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3D scene modeling from a video sequence is considered to be one of the most
important problems in computer vision. Its successful solution has numerous
possibilities in applications like multimedia communications, surveillance, virtual
reality, automatic navigation, medical prognosis, etc. One of the most powerful
techniques for solving this problem is known as structure from motion (SfM).
Briefly, the SfM problem is about recovering the absolute or relative depth of
static and moving objects using video acquired from single or multiple video
cameras. The most challenging problem is when only a monocular video is
present and we require a dense estimate of the depth. Successful solution of this
problem requires a detailed understanding of the geometry of the 3D world and
its 2D projections on the image planes. However, the motion between adjacent
frames of a video sequence is usually very small, thus introducing large errors in

its estimation. Hence, in order to obtain a satisfactory solution, it is important to



understand the statistics of these errors and their interaction with the geometry
of the problem. The overall aim of this thesis is to show how to combine the
statistics describing the quality of the input video data with an understanding
of the geometry, in order to obtain an accurate 3D scene reconstruction from a
video sequence using the optical flow model.

In our work, we pose the 3D reconstruction problem in an estimation-theoretic
framework. We adopt the optical flow paradigm for modeling the motion be-
tween the frames of the video sequence. We show how the statistics of the errors
in the input motion estimates are propagated through the 3D reconstruction
algorithm and affect the quality of the output. We present a new result: that
the 3D estimate is always statistically biased, and the magnitude of this bias is
significant. In order to demonstrate our analysis in a practical application, we
consider the problem of reconstructing a 3D model of a human face from video.
An algorithm is proposed that obtains a robust 3D model by fusing two-frame
estimates using stochastic approximation theory and then combines it with a
generic face model in a Markov chain Monte Carlo optimization procedure. We
address the question of how to automatically evaluate the quality of a 3D re-
construction from a video sequence, and present a criterion using concepts from
information theory. Finally, we propose a probabilistic registration algorithm
that extends the results of our work to create holistic 3D models from multiple

video streams.
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Chapter 1

Introduction

Extraction of the 3D structure of a scene from a sequence of images is termed the
structure from motion (SfM) problem. It has been one of the central problems
in computer vision for the past two decades, because of potential applications
in numerous areas like multimedia communication, virtual reality, automatic
navigation, robotics, surveillance, human recognition and identification, medical
diagnosis, etc. Extensive literature on the subject can be found in [1], [2], [3],
[4], [5], and [6], among others.

The traditional approach to this problem is to recover the 3D structure from
a pair of images of the scene. This is known as the geometric stereo approach
and is based on the concept of triangulation: if two corresponding points on
two images are known, then the 3D object point must lie at the intersection
of the rays through those two points. While the theoretical basis of stereo is
straightforward, its implementation is a non-trivial issue. It requires that we es-
tablish correspondence between points in two images, which by itself is a difficult
problem.

The other approach to this problem is to reconstruct the 3D scene from a

monocular video sequence using optical flow [7]. The optical flow is a model



for the motion between adjacent pairs of frames in a video sequence, which can
then be used to extract the 3D structure [8]. The challenge in this approach
is that the motion between adjacent frames of the video sequence is usually
very small, thus making the motion estimation process extremely sensitive to
noise. However, as we show in this thesis, it is possible to derive closed-form
mathematical expressions for the error in the 3D estimates, which can then be

used to obtain robust reconstructions.

1.1 Literature Review

Pioneered by the seminal work of Longuet-Higgins [9] and the eight-point algo-
rithm developed independently by Tsai and Huang [10], SfM has been one of
the most vibrant research areas in computer vision. Most of the earlier work
concentrated on developing efficient algorithms for reconstructing 3D structure
from multiple frames. The use of multiple frames was motivated by the hope that
the extra information would help correct the flaws that are inevitably present in
two-frame reconstructions. The problem of tracking an object across multiple
frames was addressed in [11] where a known object and its past position and ve-
locity were used to predict its new location. Broida and Chellappa investigated
the use of the extended Kalman filter [12] for estimating motion and structure
from a sequence of monocular images [13]. Azarbayejani and Pentland extended
this work to include the estimation of the focal length of the camera, along with
motion and structure [14]. Tomasi and Kanade developed an algorithm for shape
and motion estimation under orthographic projection using the factorization the-
orem [15]. Szeliski and Kang proposed a non-linear least squares optimization

scheme using the Levinburg-Marquardt method for solving the problem [16].



Oliensis developed a multi-frame algorithm under perspective projection in [17],
which was extended recently in [18]. Most of these multi-frame methods can be
characterized as batch processing (but not necessarily recursive), which means
that the problem of estimating the motion and structure is formulated as one of
minimizing an objective function defined as a sum of squares of the differences
between the actual observed images and the projections of their estimated 3D
locations, over all tracked positions and images (bundle adjustment). In con-
trast, Thomas and Oliensis proposed a fusion algorithm that computes the final
reconstruction from intermediate reconstructions by analyzing the uncertainties
in them, rather than from image data directly [19]. The error in the individ-
ual reconstructions was modeled as a combination of the error in the estimated
camera motion and the error in tracking the image coordinates, assuming the
image noise to be independent and zero mean.

Another focus of research in SfM has been on understanding the sensitiv-
ity of the solution when the input data is noisy. SfM algorithms often make
assumptions about the inputs (e.g. perfect image correspondences) that are vi-
olated in practice and lead to errors in the reconstruction. In order to make
our algorithms work in the presence of these errors, we might be tempted to
introduce preprocessing stages to minimize their effects (e.g. design better cor-
respondence algorithms). However, the sources of the errors are often unknown;
preprocessing stages are independent research problems in their own right (the
correspondence problem is a very good example of this); and incorporating these
stages adds to the total computational cost of the final system. The alternative
is to understand these errors in a statistical sense and account for their influence

within the structure of the main algorithm.



Many researchers have analyzed the sensitivity and robustness of several of
the existing algorithms for reconstructing a scene from a video sequence. The
work of Weng et al. [20, 21] is one of the earliest instances of estimating the
standard deviation of the error in reconstruction using first-order perturbations
in the input. The Cramer-Rao lower bound on the estimation error variance
of the structure and motion parameters from a sequence of monocular images
was derived in [22]. Young and Chellappa derived bounds on the estimation
error for structure and motion parameters from two images under perspective
projection [23] as well as from a sequence of stereo images [24]. Similar results
were derived in [25] and the coupling of the translation and rotation for small
field of view was studied. Daniilidis and Nagel have also shown that many
algorithms for three-dimensional motion estimation, which work by minimizing
an objective function leading to an eigenvector solution, suffer from instabilities
[26]. They examined the error sensitivity in terms of translational direction,
viewing angle and distance of the moving object from the camera. Zhang’s
work [27] on determining the uncertainty in the estimation of the fundamental
matrix is another important contribution in this area. Haralick showed how
well-known estimation techniques could be used to propagate additive random
perturbations through many vision algorithms [28]. Chiuso, Brockett and Soatto
[29] have analyzed SfM in order to obtain provably convergent and optimal
algorithms. Oliensis emphasized the need to understand algorithm behavior and
the characteristics of the natural phenomenon that is being modeled [6]. Ma,
Kosecka and Sastry [30] also addressed the issues of sensitivity and robustness
in their motion recovery algorithm. Recently, Sun, Ramesh and Tekalp [31]

proposed an error characterization of the factorization method for 3-D shape and



motion recovery from image sequences using matrix perturbation theory. Morris
and Kanatani extended the covariance-based uncertainty calculations to account

for geometric indeterminacies, referred to in the literature as gauge freedom [32].

1.2  Contributions of the Thesis

In this thesis, we consider the problem of reconstructing the 3D structure of a
scene from monocular video using optical flow to model the motion between the
video frames. The use of optical flow is motivated by the need to obtain a dense
estimate of the structure. The overall aim of the thesis is to show how to estimate
the quality of the 3D reconstruction as a function of the quality of the input video
sequence, and then to use this understanding to build accurate and robust 3D

models. Specifically, the thesis makes the following original contributions.

Error Covariance in Reconstruction We derive an explicit expression for
the error covariance in the motion and structure estimates as a function of
the error covariance in the feature positions in the images. We consider the
separate cases where the focus of expansion (FOE) is known and where it
is unknown. The derivation uses the implicit function theorem [33]. The
result for two frames is extended to multiple frames, resulting in a plot
describing the distortion in the 3D reconstruction as a function of the

number of frames of the video sequence.

Structure Estimate Is Statistically Biased We prove analytically that the
3D estimate obtained from optical flow is statistically biased. The bias
is a result of the fact that the feature positions can be obtained only up

to a certain level of accuracy. We show, through simulations, that the



magnitude of the bias is significant compared to the true depth values.
We also analyze how the bias is affected by the various camera motion
parameters. An interesting observation here is that psychophysicists have
noted the existence of systematic biases in observers’ magnitude estimation
of depth, and our analysis shows that it is also present in the standard

mathematical models used to estimate 3D structure.

3D Face Reconstruction Algorithm Most of the existing work on recon-
structing a 3D model of a human face from video uses a generic model
to initialize the optimization algorithm. The problem with this approach
is that the solution often settles to a local minimum near the initialization
point, resulting in an estimate which bears the characteristics of the generic
model, rather than the particular face being modeled from the video. We
propose an alternative algorithm which uses the theoretical understanding
regarding the quality of the reconstruction and postpones the introduction
of the generic model to a later stage in the algorithm. A 3D estimate
of the structure is obtained purely from the video sequence using robust
statistics and stochastic approximation theory. The generic model is then
introduced to correct for the persisting errors by comparing the geometric
trends in the two models. The generic model is combined with the 3D

estimate in a Markov chain Monte Carlo framework.

Quality Evaluation of 3D Reconstruction Animportant question in 3D re-
construction from video is how to automatically evaluate the quality of the
final estimate. Probably more important: how do we identify situations
where the quality of the video sequence is so poor that even a very large

number of frames will not yield a final result with the desired fidelity?



We have tried to answer these questions using ideas from information the-
ory. We propose a criterion termed incremental mutual information (IMI),
which estimates the mutual information (MI) between the actual 3D struc-
ture and its estimate from a certain number of video frames, and computes
the change in the MI as more frames are considered. The MI is computed
using Monte Carlo techniques. For the Gaussian noise case, we derive an

explicit closed-form expression.

Registration of Partial 3D Models 3D models of a scene are usually ob-
tained by aligning partial models of different portions of the scene. We
propose a scheme whereby two separate models, representing the front
and side views of a face, are registered by taking advantage of information
extracted from multiple video streams of that face or any other similar one.
Since this information needs to be collected only once for each class of ap-
plications, we call it the prior information, and show that its incorporation

can lead to an extremely robust solution.

1.3 Organization of the Thesis

The thesis is organized along the lines of the previous section. In Chapter 2, we
derive the results relating the error covariance of the 3D estimate to the error
covariances in the input feature positions. The results on the bias in the 3D
estimate and its links to the human vision system are derived in Chapter 3. The
3D reconstruction algorithm, incorporating the generic model, is presented in
Chapter 4. Chapter 5 describes the information-theoretic criterion for quality

evaluation and how it can be computed. The extension of our work to multiple



cameras in the form of registration of partial 3D models is discussed in Chapter
6. Finally, we conclude and outline future extensions and applications of this

thesis.



Chapter 2

Uncertainty Analysis and Propagation

2.1 Introduction

Structure from motion algorithms reconstruct the camera motion and 3D depth
either from a set of feature points tracked over a number of frames of the video
sequence or from the estimated optical flow between pairs of frames. In the
discrete case, the optical flow represents the motion estimate at each pixel of a
video frame and is mathematically modeled as tracking a feature set, where each
pixel is a feature point. Naturally, the quality of the reconstruction is affected
by the preciseness with which the features can be tracked. There are two kinds

of tracking errors [27]:

Location errors: This is when a point is poorly localized. Usually, the error
is small (within a few pixels) and can be assumed to exhibit a Gaussian

behavior.

