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Abstract

Several works have shown that relationships between
data points (i.e., context) in structured data can be exploited
to obtain better recognition performance. In this paper, we
explore a different, but related, problem: how can these inter-
relationships be used to efficiently learn and continuously
update a recognition model, with minimal human labeling
effort. Towards this goal, we propose an active learning
framework to select an optimal subset of data points for man-
ual labeling by exploiting the relationships between them.
We construct a graph from the unlabeled data to represent
the underlying structure, such that each node represents a
data point, and edges represent the inter-relationships be-
tween them. Thereafter, considering the flow of beliefs in this
graph, we choose those samples for labeling which minimize
the joint entropy of the nodes of the graph. This results in
significant reduction in manual labeling effort without com-
promising recognition performance. Our method chooses
non-uniform number of samples from each batch of stream-
ing data depending on its information content. Also, the
submodular property of our objective function makes it com-
putationally efficient to optimize. The proposed framework
is demonstrated in various applications, including document
analysis, scene-object recognition, and activity recognition.

1. Introduction
Over the years, due to advances in technology, huge

amount of unlabeled visual and text data is generated daily.
Also, machine learning algorithms are becoming more com-
monplace in human life. A large proportion of these algo-
rithms are based on supervised learning which requires a
large quantity of data to be labeled. Moreover, these models
need to be updated over time as new data becomes available
in order to dynamically adapt to the concepts of different
classes which may drift with time. Manually labeling this
continuous flow of data is not only a tedious task for humans
but also prone to wrong labeling. Active Learning [39] can
be a solution to this problem to reduce the amount of manual

labeling, without compromising recognition performance.
The ability of active learning to reduce manual labeling

effort is due to the fact that not all training samples are valu-
able for building the recognition model [28]. Most active
learning approaches formulate a utility score for each unla-
beled sample, based on which they are chosen for manual
labeling. Classifier uncertainty [31], information density
[30], expected change in gradient [39], expected error rate
[11, 30], expected model output change [23] and their combi-
nations are some popular techniques for designing the utility
score. But, most of these techniques fail to consider the
inter-relationships that may occur in data points belonging
to the same or different recognition tasks.

Several works have shown that in many applications such
as activity recognition [49, 46], object recognition [16, 9],
text classification [36, 40], etc, that relationships between
data points can be exploited to get better recognition per-
formance. These relationships may also be exploited in
active learning to significantly reduce the effort of manual
labeling. Although there have been some works which con-
sider relationships between data points in active learning
[4, 32, 18, 20], they do not consider flow of beliefs between
samples to have a better joint understanding of the samples,
which may be helpful for choosing the most informative
ones. Moreover, most of them are problem-specific algo-
rithms and deal with active learning of a single recognition
task. A general approach for active learning that consid-
ers the inter-relationships between data samples, and which
can be used across a variety of application domains, is lack-
ing. Joint learning of tasks such as scene-object [50, 45] or
activity-object [21, 24] classification can be actively learned
to reduce the manual labeling effort. In such scenarios, it is
challenging to choose the informative samples for manual
labeling as they may belong to different recognition tasks.

In this paper, we propose a generalized active learning
framework, which has the ability to determine the optimal
number of informative samples and thus choose them for
both single, as well as multiple, recognition tasks learned
jointly, by exploiting the structure of the data, i.e., the rela-
tionships between the samples. The relationship information
can not only help to update the beliefs of the classifier for
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Figure 1: This figure presents the flow of the proposed framework. 1. A small set of labeled data is used to obtain the
initial relationship (R) and classification model (C). 2. As new unlabeled batch of data becomes available sequentially over
time, we first extract features from the raw data. Then the current C and R models are used to construct a graph from the
data to represent the relationships between the data points. Then inference on the graph is used to obtain the node and edge
probabilities, which are used to choose the informative samples for manual labeling. The newly labeled instances are then
used to update the models C andR.

each data point, but also plays an important role in selecting
a small subset of informative samples, which when labeled
can help the other unlabeled samples to have a better under-
standing of their labels.

