorithm also decreases. But this might
introduce a decrease in classification performance. When
the dendrogram is fully grown (i.e., when each leaf of the
dendrogram represents one activity), there will be logg IV,
levels and therefore Blogp N ‘distance computations’. Let
us consider the USF database which consists of 122 sub-
jects and a total of 1870 sequences. A nearest neighbour
classifier on this database must perform 1870 distance com-
putations in order to classify a new test sequence. But if we
assume that we organize the database in the form of a “fully
grown dendrogram’, with each leaf node representing each
of the 122 individuals, then one would just have to perform
about BloggN = 3 * logs122 ~ 14 ‘distance computa-
tions’. This is a very significant computational saving.

We performed an experiment to evaluate the efficiency of
organizing the database on a subset of the USF database as
in Section 4.3. In our experiments, we grow the dendrogram
upto 2 levels. We measure efficiency of organization (7)) as
a ratio of the recognition rate before and after organization.

Identification rate after organization

n = 100 * (15)

Identification rate before organization
The efficiency 7 is strongly related to clustering perfor-
mance and it is reasonable to expect the efficiency 7 to in-
crease with better clustering. Table 2 shows the efficiency of
organization for the various probes in the USF dataset. On
this data, the dendrogram organization of the database re-
duced the computational time by a factor of about 30. This
means that processing time for large databases will be re-
duced from the order of days to a matter of hours. For such
a significant reduction in processing time the Table 2 shows
that the decrease in recognition performance is not drastic.
It is also possible to index DTW for efficient retrieval[7].
However, the indexing method in [7] is derived for Euclid-
ean spaces, while our method is derived on spherical mani-
folds. A more important contribution of our method is that
organizing the database using clustering also provides us
with a nice graphical visualization of the space of activities,
where activities that are similar get separated into different
clusters lower down the dendrogram than activities that are
dissimilar.
Table 2. Efficiency of Organization on the USF dataset
Probe | A | B | C D E F G | Avg
n 76 | 81 | 84 | 100 | 82 | 100 | 95 | &9

7. Summary and conclusions

In this paper, we address an important but often ne-
glected problem in modeling activity, that of temporal warp-
ing of the activity trajectories. Apart from temporal warp-
ing, activities are sometimes not aligned spatially. We are
addressing the issue of handling larger spatial misalign-
ments in activities, using mixture models.

Level 1

|
e o

Figure 6. Dendrogram for organizing an activity database
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