False matches: This is when a particular feature point in one image maps to
a completely different feature point in another image. The errors in this

case are large and cannot be suitably modeled by Gaussian distributions.



Since the localization errors are usually small, their effects can be captured by
the second-order statistics. In this chapter, we analyze how the error covariance
in feature positions due to the localization errors affects the error covariance of
motion and structure estimates. In Chapter 4, we will explain how we deal with
errors due to false matches using robust statistics.

We start by outlining the basic equations for recovering 3D structure using
optical flow. Next, we perform an experimental study of the quality of the
reconstruction obtained from pairs of frames, which gives us a qualitative idea
of the statistics of the errors in the estimates. In Section 2.4, we derive a closed-
form analytical expression relating the error covariance in feature positions to
the error covariance of the motion and structure estimates. We assume that
the covariance matrix of the feature correspondences is known. We will briefly
explain how this can be obtained. The extension of the covariance calculations
to multiple frames of the video sequence is addressed in the last section of this

chapter.

2.2 The Basic Equations of SIM

Consider a coordinate frame attached rigidly to a camera with the origin at
the center of perspective projection and the z-axis perpendicular to the image
plane. Assume that the camera is in motion with respect to a single rigid-body
imaged scene with translational velocity V' = [v,, vy, v,] and rotational velocity
Q = |wg,wy,w,]. We assume that the camera motion between two consecutive
frames in the video sequence is small, and use the small-motion approximation to
the perspective projection model for motion field analysis. If p(x,y) and ¢(z,y)

are the horizontal and vertical velocity fields of a point (z,y) in the image plane,
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they are related to the 3D object motion and scene depth by [34]

play) = (o0 = foo) 2(a,9) + Fayss = (f + 7o), + o
%y2)wx - %xywy - Tw,, (2.1)

where f is the focal length of the camera. Analysis of the above pair of equations

q(z,y) = (yvs— fyvy)/z(z,y) + (f +

reveals that only the translational component of the image velocity depends on
the 3D location of the scene point; the rotational component depends only on
the image position (z,y). Also, the image velocity field is invariant under equal
scaling of the depth z and the translational velocity vector V. This is known
as the scale ambiguity for 3D reconstruction. It follows that we can determine
the relative motion and scene structure only up to a scale factor. Since only the
direction of the translational motion can be obtained from (2.1), the equations

can be re-written as

p(z,y) = (- fzp)h(z,y) + lxywz —(f+ l362)wy + Yw,

f f
1 1
o(z,y) = (y— fyph(z,y) + (f + ?y"’)ww - ey s (22)
where (zy,y7) = (32, ;%) is known as the focus of ezpansion (FOE), and h(z,y) =

V2
z(z,y)

is the inverse scene depth. For N such corresponding points, the equations

can be written in more compact matrix notation. Let us define [8]
h = (hi,he, s An) N

u = (pI: q1,P2,492y ---; PN, qN)ngl

r, = (xiyi,—(l +xz2)ayi)§x1
s, = (1 + yf, —ZiVYi, _xi)gxl
Q = (wz‘awy:wz)gxl
T
Q = |r s 71y S9 ... TN SN
2N x3

11



Y1 —Yr 0
0 Ty — Ty
0 Y2 — Yy
0 0
0 0

P Q]2N>< (N+3)
h

L (N+3)x1

Then (2.2) can be written as

We want to compute z from u.

12
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2.3 Qualitative Analysis of 3D Estimates

2.3.1 Distribution of Depth Sub-Estimates

2NXN

(2.3)

Our experiments in understanding the properties of two-frame reconstructions
will have two parts: statistical distribution of the intermediate depth recon-
structions (we will also refer to them as sub-estimates) and time-series analysis
of these sub-estimates. Our experiments are conducted on two different image
sequences, an indoor sequence of a person’s face and an outdoor sequence of a

house. One frame from each of these two sequences in shown in Figure 2.1.

To obtain a good fused estimate from sub-estimates, one should know how to

weight the sub-estimates and their uncertainties in order that the final esti-



Figure 2.1: One frame from each of the two video sequences: (a) represents an
image from an indoor video sequence and (b) from an outdoor video sequence.
These two sequences were used in the qualitative analysis.

mate accurately reflects this information. In a general fusion problem, this in-
volves computing the likelihood function [35]. Traditional fusion methods like
Kalman filtering provide a computational method for this likelihood function
and work well under Gaussian approximation. This typically happens when the
sub-estimates have small uncertainties and a Gaussian approximation to reflect
their variances is adequate. However, when the sub-estimates have large errors,
it is inadequate to approximate their likelihoods as Gaussian.

A standard test for Gaussianity of observations is to analyze their higher-
order statistics. It is well known that for Gaussian random variables, all odd
central moments are identically zero (this is actually true for any symmetric
distribution) and all cumulants of order greater than two are zero [36]. Figures
2.2 and 2.3 show plots of the estimates of the central moments and cumulants of
two-frame depth against the feature points. Analysis of these plots reveals that
there is significant non-Gaussianity in the distribution function of the depth. For
the indoor face sequence, the estimated skewness is —0.25 and the kurtosis is

1.9, while for the outdoor house sequence, the values are 1.1 and 3.2 respectively

13



(averaged over all features). Knowing that the skewness of a standard normal
distribution (N(0,1)) is 0 and the kurtosis is 3 [37], we can infer that the distri-
bution of the depth sub-estimates for the face sequence is left skewed (negative
skewness) and flat (kurtosis less than 3), while the same distribution function
for the house sequence is right skewed (positive skewness) and peaked (kurtosis
greater than 3). What these figures emphasize is that the distribution function
of the depth sub-estimates which need to be fused is significantly non-Gaussian
and it varies widely depending on the data (in fact, it is impossible to even infer
whether the distribution is sub-Gaussian or super-Gaussian). However, it is not
possible to infer anything more about the distribution function, thus making it
impossible to write down the likelihood function. These observations should be
taken into consideration in designing the optimization strategy to be adopted

for multi-frame fusion, as will be explained in Chapter 4.

2.3.2 Time Series Analysis

Figure 2.4 shows a plot of the depth values (obtained for pairs of frames) across
50 frames for four randomly chosen points in the face image sequence. It can be
seen that there are isolated outliers in all four cases. It is difficult to ascertain the
exact cause of the outliers; however, the general reasons for their occurrence can
be inferred. Application of least squares estimation techniques in the presence
of such outliers will severely affect the estimates. One bad point is often enough
to perturb least squares completely. In fact, regression analysis shows that least
squares is vulnerable to outliers in both the independent or explanatory variables
as well as the observations or response variables [38]. In our case, the observations

are the two-frame depth values which depend on the image correspondences
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Figure 2.2: Plot of estimates of the moments and cumulants of the two-frame
depth for the outdoor house sequence against the tracked feature points. Skew-
ness = 1.1; Kurtosis = 3.2 = right skewed and peaked distribution.
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Figure 2.3: Plot of estimates of the moments and cumulants of the two-frame
depth for the face sequence against the tracked feature points. Skewness =
—0.25; Kurtosis = 1.9 = left skewed and flat distribution.

16



250 60
200 40

150
20

100
0

50
0 -20
-50 -40

10 20 30 40 50 10 20 30 40 50
) (d

80 60
60 40

40
20

20
0

0
20 -20
-40 -40

0 10 20 30 40 50 0 10 20 30 40 50

Figure 2.4: A plot of the depth values across 50 frames for four randomly chosen
points from the face sequence. It can be seen that there are isolated outliers in
all four cases.

(p, q), and which therefore are the explanatory variables. Thus there are outliers
in both of the variables and least-squares techniques will perform poorly.
Numerous papers have been published in the statistics literature over the last
two decades on designing robust estimators [38]. The two most popular robust
methods are M-estimators and the least-median-of-squares (LMedS) method. A
good review of these methods in general and as applied to vision in particular
can be found in [1], [2], [39], [40], [41]. While we address the issue of designing
a robust 3D reconstruction system in Chapter 4, we will introduce the use of

LMedS, which estimates the parameters by solving the nonlinear minimization
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of the residual 7;,
min medianr?

i (2.5)

The median is a preferred estimator as it has a high breakdown point. In fact,
experiments prove that this method is very robust to outliers due to either bad
localization or false matches [1]. However, unlike M-estimators, the LMedS prob-
lem cannot be reduced to a weighted least-squares problem, thus complicating
its computation. It is also a well-known fact that the efficiency of LMedS is low
in the presence of Gaussian noise [39] '. As discussed before, the noise in the
structure estimates deviates appreciably from Gaussianity and thus LMedS is a
good choice for our application.

Given that the two-frame depth observations are non-Gaussian, a linear es-
timator like the least squares or the linear mean square error estimators is no
longer optimal (in the minimum variance sense). We must therefore search over
a larger class of non-linear estimators. However, rather than search for a general
non-linear estimator, we restrict our search to those estimators which minimize
the median of squares. The question now is, is it possible to develop a recursive
strategy for this optimization taking into account the statistics of the observa-
tions we mentioned previously? Before we can answer that question (in Chapter
4), we need to obtain a quantitative idea of the errors in the reconstruction,

which we will now address.

!The efficiency of an estimator is defined as the ratio of the lowest achievable variance of
the estimated parameters (obtained from the inverse of the Fisher information matrix) and
the actual variance obtained from the given method.
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2.4 Error Covariance of 3D Reconstruction

In this section, we will derive an expression for the error covariance in 3D recon-
struction as a function of the error covariance in the 2D motion estimates. We
will use the implicit function theorem to derive a very general result and then
introduce different assumptions (like Gaussianity and independence) to calculate
simpler expressions.
Recall equation (2.4). Let z = ¢(u). Expanding 1 in a Taylor series around
Elu],
Y(u) = ¢(E[u]) + Dy(E[u])(u - E[u]) + O(u — E[u])?, (2.6)
where O(z?) denotes terms of order 2 or higher in x and Dy(x) = %£. Up to a

first-order approximation,
¥(u) — Y(E[u]) = Dy(E[u])(u — Elu]). (2.7)
The covariance of z can then be written as
R, = E[(¢(u) - E[(u)])(¢(u) — Elp(u)])7]
= E[Dy(E[u])(u — E[u])(u — E[u))"(Dy(E[u]))"]
—  Dy(E[u))RuD,(Elu))" (2.8)

where R, is the covariance matrix of u and we have used the first-order approx-

imation that E[z] = ¢(E[u]). Now consider the cost function

¢ = -|[Bz—ulf

i(cﬁi +C2), (2.9)
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where C); and Cj; are the components of the cost function corresponding to the
p and ¢ components of the motion and b;; is the (i,j)th element of B.

We will first consider the case where the FOE is known, resulting in a linear
system of equations in (2.4) . We will state a result which gives a precise re-
lationship between the error in the image correspondences R, and the error in
the depth and motion estimates R,. We will then show how the results can be

extended to the case where the FOE is unknown.