Framework Overview. The flow of the proposed
method is pictorially presented in Fig.1. The proposed
method starts with a small set of labeled data and uses it
to build the classification (C) and relationship (R) models.
R represents the underlying structure in the data. It may be
noted that the classification models may contain multiple
classifiers for multiple recognition tasks. After learning the
initial models, given a batch of unlabeled samples, the goal is
to select a subset of informative samples for manual labeling
which can be used to update the current classification and
relationship models.

As new batch of data becomes available, they are sep-
arated into different sets based on the recognition task to
which they belong and their features are extracted. Using
the current classifiers, a probability mass function over the
possible classes is obtained for each unlabeled sample. It
is used along withR to construct a graph whose nodes rep-
resent the samples. A message passing algorithm is used
to infer on the graph to obtain the beliefs of each node and
the edges of the graphs. An informative theoretic objective
function is derived, which utilizes the beliefs to select the in-
formative nodes for manual labeling. The submodular nature
of this optimization function allows us to achieve this in a
computationally efficient manner. The newly labeled nodes
are used to update the models C andR. It may be noted that
the number of samples selected per batch is non-uniform,
dependent on the information content of each batch.

Main Contributions. The main contributions are the
following.
• We propose a novel generalized active learning framework

which exploits the relationships in data to reduce the man-
ual labeling effort. It can be used for both single as well

as multiple inter-related recognition tasks jointly.
• Our framework chooses non-uniform number of samples

for manual labeling from each batch of data, which is
helpful as the amount of information contained in a batch
of data varies and it may not be useful to select the same
number of samples from each batch.

• Unlike other batch mode subset selection algorithms
which exploit relationships in data points, the optimization
problem in our framework can be proved to be submod-
ular minimization which makes it easy to obtain optimal
solutions in polynomial time.

2. Related Works
An overview of the approaches which form the core of

most active learning (AL) algorithms may be found at [38].
Most AL algorithms involve the uncertainty of the classifier
for choosing the informative samples, best vs. second best
[29], entropy [30], classifier margin [44] being commonly
used measures for classifier uncertainty. Along with clas-
sifier uncertainty, diversification in the chosen samples is
introduced by using k-means [29] or sparse representative
subset selection [13]. The scalability issue in terms of the
number of classes was addressed in [22] by asking binary
questions to the human. They selected samples from the
unlabeled set based on expected misclassification risk and
extracted a probabilistically similar image from the labeled
set to ask whether they match. Another important concept
used in AL is expected model change [6, 43, 23].

Most of the above mentioned works do not consider the
relationships between the data points which may be exploited
to reduce the amount of manual labeling. In [5], an AL algo-
rithm was proposed which involves uncertainty, committee-
based ensembles and community based clustering of net-
worked data. A network based utility score for each sample
was proposed in [27] involving neighborhood information
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of the networked data. In [41], maximum uncertainty as
well as maximum impact on other unlabeled instances was
used, where the link information enhances the feature based
similarity measure used to capture the impact of a sample.
In [31], a hierarchical model for AL was proposed for scene
classification where they also query the objects whenever
there is a mismatch between the scene label provided by
the classifier and human. An AL algorithm for scene and
object classification is presented in [2]. Relationship in the
feature space was exploited in [32] for AL. The concept of
typicality in information theory is exploited in [3] to choose
the optimal subset of samples.

Recently, in [7], an algorithm for batch mode AL was pro-
posed which uses entropy and Kullback Leibler divergence
to select informative and diverse samples. However, these
algorithms do not incorporate the propagation of confidence
from one sample to the other. Recently, an AL algorithm is
presented in [18] for activity recognition. They proposed an
objective function based on intuition and provided a greedy
solution to optimize it. Our algorithm on the other hand
is not only mathematically validated, but also experimen-
tally supported on different applications (beyond activity
recognition), including multiple inter-related tasks. More-
over, our AL algorithm is computationally efficient due to
the submodularity property and can be applied in scenar-
ios involving joint learning of multiple recognition models.
Also, unlike this method, we do not select a fixed number of
samples from each batch; rather the number of samples is
non-uniform based on the information content of each batch.