Theorem 1 Define

Ap = [0 - 0 —(zi—zp) 0 -+ 0 —zy; (1+2F) -y,
= [=(2; — 2p)G(N)| — 1] = [Aspn| Aspmi]
Ag = [0 -+ 0 =(yi—ys) 0 - 0 —(L+y]) zw(N) 3,
= [ —yp)LIV)| = si] = [Aign| Aigm] (2.10)

where 1 = [i/2] is the upper ceiling of i (i will then represent the number of
feature points N and i = 1,..,n = 2N) and I,(N) denotes a 1 in the nth
position of the array of length N and zeros elsewhere. The subscript p in Ay,
and q in Az, denotes that the elements of the respective vectors are derived from

the pth and qth components of the motion in (2.2). Then

oCT oC; . oCT oC;
R, = H LR, -t | HT 211
(z; 0z Ou ou 0z ) ( )
N
= H! (Z (45" Aip Ry + AiqTAiquq)) H™, (2.12)
i=1
and
N
H = Z (AngA;p + AZqTAiq) . (2'13)
i=1
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2.4.1 Proof of Error Covariance Result

We will use the implicit function theorem [33] to prove the above result. The
approach is similar to the derivation of the uncertainty in the fundamental ma-
trix [2]. However, it is possible to derive explicit and elegant results for the
error covariance in terms of the parameters of (2.2), which would be extremely

cumbersome for the case of the fundamental matrix.

Implicit Function Theorem The implicit function theorem states that if f
is a continuously differentiable mapping, f(z,y) = 0 can be solved uniquely for
y in terms of x under certain conditions. We state the theorem precisely as
described by Rudin in [33].

Let f be a C' mapping of an open set E C R"™ into R, such that f(a,b) =0
for some point (a,b) € E. Put A =1f'(a,b) and assume that A, (the derivative
matrix of £ with respect to its first argument x € R") is invertible. Then there
exist open sets U € R and W € R™, with (a,b) € U and b € W, having
the following property: To every y € W there corresponds a unique x such that

f(g(y),y) =0 and
g'(b) = —(4;) TA4,.0 (2.14)

For our problem, we desire to obtain our parameter of interest z by minimiz-

ing C. Choosing a = E[z] and b = E[u], let

T
= o0 and H 0¢

¢ 0z’ = oz

(2.15)

¢ is a m x 1 vector and H is a m x m matrix. Then from the implicit function

theorem

Dy(u) = —H‘lg—i. (2.16)
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Thus (2.8) becomes

R, = H—lg—iRu%TH—T. (2.17)
Then from (2.9) and (2.15),
T T
T .
T .

Thus equation (2.17) becomes

Toc. 90T oC.
aCT aC; ’ aq) HT (219

R,=H"! R

” (; 0z Ou " Ou Oz
which gives a precise relationship between the uncertainty of the image corre-
spondences R, and the uncertainty of the depth and motion estimates R,.

Substituting our cost function from (2.9), we get

[ A, iodd
9Gi _ P : (2.20)
0z A, 1 even
as a 1 x (N+3)-dimensional vector and
oC; —  [9C; 8c; ... 9C; @]
Ju opr Oq opn  Ogn D’
= IL(2N), (2.21)
as a 1 x 2N-dimensional array. Hence the Hessian from (2.18) becomes
N
H= Z (AngA;p + quTA;q) . (2.22)
i=1

Assuming that the feature points as well as the components of the motion vector

at each feature point are independent of each other, R, = diag[R.,, R li=1,.n-

guue
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(Note that this condition is weaker than the one required to prove the optimality
of the least squares criterion according to the Gauss-Markov theorem [37].) Then

we can obtain a simpler relationship for the error covariances in (2.19):

oCT oC; . oCT aC;
— -1 7 ¢ i % -T
R, = H (Z 0z Ou Ru ou 0z ) H

= H_lkﬁ (AngAngugp + quTA;qRug?)}{_T. (2.23)
i=1

Equations (2.22) and (2.23) prove the statement of Theorem 1. If we make
the even stronger assumption that the components of R,, are all identical (with

variance r?), i.e. Ry = r’Ioyxon, then (2.23) simplifies to

R, = H'(PHH "

= r*H . (2.24)

2.4.2 Unknown FOE

When the focus of expansion in (2.2) is unknown, the linear form of (2.4) is

lost. The unknown vector z = [h, z;,y;, 2] = [h, m]” and the cost function is

c=" 5 CF = %2?21 < u;—1;(2z), u; —0;(z) >, where 4; is the estimate of the
2D motion vector obtained by projecting the reconstructed scene according to
(2.2). However, our method of deriving the error covariances using the implicit
function theorem allows us to use the same method to derive the error covariances
in this general case. The derivation presented above remains exactly the same

except that we need to redefine the two vectors A;, and A;, as follows:

Ap = [~(@i—z)LN) | ki 0 —r,
= [Ath‘Azpm:
Aig = [~W—ypLWV) | 0 by —sj),
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A very important distinction between the unknown FOE case and the known
FOE case is that A;, and Aj;, are now functions of the inverse depth estimates

h;.

2.4.3 Structure of R,

The R, thus obtained has an interesting structure as a result of our partitioning

the vectors A;, and Aj, into structure and motion components. From (2.22),

H Hum
H=| " " (2.26)
H{, H,
where
N
Hy, = Z (AiphTAzph + AzthAiqh)
=1
N
Hfm = Z (AfmeAEph + Aiququh)
i=1
N
Ho = Y (Aim Aipm + Aign” Aign) - (2.27)
i=1
(2.28)
Thus
(x1 —25)” + (1 — yg)? 0
Hy = : : (2.29)
0 ($N—$f)2+(y]\r—yf)2
and
al T T
He =3 (xTr; +s7s;) (2.30)
1=1
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Then the inverse of H (assuming it exists) is [42]

S
H' = Q (2.31)
s G
with
Q = (Hn—HumH Hp, )™
G = (Hm-H} H;'Hpm) ™!
S = —-QH,,H, (2.32)
From (2.23)
zf;l (AipTAipRuip + quTA;qRuz(I) =
Z%’VZI (AthTA;thuEp + quhTAthRufq) Zf;l ( zphTA;meufp + AithAEququ)
Zf;l ( EpmAfphTRuEp + qumAthTRuzq) Zf]:l ( fmeAzmeufp + A?ququmRufq)
A C
N (2.33)
CcT’ B
with
=Y (AzphTAzthuzp + AzthAithuiq> =
(21 — xp)%00 + (Y1 — yp)’00 -~ 0
0 o (zn —zp) ooy + (yv — yy)’oin
(2.34)

where 025 and 02% are the variances of the p and ¢ motion components for the
p q

i-th feature point (i.e. Ry = 02; and R,;, = 025). Then substituting (2.29) and
p q

(2.33) into (2.23), we obtain a partition for R, as

Ry Rum
R, = nooh (2.35)
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T
S A C S

_ | © Q (2.36)
ST G Cc B st G

Under the simplifying assumptions of equation (2.24), the partition of R, can

be obtained from the partition of H directly. Thus

Rh = 7“2 Q S (237)

ST G
This is precisely the expression for the covariance and Cramer-Rao lower bound
(CRLB) derived in [23] under an IID Gaussian noise assumption. This should

be the case since the least squares technique is optimal under these conditions

(the Gauss-Markov theorem [37]).

Estimating the Covariance of the Feature Points: The covariance of the
feature points is in principle a function of the tracking algorithm, its parameters
and the image intensity function in the neighborhood of the tracked points. We
try to estimate the covariance of the feature points due to measurement errors
caused primarily due to localization of the points. We use the standard method
for estimating the error covariance using the inverse of the Hessian matrix of
the second partial derivatives of the intensity along the z and y axes [31]. If
x = [u(i, ), v(i, §)]" represents the motion estimate in the = and y directions
respectively at a point (7,7), then the error covariance at that point can be

estimated by the inverse of the Hessian matrix as

O1(i,g)  81(ig)

_ ox2 0zdy
Ra= 1 iy o2ng) ’ (2.38)
oz 0y ay2

where 1(i, j) is the intensity at the point (i, 7).
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2.5 Performance Analysis for Multiple Frames

In this section, we extend our covariance computation results to multiple frames
and obtain an expression for the error as a function of the number of frames
in the video sequence. We will discuss the importance of such a criterion in

automatically evaluating the quality of a reconstruction.

2.5.1 FError Covariance Calculation

Let the two-frame inverse depth values for a particular feature point be denoted
by X', X% ., X" and let X be the mean. Now E[X]| = + YN E[X'] and
Cov[X] = E[(X — X*)?] = E[X?] - E[X]*.

wsr - (o))

- e (Se)

= 3 [T EXTH LS BB ik (239)

and

E[XY = E l(% f:xﬂ

‘=1

1 N 22 7
- E SR T awig)
1=1 i=1j=1
1 [~ ) N N
= ¥ EZIE[XZ]—FE;E:IE[X’XJ] i# ] (2.40)
1= 1=17=
which yields the expression for the covariance of the estimator as
Cov[X N2 ZCOV[X’] + lel E[X'X’] — EIX'|E[X))| i (2.41)
i=1j
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The first summation, Cov|[X"], is the variance of the two-frame depth estimates
obtained from R in (2.24). Under the assumption of independence of the two-
frame observations, the second term of (2.41) vanishes and we obtain a closed-
form expression for the variance of the estimator for the N-frame SfM algo-

rithm.The covariance of the estimate of the j-th feature point is
_ 1 [
Covl] = 5 | RiG9) .42
i=1
where R (4,7) is the j-th diagonal term obtained from (2.36) for the i-th and

(i + 1)-st frames. Under the assumption of IID Gaussian noise of [23] for the
two-frame algorithm, (2.42) simplifies to the following form:
* 1 N i2ir - -
CovlX;] = % ;r Q'(7,9)|
1 [¢ i2 gy i il -1
where the terms are defined in (2.31) and (2.32). The expressions are valid for
both the known and unknown FOE cases with A;, and A;, appropriately defined.

The average distortion in the reconstruction over M feature points is
BEun[(X — E[X])*] = Eu[En((X - E[X])*|X = X;]]

1 M N )
= WZZRMJ}J’)

j=1l4=1
. :
= Nz > trace(Ry,). (2.44)
i=1

2.5.2 Significance of Multi-frame Distortion

Figure 2.5 plots the covariance of the estimator for the inverse depth as a function
of frame number using (2.42) and (2.44) for two video sequences used in our
experiments. A few interesting observations regarding these curves can now be

made.
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Figure 2.5: Plot of average distortion in reconstruction as a function of the
number of frames for two different video sequences. The vertical axis is scaled
down by a factor of 103.

Given a particular tolerable level of distortion, each of these curves specifies

the minimum number of frames necessary to achieve that level of distortion.

The errors in SfM are due to a number of reasons, the effects of which are
impossible to quantify separately. These curves give a compact represen-
tation for understanding the effects of these various sources of errors on

the final estimate.

The curve identifies an operating point of a MFStM algorithm as a trade-
off between tolerable reconstruction error and the computational cost of

considering more frames.

The curves depend on the covariance of the image correspondences only,
if the FOE is known. In situations where the FOE does not change ap-
preciably over the image sequence of interest, it is possible to plot these

curves after the first pair of frames itself (after estimating the FOE).
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e Though the average distortion over all features is plotted here, the curves
can also be obtained for each individual feature point using (2.42). Since
the uncertainty of the depth estimates is a function of the feature point
(since the variance of the image correspondences will depend on the par-
ticular feature), the curves can be used to identify points which are more
prone to reconstruction errors and thus would require greater numbers of

frames to achieve a tolerable distortion.

e The nature of the plots for the unknown FOE case will remain the same,
with Az, and Aj;, defined appropriately as in (2.25) (and now depending
on h). However, they can no longer be computed without first estimating
h. Hence the distortion in (2.44) needs to be estimated as the algorithm

progresses.

2.6 Conclusions

In this chapter, we have presented our method for computing the error covariance
of the depth and motion estimates as a function of the error covariance in tracking
the feature points. We also showed how the results can be extended to consider
multiple frames in the video sequence. These results provide a quantitative
understanding of the quality of the reconstruction as a function of the quality of
the video sequence, embedding in them the effects of several factors like lighting,
camera distortion, algorithmic shortcomings, etc. In a later chapter, we will
show how to use these mathematical results to obtain accurate and robust 3D

reconstructions from a video sequence.
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Chapter 3

Bias in Structure Estimate

3.1 Introduction

In the previous chapter, we dealt with the question of estimating the error co-
variance in the depth and motion estimates as a function of the error in tracking
the feature points. A different source of error which has not received much atten-
tion in the computer vision community, but has been noted by psycho-physicists,
is the fact “that it is hard to explain ... the existence of systematic biases in
observers’ magnitude estimation of perceived depth” [43]. In this chapter, we
prove that the depth estimate is statistically biased, derive a precise expression
for it, and hypothesize that our mathematical analysis supports many of the
experimental observations. Many structure from motion (SfM) algorithms that
reconstruct a scene from a video sequence pose the problem in a linear least
squares framework Ax = b. It is a well-known fact that the least squares esti-
mate is biased if the system matrix A is noisy. In SfM, the matrix A contains
the image coordinates, which are always difficult to obtain precisely; thus it is
expected that the structure and motion estimates in such a formulation of the

problem would be biased. Some authors, notably Weng et al. [20], Daniilidis and
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Spetsakis [44] and Kanatani [45], have proved that there exists a bias in transla-
tion and rotation estimates from stereo. Using the matrix perturbation theorem
[42], Kanatani has derived expressions for the bias in the rotation and transla-
tional angles. Yet, to the best of our knowledge, there has been no attempt to
compute the bias in the depth reconstruction from monocular video or to analyze
the effects of different motion parameters on it. We show that even with a per-
fect motion estimate, the depth estimate is statistically biased. Existing results
on the minimum achievable variance of the estimator are extended by deriving a
generalized Cramer-Rao lower bound. Through simulations, we demonstrate the
effects of camera motion parameters on the bias and give numerical examples to
highlight the importance of compensating for it.

This chapter is organized as follows. In Section 3.2, we compute an expression
for the bias term. We also analyze the relationship of our results to the human
visual system. Section 3.4 extends the existing results on the minimum variance
of the structure estimate and derives a generalized CRLB after incorporating
the effect of the bias. We analyze how the bias is affected by various physical
parameters, like the camera motion and the geometrical indeterminacies. Finally,
in Section 3.5 we present our experimental results and through simulations,
compare the reconstructions obtained from a bias-compensated SfM algorithm
with those obtained from one that ignores the bias. Also, the effects of the

different motion parameters on the bias and the generalized CRLB are studied.
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3.2 Bias in Depth Reconstruction

3.2.1 Problem Formulation and Result

Recall equation (2.4) of Chapter 2, Bz = u. In situations where the FOE
is known or can be estimated by other means [8], the solution vector x can
be obtained using a standard linear least squares approach. The estimate is
z = (B'B)"'B'u [36].

The system matrix B depends upon the image coordinates {z;,y;} and the
FOE (zy,yy). The positions of the image coordinates will always have measure-
ment errors, which are sometimes quite large. Thus the matrix B may have
significant noise terms. It is well known that the least-squares solution to a
linear system of the form Ax = b with errors in the system matrix A is biased
[46], [47]. Thus we can expect that the solution to the SfM problem will also be
biased.

In this chapter, we obtain an approximate expression for the bias in the
estimate and analyze the significance of this estimation error on the reconstruc-
tion. In order to keep the algebraic manipulations tractable, we assume that we
know the camera motion €2. Then (2.4) can be expressed in the form b = Ah,
with A2P and b2 [pr — 11, q1 — 51, ...,pn — ra, g — sy ], and the least
squares solution (if A is known exactly) is h = (A’A)~'A’b. Since we assume
that the FOE is also known, we consider the case where the camera motion is
known. The bias term will be computed under this assumption of known camera
motion. However, our knowledge of the camera motion may not be perfect and
we will also need to consider the errors in its value. Even though the known

camera motion assumption is introduced for simplicity of mathematical manipu-
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lation, it also has the advantage that we can analyze the effect of the bias under
conditions of known camera motion. This establishes the fact that the bias oc-
curs due to lack of precision in obtaining the motion estimates from the video
sequence, and not because of errors in the camera motion.

We now state the main result of this chapter, which is a precise expression

for the bias in 3D reconstruction from optical flow.

Theorem 2 Let the errors in the different variables be expressed as follows:
T = Ti+0%4, Y = Yi+0Ys, pi = Pi+0pi, ¢i = §;+0¢;, where the over-bars represent
the unknown true values of the parameters and the observed (measured) values

are represented without the over-bars. For convenience, let us define *

(01— ap + (=) X
M2A'A = : |
_ 0 (;UN—CCf)2+(yN_yf)2
mun 0
a2
i 0 P mNN
= diag[myli_, N
(3.1)
(z1 — xf)vpl + (y1 — Z/f)“ql
vAAp A :

(xn — 2p)vpn + (Yn — Yp)Vgn

! Diagonal matrices will be very frequently used in the calculations. A diagonal matriz of
size N X N consisting of the diagonal terms ay, ...,an will be represented as diag|as, ...,an] or

diagla];_; . n-
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U1

1>

UN
where vp; = p; — ;Y and vy = ¢; — sV
If 0% is the variance of the measurement error of the FOE (i.e. Elbz;?] =
E[oys*] = 0%) and o7 = E[6x;%] = E[0y] is the variance in the image coordinate
measurements, then under the assumptions of the above formulation, the bias in

the inverse depth estimate of the ith feature point is given by

~ V;
Bias); = b(h;) = — (0?4207
[Bias| (h;) m2 (O'f + O'Z)
+ o [(x—x )Vrie + (y; — )23~]Q'
mZZZ % f 1T Yi Yy 1y
0? !
bl )0 = ) )] 2
(12
o; :
+ o [(zi — zp)wy — (yi — Yr)ws — (Tiz + siy)V]

where f;; represents the derivative of a function f; with respect to x.

3.2.2 Computation of Bias Term

We now prove the above result. Expanding hina Taylor series around the true
value h, (i.e. the noise N = 0, which means that the deviations from the true
values are zero) and assuming the mean deviation in that region to be zero (i.e.
Eléz;| = E[éy;] = E[dxs] = E[dys] = 0) and all the components dz;, dy;,0x ¢, Sy

to be mutually uncorrelated, we can express

N ~ 2 ~ 2
~ — (S.Z‘Z 2 (5yz
AR~ 3 [+ )

R 2 . 2
a’h oxy 52h 0yy
=L+ 2h, p U

65If2 2 ’ (34)
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where all the partials are computed at N = 0. In the absence of any measure-
ment noise, the expected value of the estimate obtained from the least squares
solution should equal the true value h. However, since there exist errors in the
measurement model, the estimate is biased and the sum of the last four terms on
the right hand side of (3.4) represents the total bias in the estimate. Since the
bias is calculated with known camera motion, it shows that even if the camera
motion is known perfectly, the depth estimate is statistically biased. Thus the
bias does not occur due to errors in the camera motion estimates and cannot be
compensated by adjusting it.

In order to calculate the bias, we need to compute the derivatives in (3.4).

We can compute all the derivatives using the fact that for an arbitrary matrix

Q [48],

3@ ' - 3@ _
=7 Q7 (3.5)
To keep the computation simple, we will make the assumption that (p;, ¢;) do
Ko _ M _ M _ oM _ oM _
not depend on (dx;, dy;) 2. Note that a(sz = 20q = 9w, = 90w, — 0w, = 0,
v v v 8%v

since M does not involve these variables. Also, > = y = y = y =
a0p; 80q; a0x ¢ a0y
v — v 9%v
0wy aéwy T 8w,

~

h = M~!v, we can now compute the following terms:

> = 0, since v is a linear function of these variables. Since

a%}z;i = M laa(SMM VM 13?5‘1,)1- - M_lag};i’
5;)—% = —M7 M v+ M” 18_((59L‘:)_$ = M7
% = -M M 17?"——1—M’1ﬁ7 = 0 (3.6)

2Since p; ~ ZTiy1 + 0zip1 — &; — O6x; and ¢; & Yiy1 + OYiy1 — Ui — Oy;, this amounts to
assuming that the motion field does not depend on the deviations of feature positions.
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. . 62fl 32f1 . .
= =0. A4 fi
Following exactly similar steps, we get 260, 26w, 0. Hence (3.4) simplifies

to

. 2 A 2
TR~ °h 0T o2h OV
Eh] = h+)_ S E| ]+65yi2E[ 5 ]

2 A 2
a%h [&Cf ]+ 9%h E[(Syf ]

2 ady;” 2 7 (37)

which is to be expected since the system matrix A depends only on {z;,y;} and

z¢,ys). The derivatives with respect to the image coordinates (dx;, dy;) are
f9f

%% = -M7 M+ MR

%; = MM My — M_I%M_lv
_M_la%l\giM_lag‘a,ci + M_lagzz

835; = MM My — M_1%M_1v
MBI ®9)

The derivatives of M with respect to {dx;, 0y;} are
e = diag|0, ..., 0, 2(z; — zy),0, ..., 0]
= diag]0,...,0,2,0,...,0]

3_5% = diag]0,...,0,2(y; — y¢),0,...,0]

IM - = diag[0,...,0,2,0,...,0]

a0y;
2(x; —
M~ B4~ diag o,...,o,%,o,...,o (3.9)

Similar expressions can be obtained for the derivatives with respect to dy;, by
substituting y for x.

Next, we compute the derivatives with respect to deviations from the FOE

0z, 0yy).

ah  _ ag-1.0M png-1 -1_dv
aZSa:f - M BESIEfM v+M aZSa:f
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A

2h OM LM N1 OM N1y — MM MLy

351‘]02 B 8(533f 65,’Ef ()5_1']3
-1 M -1 Hv -1 9%y

-M Béfo 85£Ef + M a&yfz)

a2f1 -1 oM -1 oM —1 —1 8’M -1
; = 2M -2 M 22 M — > M

a0y s oy asy M VM a0y v

-1 oM -1 v -1 _8%v

M Bény 35yf +M 0(5ny' (310)

Computing the derivatives of M with respect to (dxy, dyy), we get

a_%% = diag[-2(zi — 2],y
35 - e

3%—1\:;[]“ = diag[—2(y;i —yp)liey v
6352;:2 = 2Inun

ag;f = [~Up1y s —Vpn]

!
3_5y_f — [_Uqla"'a_UqN] ’

—2(z; — xy)
_lTaM = diag | ,
0L 1 i [ Mii L:l,...,N
_ —Up1 —upn ]’
Moy = [ A ] : 3.11
Using (3.11), we can now compute some of the terms in the expression for 82;}12
f
and -2 in (3.10):
65ny ( )
!
MM MM N -ly = A(z1 = z5)*01 A(zy — x5)*on
6(5513}0 85.’L‘f m?l L m:]J’VN ’
!
M LEM Ny = V% : 2?] :
6(5$f mll mNN
_ _ . 2(xy —zp)v 2(xy —xf)v
1_ oM 1 ov 1 7)Up1 N f)UpN
M™ 52, M aog, = diag 7 = p
f f m11 mNN
(3.12)

Similar expressions can be obtained for the partial derivatives with respect to

dys. Substituting the above expressions in (3.10), we get the expression for one
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of the bias terms in (3.7) as

~ ~ !
= ) 3.13
a0z + a0y lm%l’ ’ m?VN] (3.13)

Computing the partial derivatives with respect to (dx;, dy;) requires more
work. Let us denote the partial of a function f; = f(z;,y;) with respect to z;
by fiz and the second partials by fizs, fizy, fiyy. Thus iy = [yi, —22;,0], 75y =
[%4,0,1], Siz = [0, —yi, 1], Siy = [2¥4, =24, 0], Tigw = [0, =2, 0], 73y = [0,0,0], Sigz =

0,0, 0], 84y = [2,0,0]>. The derivatives of v with respect to (dx;, dy;) are

o = Vet (@ =) 5n + (Ui = Y) p5e
A
= 'Upz' - (:Ez —_ .Tf)TiIQ, — (yZ — yf)SZzQ, = Vg
Oovi  _ v--i—(x-—x)%—i-(-— )%
aéyi e ¢ f aéyi Yi Yr aéyi
A
= Upi— (IEZ - l‘f)rin, - (yz - yf)sinl = Uy
Pui = o 4 2 — ap)wy = v
6(5:EZ “ ? FI%y iTT
v _ —28in’ —2(y; — yf)wx a Vigy- (3.14)
65’!}1
2h  o°h

Using (3.8) and (3.14), we now compute each of the terms in (
(3.7):

M~ BN MMy = -o,...,o, Az %ff)QU’,o, ..,o]l
M—la@;‘QM—lv = —0,...,0,;—2,0,...,0],
MM R = 00%0011
MMM B = oo%oo}l

3We are using the subscripts x,y for brevity of notation, but the derivatives are actually
with respect to {0z, dy;}.
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2 Vigw !
M2y, — [0,...,0,—,0,...,0]
m.