3. Data Representation
The proposed method for informative sample selection

is based on the assumption that the unlabeled data points
have an underlying structure, i.e., have relationships among
them. We build a graph whose nodes represent the unlabeled
samples in order to exploit the relationships between them.
The two important measures which represent the graph are
node and edge potentials.

Our active learning framework can select samples for
single as well as multiple joint classification tasks simultane-
ously if the instances share relationship, e.g., scene-object,
object-object, activity-object classification, etc. In order to
generalize, let us consider that we have m tasks in hand
which share relationships in data. Let us consider that we
have a set of baseline classifiers C = {C1, . . . , Cm} for these
m interrelated tasks. The node and edge potentials in the
format we use are discussed below.

Node Potential. We represent each data point as a
node. Consider that we have total n classes {c1, . . . , cn}
for these m classification problems. Consider an indi-
cator function I(.) which takes as input a class name c
and provides as output a unit standard basis vector, i.e.,
I(c = c1) = [1, 0 . . . , 0]T . If F j is the feature of node j,

then its node (unary) potential can be expressed as,

φj =
m∑
p=1

n∑
i=1

Cp(F j , ci)I(c = ci) (1)

where Cp(F j , ci) represents the probability of node j to
belong to class ci. Thus, Cp(F j , ci) = 0 if the training data
of Cp does not contain data of class ci.

Edge Potential. The edge (pair-wise) potential repre-
sents the relationships between the classes. The relationship
model R contains the edge potential matrix ψ whose i,j
location is the co-occurence frequency [16] of data point
of class ci with data point of class cj . Co-occurrence, and
thus edge potential, depends on the application and will be
discussed in Section 5.

The node and edge potentials play an important role in
our framework as we use it to construct a graph to represent
the relationships between the data points. It may be noted
that our framework can be applied to any dataset containing
relationships which can be modeled as edge potentials.

Graph Construction. Let us consider that we have a
set of labeled data instances L. We learn the baseline clas-
sification model C and a relationship model R with these
labeled data L. Now, consider that a new unlabeled set U
of data becomes available with features {F j}Nj=1, N being
the size of the set U . Instead of manually labeling this entire
unlabeled set, our goal is to reduce the labeling effort by
choosing an informative subset of U for manual labeling,
such that it helps to improve the current models C andR.

We start by constructing a graph G = (V,E) with the
instances in U using the current models C andR. Each node
in V = {v1, . . . , vN} represents each data point. The edges
E = {(i, j)|vi and vj are linked} represent the relationships
between the data points. The link information between the
nodes depends on the application and is discussed in Section
5. The nodes are assigned the corresponding node potentials
φi and the edges are assigned the edge potential ψ. A mes-
sage passing algorithm can be used to obtain the node and
edge beliefs. In this paper, we use Loopy Belief Propagation
(LBP) [35] to accomplish this task. After inference, we ob-
tain the marginal node probabilities and the pair-wise joint
distribution of the edges.