65332'2 ii
. !
Y Qe [o,...,o,M,o,...,o] 3.15
o o (3.15)
Then the expression for the ;th component of ‘92h2 + 32h2 is
85$Z‘ aéyi
aQﬁ 621A1 . 8[(.Tz — .fo)Q + (yz — yf)Q]’Ui 4Ui
2 + 2 — 3 _ _2
_2[($Z - ﬂff)’l}im + (yz - yf)viy] + Viggy + Viyy
mg; Mi;
4u; 2
= m; + W [(:L‘Z — .Tf)27'im + (y, - yf)28iy] QI

it i

42 (o= o) ) s+ |

2
mg;

+

(@i = zp)wy — (Yi — Yp)we — (Tia + siy)Ql]

(3.16)

At this point we can appreciate the need for the approximation in computing the
bias in the structure parameters only. If we compute the bias for the entire solu-
tion vector x, the matrix M would no longer be diagonal and its inverse would be
even more complicated. Since many algorithms proceed by first computing the
camera motion and then the structure, this approximation is reasonable. More-
over, it allows us to analyze the characteristics of the solution for the structure,
even if the camera motion is known.

Substituting the expressions for the different partial derivatives obtained in
(3.13) and (3.16) in (3.7) and evaluating them at N = 0, we can obtain an exact

expression for the bias as stated in Theorem 2.
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3.3 Analysis of the Bias

The fact that the depth estimate is statistically biased has implications for 3D
reconstruction algorithms, as well as for our interpretation and analysis of the
motion. We analyze below how the bias is affected by the geometric indetermi-
nacies of SfM and discuss methods of compensating for it in 3D reconstruction
algorithms. We also extend the two-frame result in Theorem 2 to multiple frames

and study its links to the human visual system.

Effect of Scale Ambiguity It is well known that if (v, 2) is a solution of (2.2),
so is (sv, sz). This is known as the scale ambiguity in SfM [34]. Analysis
of (3.3) shows that the bias in h remains unchanged, since the FOE is not
affected by the change of scale. However, since h(z,y) = v,/z(z,y), the
bias in the scaled inverse depth, é, would be 1/s times the bias in the

inverse depth 1.

Effect of Camera Motion Since the expression in (3.3) was derived under
the assumption that 2 is known, we see that even if the camera motion
is known perfectly, the estimate of the inverse depth (and hence also the
depth) is statistically biased. Thus the assumption of known camera mo-
tion, under which (3.3) was derived, shows that this error is independent

of the errors in camera motion estimation.

Bias Compensation Once the structure and motion estimates are obtained,
the bias can be computed and subtracted out of the estimate. If flc =
h — b(h) is the bias-compensated estimate, then E[h,] = E[h] —b(h) = h,

thus leading to an unbiased estimate.

Bias and Total Least Squares (TLS) TLS has emerged as an alternative to
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least squares since it is capable of handling errors in both the observations,
b, and the system variables, A, in a linear system Az = b [49]. However,
the TLS estimate is unbiased only if the error in estimating A is equal in
variance to the error in estimating b. Such a condition would be very dif-
ficult to maintain in (2.4). Also, estimating the bias of a TLS estimate is
extremely cumbersome. Also, as argued in [49], the covariance of an unbi-
ased TLS estimate is larger than that of the LS estimate, in the first-order
approximation as well as in simulations. Hence, there is no fundamen-
tal gain in choosing the TLS over the LS solution. Thus using the TLS

criterion cannot be a solution to the problem of bias in the 3D estimate.

3.3.1 Bias in Multi-frame Reconstruction

Suppose now that we have L two-frame reconstructions for every consecutive
pair of (L + 1) frames. Let (fll, e flL) be the two-frame estimates aligned with
respect to a particular frame of reference. Let the true value be h and the bias
in (3.3) be represented by (b(fll), - b(flL)), ie. E[ﬁz] =h+ b(flz) Assume that
the estimates and the true value are with respect to a particular gauge C [32]
(so that the problem of scale ambiguity does not arise). Then the least-squares
estimate for the structure over all L observations is h = 1y, h' Taking
expectations on both sides, we see that the bias in the multi-frame estimate is
be(h) = 1yr, b(fli), where b(ﬁz) is obtained from (2.2) for the i*® and (i+1)St

frames.
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3.3.2 Connection to the Human Visual System

No general theory exists which explains the performance of the human visual sys-
tem. However, it is generally believed that our eyes receive a sequence of images
and the data from a number of retinal images is combined to obtain a representa-
tion of the physical scene [50]. The early visual processing system extracts local
image measurements from this sequence of images for use in further estimation
processes. In our problem formulation, these measurements correspond to posi-
tions and gray values of image points. However, they can be derived only within
a range of accuracy, i.e. there is noise in the measurements of the positions of
the image points.

In our work, we do not attempt to model the specifics of the human vi-
sual system. Our work is concerned primarily with the limitations of the StM
equations as expressed in (2.2). However, there are certain similarities with the
human visual system which can be used to explain certain visual phenomena.
The inputs that we use (the positions of points over a sequence of images) are
similar to those processed by the early visual system. This data is then used to
interpret the structure of the scene from which the images were obtained. As we
have shown, the structure estimation process is statistically biased. Thus our
mathematical analysis is in accordance with the results obtained by experiments

on the human visual system.

3.4 The Generalized CRLB for SIM

The CRLB for the two-frame SfM estimate has been computed by various re-
searchers ( [22], [23], [24], [27], [51],[52] ). Usually the CRLB is computed as-
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suming an unbiased estimate. In this section, we extend the existing results to
account for the effect of the bias on the minimum variance of the reconstruc-
tion error and derive a generalized CRLB. First, we derive an expression for the
Fisher information matrix (the inverse of the CRLB for an unbiased estimate)
using an approach that highlights the importance of knowing the true values of
the feature positions, followed by the derivation of the generalized CRLB taking

into account the bias.

3.4.1 Computing the Fisher Information of Unbiased Structure

and Motion Parameters

We assume that the true values of the feature positions {Z;, 7;} and FOE (Z, 7y)
are known. In oder not to make the notation more cumbersome, {z;,y;} and
(xf,yy) in this section will refer to the true values.

We assume a perspective camera model where the motion between successive
frames is small enough to justify the equations in (2.2). We aim to compute the
variance of the reconstruction error for the tracked feature points. Since the
actual positions of the feature points are known, the estimate will be unbiased
and the minimum error variance will be the CRLB.

Consider a weighted least squares cost function over two frames. We assume

that the FOE is known and we estimate h and €. Thus

L& (i —p0)? (g — i)
c = -
2 z:zl )‘pi - )‘qi ,
1
= ieTAfle, (3.17)

where € = [p1 — p1,¢1 — G1,---, P — Pur, @ — Gar)’ s the estimation error and

A = diag[Ap1, Ag1, -y Apars Agur] is @ 2M x 2M diagonal matrix consisting of the
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weights. The prediction errors € are assumed to be independent, zero mean
Gaussian with a known covariance matrix Ay = diag[Aop1, Aogt, ---» Aopr, AogL]-
We will assume that the FOE is known. If X = (h,$2) is the estimate obtained
from two frames by the least squares minimization procedure and x* = (h*, Q%)
is the true value, it can be shown using standard linear system identification

techniques that the covariance matrix is
P =[GE)]TQE)GE)], (3.18)

dX

where G(%) = $(R)AW7 (%), QX) = YF)AAA YT (%) and ¢ = — [4]"
[12], [35], [53]. For M features, v is an (M + 3) x 2M matrix and thus G, @ and
P are (M + 3) x (M + 3) matrices.

Using (2.2), we get

(x1—x5) (G1—yy) O --- 0 0
Y : : P : : (3.19)
0 0 0 - (vmr—xf) (ymr —yy)
o Sy r) v Sy

as a (M + 3) x 2M matrix. Thus

oA U ow
W'V
U, W

Q &2 | 0 TN, (3.20)
_WO %

where
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W= [(xl —o)n Wi—y)s @z (v —yp)s
o e T dom oar

L 2 L 2
' i=1,...M

M 7 7
T‘Z-T‘i S,L'Si
W = z (A—Q)‘Opi + V)‘Opz)

i=1 i qt
T, — X r; i — S’i
W, = [( . ) ,\Om+%%qi] . (3.21)
i qi i=1,...,M

geeey

The variance of the estimator can now be computed by substituting all the
terms from (3.20) and (3.21) into the expression for P in (3.18). It is well
known in the theory of weighted least squares that the minimum error in the
estimator is obtained when A = A [37], i.e. the actual covariance of the errors
in the motion estimates is known. In that case, G = Q and P = G !, which is
approximately the inverse of the Hessian of the cost function [54]. Since the errors
were assumed to be Gaussian, we can now invoke the Gauss-Markov theorem
[37] to prove that the minimum variance (CRLB for the unbiased estimator) in
the SfM reconstruction from two frames is P. Since we assumed that the feature
point positions {z;,y;} are known exactly, the estimate is unbiased. If I(x) is the
Fisher information matrix of x, then using the fact that for an unbiased efficient

estimator the Fisher information is the inverse of the CRLB, we get I(x) = P~

Fisher Information for Multi-frame Reconstruction: Let (fll, cees flL) be
a sequence of unbiased two-frame estimates, assumed to be statistically inde-
pendent and each corrupted by zero-mean additive noise. Let the true value
be h. All the values are obtained with respect to a particular gauge C. This
can be done by fixing the scale factor across all the L observations for a par-
ticular feature and maintaining that scale for all the other features. Then the

maximum likelihood (ML) estimate for the structure over all L observations is
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h = 1y, h'. Let the covariance matrix P in (3.18) derived from the 7 and
(i + 1)t frames be denoted by P'. Let P} be the upper M x M sub-matrix
of P’ representing the covariance of R Since the ML estimate is unbiased (as
we calculated it assuming that the actual values of the features are known), i.e.

E[h] = h, we can write

Covlh] = E [(h—h)(h-h)]

>

Py (3.22)

Since the ML estimate is efficient and unbiased, the covariance is the inverse of
the Fisher information matrix. Thus the Fisher information matrix of fl, denoted

by Ic(h), is
Ie(h) = P, L. (3.23)

The reason we required the assumption that the true values of the coordinates
are known, was to obtain an unbiased estimate. Only then can we invert the
covariance matrix to obtain the Fisher matrix. It is worth noting that the CRLB
computations presented in the literature implicitly assume that the exact feature

positions are known, and thus are at best approximations.

3.4.2 Computing the Generalized CRLB

The expression for the CRLB that is often used in practice assumes the estimate
to be unbiased. This is because it is difficult to know the bias of an estimator.

The general expression for the CRLB after incorporating the bias in the estimate
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and under the proper regularity assumptions is [37]
So(g) > bo(9)bs(9)" + (I + Vbs(g9)) M~ (0)(I + Voby(9))", (3.24)

where ¢ is the estimate of the parameter 6, b is the bias of the estimate, and M
is the Fisher information matrix. Vjy is the gradient with respect to # and I is
an identity matrix of suitable size.

The expression for the CRLB as derived above in (3.23) also assumes the
estimate to be unbiased. However, as we have shown, this is not a valid assump-
tion. In the next section, we will prove through simulations that the magnitude
of the bias is significant compared to the true depth. Hence it is important to
account for the effect of the bias in the CRLB as it is a measure of the minimum
error (measured by the variance) in the estimate. Since we know the expression
for the bias, we can obtain a more accurate expression for the minimum vari-
ance that we can expect to obtain. Let h denote the estimate of h (the true
value) with respect to a particular gauge C [55]. Let the bias in the multi-frame
estimate be denoted by be(h) (Section 3.3). Since the bias does not depend on
h, Vibc(h) = 0. Let the FI matrix for multi-frame reconstruction, as derived in
Section 3.4.1, be denoted by Ic(h). This derivation is based on the assumptions
that the feature positions are exactly known and the motion estimates {p;, ¢;}
are corrupted by additive white Gaussian noise. Since the estimate in this case
is unbiased, the FI matrix can be inverted to obtain the CRLB. Thus the vari-
ance in the biased estimate h, represented as 3 (h) = E [(fl —h)(h — E)T] must

justify the following inequality (from (3.24)):
Si(h) > be(B)bg (b) + I (h), (3.25)

This is the minimum variance of the structure estimate obtained from a 3D
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reconstruction algorithm using optical flow.

3.5 Simulation Results

In this section, we describe the results of experiments which we conducted in
order to get an idea about the importance of the bias term in the overall recon-
struction, as well as to understand the effects of the different motion parameters

on the bias.

3.5.1 Effect of Bias on Reconstruction

In this set of experiments, we plotted the actual reconstruction estimate, with
and without bias compensation, against the true depth. A set of 10 random
3D points were generated and their 2D projections were computed at different
camera positions. The set of feature points were tracked across a few frames.
The depths from each pair of frames were obtained (by solving the least squares
problem in (2.2)) and then combined to get the ML estimate over the entire
sequence. To fix the scale of the reconstruction, the depth at the first point
was used. In these experiments we considered the case of non-zero but constant
linear and angular camera motion. The effect of measurement noise was studied
by adding different levels of noise to the feature positions. Figures 3.1 (a), (b),

(c) and (d) are for four different noise variances, 02, 02,, 025 and ¢2,, where

02, > 023 > 02y > 02,. It can be seen that bias compensation makes the
estimate closer to the true value in all the cases and gives significant advantages

for some of the points.
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Figure 3.1: (a), (b), (c) and (d) are plots of the reconstruction for noise variances
02, 02y, 025 and o2, in the feature positions, where 02, > 02, > 02, > 02,. The
plots are for the same set of ten 3D points tracked over 15 frames. The camera is
moving with constant, non-zero translation and rotation. The solid lines indicate
the true depth values, the dashed lines indicate the reconstruction without bias

compensation, and the dashed and dotted lines indicate the reconstruction with
bias compensation.
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Figure 3.2: Plots of the variation in the bias in inverse depth with the
camera motion parameters. The horizontal axes represent the following: (a):
vy, € (0,1)cm/frame, (b): v, € (0,1)cm/frame, (c): v, € (0,1)cm/frame,
(d): wy € (0,10)degrees/frame, (e): w, € (0,10)degrees/frame, (f): w, €
(0,10)degrees/frame. The values of the bias on the vertical axis are in per-
centages of the true inverse depth value. The camera motion is scaled between
0 and 1 on the horizontal axis.

3.5.2 Variation of Bias with Individual Camera Motion Parame-

ters

Given the rather complicated form of (3.3), it is difficult to obtain analytical
expressions for the effects of the various camera motion parameters on the re-
construction bias. In this set of experiments, we analyzed the effects of the
camera motion through numerical simulations. Each of the six motion param-
eters were varied over a certain range of values, keeping all the others fixed.
While fixing the range over which to vary the camera motion, it should be borne

in mind that the basic SfM equations in (2.2) are valid only for small camera
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(b) () (f)

Figure 3.3: Plots of the trajectories of feature points (top row) and the CRLB
of the inverse depth as a function of the number of frames, for different cam-
era motion parameters (bottom row). (a), (b): 2y = 0,y; = 10,w, = w, =
ldegree/frame, w, = 0; (c), (d): z; = 10,y; = 0,w; = wy = w, = ldegree/frame;
(e), (f): zy =10,y = 10,w; = wy = w, = ldegree/frame. The solid line shows
the CRLB for the unbiased estimate and the dotted line for the biased one.
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(b) (d) (f)

Figure 3.4: Plots of the trajectories of feature points (top row) and the CRLB
of the inverse depth as a function of the number of frames, for different camera
motion parameters (bottom row). (a), (b): zy =1,y = l,wy = wy = w, = 0;
(¢), (d): Uniform acceleration, w, = wy = w, = 0; (e), (f): Uniform acceleration,
Wy = wy = W, = ldegree/frame. The solid line shows the CRLB for the unbiased
estimate and the dotted line for the biased one.

motion. Thus it does not make sense to study the behavior of the bias term over
a large range of camera motion parameters.

The plot of the bias for various values of the camera motion parameters is
shown in Figure 3.2. The bias is plotted on the vertical axis as a percentage
of the true depth values. The motion terms which affect the bias most are
(vg, Uy, Wy, wy). The effect of (v,,w,) on the bias is almost negligible. Also, the
variation of the bias with v, and v, follows an approximate square law, while

the variation with w,,w, is almost linear.
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3.5.3 The Generalized CRLB

Next we present the effect of the bias term on the CRLB. A set of 3D points was
generated in space. Different trajectories were generated by varying the camera
motion parameters. The perspective projections of the 3D points onto the image
plane were tracked across a sequence of 15 frames. Random noise was added to
the positions of the points in the images. We present here the effects of the
different motion parameters on the CRLB.

Figures 3.3 and 3.4 plot the trajectories of the feature points and the CRLB
of the structure estimates. The trajectories of the points tracked across all the
frames are shown in the top row, while the CRLB for the unbiased estimator
and the generalized CRLB for the biased one are plotted in the bottom row as a
function of the number of frames. The plots are for various values of the camera
motion parameters Ty, Yy, Wy, Wy, w,. We will now briefly analyze the different

cases.

1. Constant linear velocity, non-zero angular velocity: This is the case in all the
plots in Figure 3.3. It can be seen that the effects of different values of the
linear velocity term on the bias in the structure estimate are not drastically
different. Whether one of the components (v, or v,) is zero or both of them
are non-zero, the bias is significant. There is a distinct upward shift in the

minimum reconstruction error in all these cases.

2. No Rotation: This is the case of particular interest. When the rotational
velocity is zero, the bias term is negligible; the difference in the CRLB is
too small to represent in the plots of Figures 3.4(b) and 3.4(d)). This is
the case irrespective of whether (i) V' is constant but non-zero; (i) V is

constant but either v, or v, is zero; (iii) there is an acceleration in the
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linear component of the velocity. The reason for this can be understood
from the expression for the bias in (3.3). In the first term, the absolute
value of the numerator v; is extremely small compared to the denominator
m2. The other terms which multiply Q are zero. Thus the bias is also
small unless the variances of the FOE and of the image correspondences

are large enough to compensate for the small numerator.

3. Linear Acceleration, Constant Rotation: This is the case in Figure 3.4(f).
Again, we see that the bias is significant once the rotational velocity is

non-zero.

The conclusion that can be drawn from this analysis is that the parameters
which affect the bias most are the camera angular motion values. For small
rotation, the bias in the estimate is negligible. While this can be understood
mathematically from the expression for the bias as derived above, we do not yet

have a physical interpretation for it.

3.6 Conclusion

The analysis of the accuracy of 3D reconstruction has usually focused on the
error covariance of the estimate. In this chapter, we have pointed out that there
is another source of error in the SfM problem, namely the bias in the estimate.
This has been observed in psychophysical experiments, and our mathematical
analysis supports that fact. Our derivation of the bias term was based on the
fact that the solution of a least-squares estimation problem with noisy system
matrix is statistically biased. The system matrix in SfM contains the positions

of the features, which can never be obtained exactly. A generalized Cramer-Rao
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lower bound for SfM is proposed after incorporating the bias term. Simulations
were carried out in order to show the effects of the different camera motion
parameters on the bias. It was observed that the bias is negligibly small if the
camera angular motion is small. A comparison between a bias-compensated SfM

reconstruction with one in which the bias is neglected was presented.
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Chapter 4

3D Face Reconstruction Algorithm

4.1 Introduction

Reconstructing 3D models from video sequences is an important problem in
computer vision with applications to recognition, medical diagnosis, video com-
munications, etc. Though numerous algorithms exist which can reconstruct a
3D scene from two or more images using structure from motion (SfM) [1, 3],
the quality of such reconstructions is often unsatisfactory. In the previous two
chapters, we analyzed the errors which affect the reconstruction quality. In this
chapter, we show how to use the theoretical analysis to build accurate 3D models
from a video sequence. One particularly interesting application of 3D reconstruc-
tion from 2D images is in the area of modeling a human face from video. The
successful solution of this problem has immense potential for applications in face
recognition, surveillance, multimedia, etc. A few algorithms exist which attempt
to solve this problem using a generic model of a face [56, 57]. Typically, these
methods initialize the reconstruction algorithm with this generic model. The dif-
ficulty with this approach is that the algorithm often converges to a solution very

near the initial value, resulting in a reconstruction which has the characteristics
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of the generic model, rather than that of the particular face in the video which
needs to be modeled. This method may give very good results when the generic
model has significant similarities with the particular face being reconstructed.
However, if the features of the generic model are different from those of the face
being reconstructed, the solution obtained using this approach may be highly
€rroneous.

We propose an alternative way of reconstructing a 3D model of a face. Our
method also incorporates a generic model; however, we do so after obtaining
the estimate using the SfM algorithm. The SfM algorithm reconstructs purely
from the video data after computing the optical flow. We adopt a multi-frame
reconstruction strategy whereby two-frame reconstructions are fused together
after evaluating the quality of each such intermediate reconstruction. The inter-
mediate estimates are combined together using a robust least median of squares
(LMedS) estimator [40, 38]. The fusion is done recursively using the Robbins-
Monro stochastic approximation (RMSA) [12, 58] algorithm. Quality evaluation
is done by estimating the statistical error covariance analytically from the op-
tical flow equations as explained in Section 2.4, and the progress of the fusion
algorithm is continuously evaluated using the distortion function (Section 2.5)
in order to determine the number of such intermediate reconstructions which are
required. This reconstruction is then combined with the generic model using an
energy function minimization framework [59, 60]. A cost function is proposed
that compares local regions where there are no sharp depth discontinuities and
corrects for errors in those regions. Optimization is done in a Markov Chain
Monte Carlo (MCMC) [61, 62] framework using a Metropolis-Hastings sampler

[63, 64]. The advantage of this method is that the particular characteristics of

o8



the face that is being modeled are not lost since the SfM algorithm does not
incorporate the generic model. However, any errors in the reconstruction are
corrected in the energy function minimization process by comparison with the

generic model.