4. Selection of Informative Samples

In this section, we discuss how we choose the informative
samples based on the graphical model constructed from a
batch of data. Using the node and edge probabilities, the
goal is to choose a small set V l∗ ⊂ V for manual labeling,
which will improve the current models C and R. We wish
to select a subset of the nodes such that the joint entropy
of all the nodes H(V ) is minimized. Below we derive an
expression for the joint entropy of the graph G.
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Joint Entropy of Nodes. The entropy of each node
and the mutual information between a pair of nodes can
be expressed as H(vi) = E[− log2 pi] and I(vi, vj) =
E[log2 pij

/
pipj ] and pi, pj and pij are the node and edge

probabilities respectively. The joint entropy of the nodes of
the graph G can be expressed as follows,

H(V )
(a)
= H(v1) +

N∑
i=2

H(vi|v1, . . . , vi−1)

(b)
=H(v1) +

N∑
i=2

[
H(vi)− I(v1, . . . , vi−1; vi)

]
(c)
=H(v1) +

N∑
i=2

[
H(vi)−

i∑
j=1

I(vj ; vi|v1, . . . , vj−1)
]

=
N∑
i=1

H(vi)−
N∑
i=2

i∑
j=1

I(vj ; vi|v1, . . . , vj−1)

(d)
≈
∑
vi∈V

H(vi)−
∑

(i,j)∈E

I(vj ; vi) (2)

(a)Joint entropy chain rule [10]
(b) Using I(v1, . . . , vj−1; vj) = H(vj) −
H(vj |v1, . . . , vj−1), where, I(.; .) represents the mu-
tual information between the set of random variables
separated by ’;’.
(c) Mutual information chain rule [10]
(d)Computing the conditional mutual information
I(vj ; vi|v1, . . . , vj−1) becomes computationally intractable
as the number of nodes on which it is conditioned
increases. Moreover, in this paper, we construct our
graph using just unary (node) and pair-wise (edge)
potentials and ignoring higher order potentials. Thus,
we approximate the conditional mutual information as
I(vj ; vi|v1, . . . , vj−1) ≈ I(vj ; vi). Furthermore, we
consider two nodes to be independent if there exist no
link between them. It is also known that the mutual
information between two random variables is zero, if they
are independent.

The expression in Eqn 2 is similar to the expression of joint
entropy using Bethe Approximation [47]. Moreover, this
expression is exact for an acyclic graph but an approximation
in case of graphs containing cycles. We use this expression
to derive an objective function to be optimized in order to
obtain the most informative nodes for manual labeling.

Objective Function Derivation. Our goal is to choose a
subset of nodes from V , the size of which may vary across
each batch of data, such that the joint entropy H(V ) in Eqn.
2 is minimized after inferring on the graph G conditioned
on the obtained labels of the chosen nodes. The set V can
be partitioned into two sets, V l which will be selected for
manual labeling and V nl which will not be manually labeled.
We need to find the optimal partition of V into these two sets

by optimizing an objective function. The main motivation is
that the classifier is either confident or will become confident
about the set V nl if we gain information about the subset V l.
Here l means Labeled and nl means Not Labeled.

Let us define the two subgraphs of G as follows: Gl =
(V l, El) be the subgraph whose nodes will be labeled and
Gnl = (V nl, Enl) be the subgraph which will not be labeled.
For the sake of clarity, the following are defined: El =
{(i, j)|(i, j) ∈ E, vi, vj ∈ V l}, Enl = {(i, j)|(i, j) ∈
E, vi, vj ∈ V nl}. Following the above partition, the joint
entropy H(V ) can be partitioned as follows,

H(V ) =
[ ∑
vi∈V l

H(vi)−
∑

(i,j)∈El

I(vj ; vi)
]
+

[ ∑
vi∈V nl

H(vi)−
∑

(i,j)∈Enl

I(vj ; vi)
]
−

∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)

= H(V l) +H(V nl)−
∑

(i,j)∈E
vi∈V l,vj∈V nl

I(vj ; vi) (3)

Once the nodes in V l are manually labeled and we run in-
ference on the graph conditioned on the acquired labels, the
first and last term of the above expression becomes zero (see
supplementary material). Most active learning algorithms
assume that for each batch of unlabeled data, there is a fixed
budget, i.e., number of samples for manual labeling. If the
budget for manual labeling is K(≤ N ), then the optimal
subset V l∗ which minimizes the joint entropy of the node
can be expressed as,