4.1.1 Incorporating a Generic Model in an Energy Function Min-

imization Framework

The 3D reconstruction framework based on the uncertainty calculations provides
a depth estimate using the input video data only. However, localized errors still
remain which were not detected using the error correction strategy described
above. The reason is that while the error covariance calculations can identify
and correct for small errors, they are unable to correct the larger errors due
to outliers. We use a generic face model in order to overcome such errors.
A regularization approach to incorporating the generic model is proposed by
imposing smoothness constraints on the final 3D reconstruction. A pertinent
question to ask here is: why do we need the error correction strategy (in the SftM
algorithm) and the generic model? Is it not sufficient to have a simple multi-
frame reconstruction algorithm without the error correction strategies, followed
by the generic model to correct for all the errors? The answer is negative, because
if we use the generic model to correct for all the errors, we run into the problem
of over-smoothing the 3D structure estimate. This is similar to the situation
when the generic model is incorporated at the beginning of the SfM algorithm,
as explained before. The aim here is to obtain as precise a 3D model as possible
from SfM and then use the generic model to correct for the errors that remain.

The idea of using energy functions (also known as variational methods, regu-
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larization theory, and relaxation methods) [59] to impose smoothness constraints
has been very influential in vision [65, 66, 67]. Regularization theory works by
minimizing a functional E|[f(x)] with respect to a function f(z). It usually con-
tains one term (a consistency or fidelity term) which ensures that the smoothed
solution is close to the data, and a second term (a regularization term) which im-
poses smoothness constraints on the solution. In most implementations, where
the data is specified on a regular lattice, the energy function is discretized as
E[f:]. The energy minimization/regularization approach can be incorporated
directly into a Bayesian statistical framework using the Gibbs distribution by
defining a probability P(f) = %exp(—ﬁE(f)), where (3 is a constant and Z is
a normalization term [68]. The use of Gibbs distributions on discretized energy
functions leads to a mathematical structure known as Markov Random Fields
(MRF) [69]. An MRF consists of a probability distribution over a set of variables
{fi}, with a neighborhood N;, such that P(f;|f;,7 € N;) = P(fi|f;,for all j).
One of the most influential formulations of the vision problem in terms of MRFs
has been the work of Geman and Geman [68] on image segmentation, in which
images are smoothed except at places where the image values are rapidly chang-
ing.

In our problem, the 3D estimate obtained from the multi-frame reconstruc-
tion algorithm needs to be smoothed in local regions where there are errors.
These regions are identified with the help of the generic model. After the 3D
depth estimate and the generic model have been aligned, the boundaries where
there are sharp depth discontinuities are identified from the generic model. Each
vertex of the triangular mesh representing the model is assigned a binary random

variable (defined as a line process, following the terminology of [68]) depending
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upon whether or not it is part of a depth boundary. Regions which are inside
these boundaries are smoothed. The energy function consists of two terms which
determine the closeness of the final smoothed solution to either the generic model
or the 3D depth estimate, and a third term which determines whether or not
a particular vertex of the mesh should be smoothed based on the value of the
random variable representing the line process for that vertex. The combinatorial
optimization problem is solved using simulated annealing and a Markov Chain
Monte Carlo sampling strategy [63, 60, 62].

In the next section, we will explain our method for estimating 3D structure
purely from the video data using stochastic approximation (SA) techniques. The
incorporation of the generic model along with the 3D estimate will be explained
in Section 4.3. Experimental results of the 3D models obtained using the method
will be presented in Section 4.4. An overview of stochastic approximation is

presented in Appendix A.

4.2  Estimating 3D Structure and Motion From Video

In this section, we explain the first part of our face reconstruction algorithm, i.e.
estimating the 3D structure using SfM. Recall equations (2.22) and (2.23) from

Section 2.4. There we showed that
N ! !
H = Z (Agp A;p + qu qu)

=1

N
R, = H! (Z (Agp’Angugp + Aiq’Aiqu‘q)> HfT, (4.1)
=1
which can be partitioned as
Ri. Ruim
R,=| ™. (4.2)
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Figure 4.1: Block diagram of the 3D Reconstruction Framework.

Also recall the multi-frame distortion function (2.44). We will use these expres-

sions to evaluate the quality of our 3D reconstruction algorithm.

4.2.1 Estimating 3D Depth

Figure 4.1 shows a block-diagram schematic of the complete 3D face recon-
struction framework using SfM. The input is a video sequence. We choose an
appropriate two-frame depth reconstruction strategy [8]. The depth maps are
aligned to a single frame of reference and the aligned depth maps are fused to-
gether using stochastic approximation. We use the distortion function in (2.44)
to evaluate the quality of the final reconstruction. This is used to optimize the
fusion strategy and design a stopping criterion.

Let s represent the structure!, computed for a particular point, from the

'In our description, subscripts will refer to feature points and superscripts will refer to
frame numbers. Thus z] refers to the variable z for the i-th feature point in the j-th frame.
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i-th and (i+1)-st frame, ¢ = 1, ..., K, where the total number of frames is K + 1.
Let the fused structure sub-estimate at the i-th frame be denoted by S*.2 Let
Q' and V' represent the rotation and translation of the camera between the i-th
and (i + 1)-st frames. Note that the camera motion estimates are valid for all
the points in the object in that frame. The 3 x 3 rotation matrix P’ describes
the change of coordinates between times ¢ and 7 + 1, and is orthonormal with
positive determinant. When the rotational velocity €2 is held constant between
time samples, P is related to €2 by P = ¢?.3 The fused sub-estimate S can
now be transformed as 7%(S?) = P*S* + VI, But in order to do this, we need
to estimate the motion parameters V and €2. Since we can determine only the

direction of translational motion (v,/v,,v,/v,), we will represent the motion

vz Yy
vy vy

components by the vector m = | Wy, Wy, w,]. To keep the notation simple,
m will be used to denote each of the components of m. Thus, the problem at
stage (7 + 1) will be to i) reliably track the motion parameters obtained from
the two-frame solutions, and ii) fuse s**! and T%(S?). If {I*} is the transformed
sequence of inverse depth values with respect to a common frame of reference,
then the optimal value of the depth at the point under consideration is obtained

as

u* = arg min median; (wf(li - u)z) : (4.4)

where w} = (R})~!, where R] is the covariance of the inverse depth I’ as obtained

25t and S? are position vectors in R3.

3For any vector a = [a1, az, a3], there exists a unique skew-symmetric matrix
0 —as as
a= as 0 —ai . (43)
—as ay 0

The operator @ performs the vector product on R?: aX = a x X,VX € R?.
With an abuse of notation, the same variable is used for the random variable and its realization.
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in (2.19). However, since we are using a recursive strategy, it is not necessary to
align all the depth maps to a common frame of reference a priori. We will use a
Robbins-Monro stochastic approximation (RMSA) algorithm where it is enough
to align the fused sub-estimate and the two-frame depth for each pair of frames
and proceed as more images become available.

For each feature point, we compute X*(u) = wi(l* — u)?,u € U. Our aim
is to compute the median (say #) of X° ..., X* ie. to obtain 6 such that
g(0) = Fx(0) — 0.5 = 0, where Fx(#) is the distribution function of #. Define
YE(@*) = p*(8*) — 0.5, where p*(6F) = Iixucpu(gey (I represents the indicator
function, T* is the estimate of the camera motion, and g% is the estimate obtained

at the kth stage). Then

E[Y*(6*)6*] = E[p*(8")6" - 0.5
= Bllxectugey] =05
= P(X* <TF@%) -0.5

= Fx(6%) —0.5 = g(0%).
Then the RM recursion for the problem is [70]
gt = TH(9%) — ¥ (p* (%) — 0.5), (4.5)

where a* is determined by (A.3). When k& = K, we obtain the fused inverse

depth #5+1, from which we can get the fused depth value SE+1.

4.2.2 Camera Motion Tracking:

Since depth and motion computation are dependent on each other, there is every

reason to be suspicious of the camera motion values also. However, experimental
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analysis has shown that the camera motion is less prone to outliers than the depth
estimates. A possible reason for this is that the camera motion is obtained using
a larger number of feature points in the image and thus is less susceptible to
input errors in some of the features. Our camera motion estimator is a smoothing
filter which tracks the motion across the frames and removes any sharp unwanted

variations. The discrete-time dynamical model of the camera motion is

m' = mz_l—i—w’,

i

y' = m'+v' (4.6)

w is modeled as a zero-mean white noise process with E[w'w’] = Q!§(i, 7). The
observations y* of the camera motion (output of the two-frame algorithm) are
corrupted by a zero-mean noise process v¢ with a diagonal covariance matrix
V:. v and w are assumed to be mutually uncorrelated across all instants of
time, i.e. E[v'w’] =0 for all (4,7), and are also independent of the parameter
m’ at all time instants. We are interested in designing a linear mean square

error (LMSE) estimator of the camera motion m’ based on the observations

t=k+1]' Let m’® denote the estimate of m’ based on the

y =,y y
observations [y, ..., ¥*] and X%* = E[(m’ — m*)(m’ — m’*)’]. Then the LMSE
estimate can be obtained from the Kalman filtering algorithm as follows. Re-

indexing the observation vector y as [y*,...,y!], the Kalman filter is given by

the following recursion [35]:

Mtk = ﬁlk\k—1+Kk(yk _ﬁlk\k)

rhk“c—l Ifhk—l\k—l
Kk: — Zk\k—l[vk_i_zk“c—l]—l

Ek\k—l — Ek_l‘k_l-i-Qk. (47)
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Figure 4.2: Block diagram of the multi-frame fusion algorithm.

Then Sy = E[(y* — E[y*])(y* — E[y*])] = E[(m* +v* — ) (m* +v* — )] =
E[(m"* — pim)(m* — pim)'] + V¥ = Ry, where pim = E[m’] = E[m"'] = E[y’].
Thus the observation noise covariance can be estimated from (2.36) and the

camera motion filter is derived.

Why Kalman Filter? Since the system dynamics of the camera motion are
time-varying, SA techniques are not guaranteed to converge. (One often chooses
the step size ay in (A.2) to be a small positive number as a tradeoff between
tracking capability and noise sensitivity [12].) Also, the presence of outliers in
two-frame camera motion estimates is less pronounced than in the depth sub-
estimates; hence least squares is a good criterion for tracking camera motion.
The difficulty of incorporating time-varying dynamics into the SA approach,
coupled with the suitability of a least squares criterion, dictates the choice of

the Kalman filter for camera motion estimation.

4.2.3 The Reconstruction Algorithm

Assume that we have the fused 3D structure S* obtained from i frames and the

two-frame depth map s**! computed from the i-th and (7 + 1)-st frames. Figure
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Figure 4.3: (a) and (b) represent two images from the Yosemite video sequence
for which the depth was computed. The remaining figures (c) - (i) are results of
3D reconstruction from 15 frames for different viewing angles.

4.2 shows a block diagram of the multi-frame fusion algorithm. The main steps

of the algorithm are:

Track Estimate the camera motion according to the camera motion tracking

algorithm.
Transform Transform the previous model S* to the new reference frame.
Update Update the transformed model using s**! to obtain S**! from (4.5).

Evaluate Reconstruction Compute a performance measure for the fused re-

construction from (2.44).

Iterate Decide whether to stop on the basis of the performance measure. If

not, set ¢ =4+ 1 and go back to Track.
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Although our primary application is to obtain 3D models of human faces,
we will present the result of applying the reconstruction algorithm described
above to a completely different video sequence known as the Yosemite sequence.
Figure 4.3 shows the reconstruction of the 3D scene from this sequence. Fifteen
frames were used for this reconstruction. Figures 4.3(a) and 4.3(b) represent two
frames from the original sequence. The depth was reconstructed using a two-
frame algorithm [8] and our fusion strategy and the 3D model was constructed.

Figures 4.3(c) to 4.3(i) represent views of the 3D model from different angles.

4.3 Incorporating the Generic Model in 3D Face Recon-

struction

For the 3D face reconstruction problem, we can take advantage of the fact that
the general structure of most faces is similar. In this section, we will explain our
method for combining the generic model with the 3D estimate obtained from
the video sequence using the SfM algorithm described in the previous section.
We propose an optimization framework for combining the two models in such
a way that the errors in the 3D estimate are corrected by comparison with the

generic model.