V l∗ = argmax
V l

s.t.|V l|=K

[
H(V l)−

∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)
]

(4)

However, each batch of data may contain non-uniform
amount of information and choosing the same number of
budget constrained samples (i.e., K) from each batch may
not be a good idea. Instead, the number of samples could be
determined based on the information content of each batch.
This motivates us to modify the above objective function,
such that we choose non-uniform number of informative
samples from different batch of data. We rewrite Eqn. 4 as
an unconstrained minimization problem as follows:

V l∗ = argmin
V l

[ ∑
(i,j)∈E

vi∈V l,vj∈V nl

I(vj ; vi)−H(V l) + λ|V l|
]

(5)
where λ is a positive trade-off parameter between maximiz-
ing the objective function in Eqn. 4 and minimizing the
number of nodes chosen for manual labeling. The choice of
λ is discussed at the end of this section.

The optimization problem can be represented in vector
and matrix notations. In order to do so, we define the follow-
ing. Consider a vector x of length N with elements being 1
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or 0, where 1 represents the node is selected to be in the set
V l and 0 represents the opposite. We need to find the opti-
mal x which solves the optimization problem in Eqn. 5. Let
us define a N × 1 vector h of node entropies and a N ×N
matrix M of pairwise mutual informations as follows,

h , [H(v1), H(v2) . . . H(vN )]T

M(i, j) ,

{
I(vi; vj), if (i, j) ∈ E
0, otherwise

where i, j ∈ {1, . . . , N}. The objective function in Eqn. 5
can be represented as (see supplementary material)

x∗ = argmin
x

1

2
xTQx+ xTf + λxT1 (6)

where Q , −M and f , M1 − h and where 1 =
[1 1 . . . 1]T of size N × 1. The objective function in Eqn.
6 can be proved to be submodular which makes the optimiza-
tion problem simpler compared to Eqn. 4. Details of the
optimization is discussed next.

Proof of Submodularity. A submodular function is a set
function f : P(S) → R where P(S) is the power set of a
finite set S, if it satisfies the following,

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ) (7)

where X ⊆ Y ⊆ S and v ∈ S−Y . The sets are represented
in Fig. 2. Let us consider two vectors x and y representing
the two sets X and Y , i.e., if a node exists in a set, the cor-
responding element of the vector will be 1 else 0. Consider
a vector v which represents the node v of Eqn. 7, i.e., v
is a vector of all zeros and one at the vth element location.
Consider the objective function in Eqn. 6 be f . Then,

f(X ∪ {v})− f(X) =
[1
2
(x+ v)TQ(x+ v)+

(x+ v)Tf + λ(x+ v)T1
]
−
[1
2
xTQx+ xTf + λxT1

]
=

1

2
vTQv + xTQv + vTf + λ (8)

Also, f(Y ∪{v})− f(Y ) = 1
2v

TQv+yTQv+vTf +λ

{f(X∪{v})−f(X)}−{f(Y ∪{v})−f(Y )} = (x−y)TQv
(9)

Now, as X ⊆ Y , y contains 1 at least in the positions
where x contains 1. Thus, the entries of the vector x − y
are either 0 or −1. Also, the entries of Q are non-positive as
Q = −M and mutual information is always non-negative.
Also, v is a vector of 1 at a single element and 0 otherwise.
Thus, (x − y)TQv ≥ 0 and Eqn. 7 is satisfied, which
makes the objective function in Eqn. 6 submodular and the
optimization problem is submodular minimization.

Optimization Procedure. Submodular Function Mini-
mization (SFM) often arises in fields of machine learning,

v2

v1

v3

v4 v5

v6

v7v8

S
Y

X

v

Figure 2: This figure is an example illustration of the sets
S,X, Y and the element v involved in proving that the pro-
posed objective function is submodular.

Algorithm 1 Proposed Framework

Input: Sequential Batch of Unlabeled Data {U1,U2, . . . }.
Output: Classification C and RelationshipRmodels after
processing every batch of data.
Variable L: Labeled Set, k: batch number
1. L ← U1: Ask human to label the first batch U1.
2. Construct the models C andR using L.
k ← 2
while New batch of data

(
Uk
)

available do
3. Construct graph G = (V,E) based on Uk
4. Use the current model C andR to assign the node

and edge potentials to the graph
5. Run inference on the graph to obtain the node (pi)

and edge (pij) probabilities
6. Compute the entropy and mutual information and

construct the vector h and matrix M respectively.
7. Find λ using Eqn. 10
8. Obtain x∗ Eqn. 6 using Fujishige-Wolfe Min Norm

Point algorithm
9. Use x∗ to select the samples for query to human

lets denote it by V l∗. Then, L ← L ∪ V l∗
10. Inference conditioned on the acquired labels and

L ← L ∪ {Highly confident instances} (weak teacher)
11. Use L to update the models C andR
k ← k + 1

end while

game theory, information theory, etc. Detailed description
may be found here [33]. There exists some algorithms which
can be used to solve SFM in polynomial time. We use the
Fujishige-Wolfe Min Norm Point algorithm [15] in the Sub-
modular Function Optimization (SFO) [25] toolbox to solve
the submodular minimization problem in Eqn. 6. It is one of
the most well-known algorithms to solve SFM.

Parameter. The parameter λ in Eqn. 6 is a trade-off
between the two objectives as discussed previously. If f(x)
is the objective function in Eqn. 6, then λ can be expressed
as,

λ = α
minx f(x)|λ=0 − 0

0−maxx xT1
(10)

where α is a scalar parameter. In Eqn. 10, a fraction is
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obtained using the range of values of the two objective func-
tions, such that the scaling between the two objective func-
tions using λ is appropriate. λ now depends on α, which can
be kept close to 1 for all applications due to the scaling done
in Eqn. 10 between the two objective functions.

Model Update After the chosen samples are labeled by
a human, we perform inference on the graph conditioned
on the acquired labels to update the beliefs of the nodes
and then we apply the concept of weak teacher [51], which
does not involve the human. We choose those nodes having
confidence of classification > ε, with the corresponding
label, to be in the labeled set L. ε should be high enough to
avoid wrong labeling. The classification model C is updated
by retraining the classifier using L. ModelR is comprised
of only the co-occurrence matrix ψ and it is incremented
using the new labeled instances. An overview of the entire
framework is presented in Algorithm 1.

Special Case of Archived Data. The proposed method
can also be used in cases where the entire dataset is available
at the outset (see supplementary material). A small set of
samples is randomly selected from the unlabeled dataset and
their labels are obtained. These labeled samples are used
to construct the initial models C and R. These models are
used to choose the informative samples from the rest of the
unlabeled pool of samples and then the models are updated
after acquiring the labels. This process continues until the
joint entropy of the remaining subset < threshold.

5. Experiments
In this section, we present experimental analysis of our

proposed active learning framework for three distinct applica-
tions - joint scene-object classification, activity recognition,
and document classification. These applications are chosen
as they have data which share relationships among them. For
each application, we perform the following experiments.
• We compare the proposed method with commonly used

and state-of-the-art active learning methods namely -
Batch Rank [7], BvSB [29], Entropy [39, 19], Density
Based Sampling (DENS) [39], Expected Gradient Length
(GRL) [40] and Random Sampling. We also compare with
CAAL [18] for activity recognition.

• We compare the results of our algorithm with other state-
of-the-art methods which use the entire dataset for training,
details of which is mentioned subsequently.

• We perform sensitivity analysis of the proposed method
on the parameter α in Eqn. 10.

We use Support Vector Machine (SVM) [8] as a baseline
classifier for our proposed method as well as for all the active
learning methods with which we compare, to have a fair
comparison. We use the Undirected Graphical Model (UGM)
toolbox [35] to perform inference on the graph. We will use
the following short-notations. “ALL” represents the accuracy

obtained by using the entire dataset for training.“ALL Batch”
denotes that the classifier is updated using ALL the instances
of the current batch.

5.1. Scene-Object Classification

Scene and objects tend to co-occur in images. Although,
scene and objects classifiers are separate, their joint under-
standing can be beneficial [50], which can be exploited in
our active learning framework to reduce manual labeling.

Dataset. We have used the SUN dataset [9, 48] for our ex-
periments on scene-object classification. We use the portion
of the dataset which has both scene and object annotations
as we aim to exploit their relationship. In order to represent
the scene nodes, we extract CNN features (∈ R4096×1) from
fc-7 layer of VGG-net [52] pre-trained on the places-205
dataset. We use the pipeline of R-CNN [17] to detect the
objects and then extract CNN features from fc-7 layer of
Alex-net [26], pre-trained on ImageNet [12].

Experimental Set-up. We perform 5 Fold Cross Valida-
tio0 (FCV)n for this dataset. The training data of 4 folds
is divided into 6 batches and fed sequentially to our active
learning framework. We consider that the first batch is man-
ually labeled and use it to construct the initial models C and
R. We assume that the other batch of data are unlabeled
and we choose only the informative samples for manual la-
beling, which is then used to update the models. It may be
noted that this application is an example which depicts that
our algorithm can be applied for active learning of different
recognition tasks jointly. Each image is represented by a
single scene node and multiple object nodes as detected by
the detector. The graph for this application is considered to
be fully connected and the i, j position of the edge potential
matrix is a count of the number of times an object of class i
appears in a scene of class j.

Results. Fig. 3a and 3d presents the comparison of the
proposed method with other state-of-the-art active learning
methods. The proposed method performs better than the
other methods and reaches the “ALL” mark with only 41%
and 62% manual labeling for scene and objects respectively.

Fig. 3b and 3e presents the results of the proposed method
along with methods which consider that the entire dataset
is manually labeled and available for training. We compare
with SUN-CNN [52] for scene classification and with R-
CNN [17] and DPM [14] for object classification. As may
be observed, the proposed method requires much lesser num-
ber of samples to be manually labeled to obtain the same
accuracy as“ALL Batch”.

Fig. 3c and 3f present the results of the proposed method
for different values of the parameter α in Eqn. 10. It may
be noted that α = 1.1 have been used for all the results
corresponding to the SUN dataset.
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Figure 3: This figure presents the results on the SUN dataset for joint scene object classification. The top and bottom row
presents plots for scene and object respectively. (a), (d) presents the comparison of the proposed method with other active
learning methods. (b), (e) presents the comparison with other methods which use the entire dataset for training. (c), (f) presents
the sensitivity of the proposed method to the parameter α.
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Figure 4: This figure presents the results on the CORA dataset for document classification. (a) presents the comparison of the
proposed method with other active learning methods. (b) presents the comparison with other methods which use the entire
dataset for training. (c) presents the sensitivity of the proposed method to the parameter α.

5.2. Document Classification

Documents are generally inter-linked by citations and
hyperlinks, which may be exploited using our active learning
approach to reduce manual labeling effort.

Dataset. We use the CORA dataset [37] for our experi-
ments on document classification. It is a dataset containing
2708 scientific publications divided into seven classes. There
are a total of 5429 links (citations) between the publications.
The publications are represented using a dictionary of 1433
unique words and the feature vectors F i ∈ {0, 1}1433 indi-
cate the absence or presence of these words.

Experimental Set-up. We perform 10 FCV for this
dataset following [37] and follow a similar set-up as dis-
cussed previously for scene-object. We construct the graph
such that each node is connected to its five nearest neighbor
in the feature space. The i, j position of the edge poten-
tial matrix is a count of the number of times a publication
belonging to class i is related to class j via a citation link.

Results. The results of the proposed AL method along
with other state-of-the art AL methods is presented in Fig.
4a. It may be observed that the proposed method performs
much better than the other algorithms and requires only 42%
manual labeling to reach “ALL”.
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Figure 5: This figure presents the results on the VIRAT dataset for activity classification. (a) presents the comparison of the
proposed method with other active learning methods. (b) presents the comparison with other methods which use the entire
dataset for training. (c) presents the sensitivity of the proposed method to the parameter α.

We also compare our proposed method with other meth-
ods which consider that the entire dataset is manually labeled
and use it for training. Fig. 4b presents the comparison with
two such methods namely CCND [37] and LBC [36] 1. The
proposed method performs much better than “ALL Batch”,
which signifies that the proposed method extracts maximum
possible information from the unlabeled set, but using much
lesser manual labeling.

We also present analysis of the parameter α in Eqn. 10
and the plots are presented in Fig. 4c. The results in Fig. 4a
and 4b is with α = 1.1. Lower the value of α, lesser will be
the penalty for the number of samples chosen per batch (Eqn.
6), thus more samples will be chosen. This is also evident
from Fig. 4c. Although, the performance with α = 0.5 is
similar to α = 1.1 at the end, the later chooses much lesser
number of samples for manual labeling.

5.3. Activity Classification

Activities are generally spatially-temporally related
which can be exploited to reduce the number of instances
chosen for manual labeling.

Dataset. We use the VIRAT dataset [34] on human activ-
ity for our experiments on activity classification. The dataset
consists of 11 videos segmented into 329 activity sequences.
We extracted features using the pre-trained model of 3D
convolutional networks [42]. We extract the features from
16 frames with a temporal stride of 8 and then apply max
pooling to obtain a single vector ∈ R4096 for each activity.

Experimental Set-up. We have used the first 176 se-
quence (761 activities) for training and 153 sequence (661
activities) for testing. We have divided the training set into
20 batches and fed them sequentially to our active learn-
ing algorithm. We consider that there exists a link between
two activities if they have occurred within a certain spatio-
temporal distance. We consider the edge potential to be the
spatio-temporal co-occurrence between the two activities.

1Please note that the horizontal lines should be points at 100% manual
labeling, but for the sake of clarity, we have presented them as it is.

Results. The results of the proposed active learning al-
gorithm with other state-of-the-art active learning methods
is presented in Fig. 5a. It may be observed that the pro-
posed method not only reaches the accuracy of “ALL” in
only 18% manual labeling, but also performs better than
“ALL”. The fact that an algorithm can perform better than
“ALL”, i.e. using the entire dataset for training is discussed
in [28]. Although Batch Rank reaches “ALL”, it requires
much more manual labeling than required by the proposed
method. ”CAAL” remains close to the proposed algorithm
initially, but the latter peaks up thereafter.

We compare the proposed method in in Fig. 5b with other
learning algorithms which consider the entire dataset to be
manually labeled and use it for training namely - Context
Aware Activity Recognition (CAAR) [53] and Sum Product
Network (SPN) [1]. It may be observed that the proposed
method peaks much faster than “ALL Batch” which indi-
cates that the former requires lesser manual labeling in each
batch to obtain the same accuracy as when the entire batch
is manually labeled and used for training. The plots for sen-
sitivity analysis of the parameter α for the VIRAT dataset is
presented in Fig. 5c.

6. Conclusions and Future Work
In this paper, we proposed a novel generalized active

learning framework for inter-related data. Our framework
can be applied for active learning of both single as well as
multiple recognition tasks simultaneously by exploiting the
inter-relationships in data. Our proposed method selects non-
uniform number of samples from each batch depending on
the information content. The proposed informative subset
selection methodology is not only fast due to its submodular
property, but also performs well on a wide range of appli-
cations. Future work will consider the scenario where the
labels provided by human is not always correct.
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