4.3.1 The Optimization Function:

Both the generic model and the 3D estimate have a triangular mesh representa-
tion with N vertices and the depth at each of these vertices is known. By depth,
we mean the z coordinate of the vertex represented by (z,y, z). The (z,y) plane

is considered parallel to the image plane. Let {d,,7 = 1,..., N} be the set of
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depth values of the generic mesh for each of the N vertices of the triangles of
the mesh. Let {ds,,7 = 1,..., N} be the corresponding depth values from the
SfM estimate. We wish to obtain a set of values {f;,7 = 1,..., N} which are a
smoothed version of the SfM model, after correcting the errors on the basis of
the generic mesh.

Since we want to retain the specific features of the face we are trying to
model, our error correction strategy works by comparing local regions in the
two models and smoothing those parts of the SfM estimate where the trend of
the depth values is significantly different from that in the generic model, e.g. a
sudden peak on the forehead will be detected as an outlier after the comparison
and smoothed. This is where our work is significantly different from previous
work [56, 57], since we do not intend to fuse the depth in the two models but to
correct errors based on local geometric trends. Towards this goal, we introduce
a line process on the depth values. The line process indicates the borders where
the depth values have sudden changes, and is calculated on the basis of the
generic mesh, since it is free from errors. For each of the N vertices, we assign
a binary number indicating whether or not it is part of the line process. This
concept of the line process is borrowed from the seminal work of Geman and
Geman [68] on stochastic relaxation algorithms in image restoration.

The optimization function we propose is

N N
E(f) = Y (fi—dy)+ (=) X (fi—ds)* +

i=1 i=1
N

NZ (1=1) ZN (fi = )Xo, 24, (4.8)

where [; = 1 if the it vertex is part of a line process and p is a combining factor

which controls the extent of the smoothing. N is the set of vertices which are
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neighbors of the jth

vertex. Ig,q, represents the indicator function which is 1
if dy # dg, else 0. In order to understand the importance of (4.8), consider the
third term. When [; = 1, the it vertex is part of a line process and should
not be smoothed on the basis of the values in Nj; hence this term is switched
off. Any errors in the value of this particular vertex will be corrected on the
basis of the first two terms, which control how close the final smoothed mesh
will be to the generic one and the SfM estimate. When [; = 0, indicating that
the it vertex is not part of a line process, its final value in the smoothed mesh
is determined by the neighbors as well as its corresponding values in the generic
model and SfM estimate. The importance of each of these terms is controlled
by the factor 0 < g < 1. In the case (largely academic) where d;, = dg, the
smoothed mesh can be either d, or d, and this is taken care of in the indicator
function in the third term in (4.8).

In order to solve the optimization problem in (4.8), we use the technique of
simulated annealing built upon a Markov Chain Monte Carlo (MCMC) frame-
work [60, 62, 71]. The MCMC optimizer is essentially a Monte Carlo integration
procedure in which the random samples are produced by evolving a Markov
chain. Let T} > Ty > ... > T}, > ... be a sequence of monotone decreasing
temperatures in which T} is reasonably large and limp, .o, = 0. At each such
Ty, we run Ny iterations of a Metropolis-Hastings (M-H) sampler [63, 64] with

the target distribution m(f) oc exp{—FE(f)/Ti}.* As k increases, 7} puts more

4For any given target probability distribution 7(z), the Metropolis-Hastings algorithm pre-
scribes a transition rule for a Markov chain so that the equilibrium distribution of the chain
is w(x). To start the algorithm, one needs to choose an arbitrary, but easy to sample from,

transition function T'(z,y) (also called a proposal distribution). Then, given a current state
(t)
x )

e Draw y from the transition function T'(z(*),y).
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and more of its probability mass (converging to 1) in the vicinity of the global
maximum of E. Since minimizing F( f) is equivalent to maximizing (f), we will
almost surely be in the vicinity of the global optimum if the number of iterations

Ny, of the M-H sampler is sufficiently large. The steps of the algorithm are:
e Initialize at an arbitrary configuration f, and initial temperature level 7.

e For each k, run Ny steps of MCMC iterations with 7 (f) as the target

distribution. Pass the final configuration of x to the next iteration.

e Increase k to k + 1.

4.3.2 Mesh Registration:

The optimization procedure described above requires a one-to-one mapping of
the vertices {d;,} and {d,}. Once we obtain the estimate from the SfM algo-
rithm, a set of corresponding points between this estimate and the generic mesh
is identified manually (as in [56, 57]). This is then used to obtain a registration
between the two models. Thereafter, using proper interpolation techniques, the
depth values of the SfM estimate are generated corresponding to the (z,y) co-
ordinates of the vertices of the triangles in the generic model. By this method,

we obtain meshes with the same set of N vertices, i.e. the same triangulation.

e Draw U ~ Uniform[0, 1] and update

1) _ ] ¥ if U < P(m(t);y)
x { z®)  else. (4.9)
Various functions have been suggested for p [62]. Metropolis [72] and Hastings [73]
suggested
: 7r(y)T(ﬂv,y)}
z,y) =minq 1, ————"—L 5. 4.10
ple) = min {1, ST (410
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4.3.3 The Generic Mesh Algorithm:

Input A S “_"h 3D o MC,M; Find
orithm » Imization
Video gor Model y 3D Model

Framework

Figure 4.4: A block diagram representation of the complete 3D modeling algo-
rithm using the generic mesh and SfM algorithm.

The main steps of the algorithm for incorporating the generic mesh are as
follows.
1. Obtain the 3D estimate from the given video sequence using SfM (output of
the reconstruction algorithm of Section 4.2).
2. Register this 3D model with the generic mesh and obtain the depth estimate
whose vertices are in one-to-one correspondence with the vertices of the generic
mesh.
3. Compute the line processes and to each vertex 7 assign a binary value ;.
4. Obtain the smoothed mesh f; from the optimization function in (4.8).

5. Map the texture onto f from the video sequence.

The Final 3D Model: The complete 3D reconstruction paradigm is composed
of a sequential application of the two algorithms (3D Reconstruction Algorithm
and Generic Mesh Algorithm) that we described in Sections 4.2 and 4.3. Figure

4.4 represents a block diagram of the complete 3D modeling algorithm.
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4.4 3D Face Model Results

4.4.1 Overview of Implementation Strategy

In this section we present results obtained from our algorithm. Video sequences
were captured from a hand-held or tripod-mounted video camera. The output is
a 3D model of the scene. A MATLAB implementation of the multi-frame fusion
algorithm is available. We also have an end-to-end system for 3D reconstruction
of a face on a Pentium PC for demonstrations.

Points were tracked across the entire video sequence using a KLT tracker
[74]. The set of tracked feature points for every pair of images was given as the
input to the two-frame SfM algorithm described in [8]. The output is the depth
at these points and the motion of the camera between these frames. For each
pair of frames, the covariance of the error in the structure and motion estimates
was computed according to (2.23). The depth maps from two consecutive pairs
of frames were aligned on the basis of the camera motion estimates as explained
in the reconstruction algorithm of Section 4.2. The aligned depth maps were
then fused using the recursive RMSA fusion algorithm. The multi-frame dis-
tortion curve for the entire video sequence was computed at each step for the
individual feature points using (2.42) and for their average representation using
(2.44). When the distortion was below an acceptable level, the computation
was terminated. If a particular feature was lost after a few frames (occlusion,
etc.) as indicated by the KLT, the distortion for that feature was used to de-
cide whether to include it in model building or not. In all the experiments, the
FOE was estimated from the first two or three frames and assumed constant

thereafter. Comparison with the estimates obtained from every adjacent pair of
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frames showed that this was a justified assumption. The depth map obtained
at this stage was used to build a 3D model using the Graphics toolbox of MAT-
LAB. The feature points were used to create a Delaunay triangulation. The
depth values were assigned to each of the vertices of the triangle in order to
create a mesh to which the texture was mapped to create the final 3D model.
The method of building the 3D model of the scene is simplistic; it is used only
as a means to represent the results of the algorithm. Advanced techniques in
computer graphics can produce much better models of the scene; that, however,
is not the goal of this work. After the 3D model is obtained, it is combined with
the generic model. A set of corresponding points is identified and the two models
are registered. Then, the depth values of the 3D estimate at the (z,y) coordi-
nates of the generic model are computed, so that the vertices of the two models
are in one-to-one correspondence. The smoothed model can then be obtained

by the optimization procedure described in the previous section.

4.4.2 StfM Algorithm

Figure 4.5 shows two images from the video sequence which is the input to the
StM algorithm. We use a two-frame algorithm that computes the structure from
the optical flow [8] using two consecutive frames and then integrate over the
video sequence using the robust estimation techniques of Section 4.2. The errors
in the motion estimates were computed by tracking a set of features over the
first few frames of the video sequence, which were not used in the reconstruction.
The technique is similar to the gradient-based method of [31], except that, for
more accurate results, it was repeated for each of these initial frames and a

final estimate was obtained using bootstrapping techniques [75]. Assuming that
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the statistics remain stationary over the frames used in the reconstruction, the
errors estimated from the first few frames were used for obtaining R,, in (2.23).
The variance in the inverse depth computed using our theoretical analysis of
Section 4.2 is shown in Figure 4.6. The diameters of the circles indicate the
variances in the motion estimates for the points which were tracked across the
video sequence. A plot of the covariance matrix is also shown in the same figure
so that it is possible to compute the relative magnitudes of the errors. It was
assumed that the noise in the feature points is statistically independent. The
quality evaluation of the fusion algorithm was done using the distortion function
of (2.44). Figure 4.7(a) plots the average distortion curve for 30 frames of the

video sequence.

(b)

Figure 4.5: Two frames of the original video sequence which is the input to the
StM reconstruction algorithm.

4.4.3 Reconstruction Example Without Generic Model

Figure 4.7(b) shows one particular view of the reconstructed model obtained
after completion of the 3D reconstruction algorithm using SfM but without the
generic model. The output, without texture mapping, of the multi-frame SfM
algorithm is also shown in Figure 4.9(b), where the model is represented using

a triangular mesh. The model shown is obtained after the registration process,
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Structure of the covariance matrix

Variance of Inverse Depth

Figure 4.6: Plot of the variance of the inverse depth for different features in a
face sequence. The diameter of the circle at each feature point is proportional
to the variance at that feature point. In the second plot, the diagonal elements
of Ry, are shown.

) (b)

Figure 4.7: (a) represents the distortion of the SfM algorithm with the number
of images; (b) depicts one view from the reconstructed model at this stage of the
algorithm.
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which was explained in Section 4.3.> It is evident from these plots that the
general characteristics of the face are represented; however, it is also clear that a
pure SfM algorithm is not enough for a completely satisfactory reconstruction of

the face. We now introduce the generic model into the reconstruction strategy.
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Figure 4.8: The vertices which form part of the line processes indicating a change
in depth values are indicated with black 'x’s.

4.4.4 The Line Process and Neighborhood Set

Figure 4.9(a) represents the generic model. The line process was calculated on
the basis of this generic mesh. In Figure 4.8, the vertices of the generic mesh
that indicate the boundaries between regions with sharp changes in depth are
marked with black x’s. For these vertices, [; = 1 (in (4.8)). The local directional
derivatives were calculated at each of the vertices of the generic mesh. The
vertices at which there was a sharp change in the magnitude of the depth were
selected to indicate that they belong to a line process. Thus, the line processes
form the boundaries between regions having different depth values and divide

the set of vertices into different equivalence classes.

5The ear region was not obtained from the SfM algorithm but was later stitched on for easy
comparison with the other models.
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Figure 4.9: Mesh representations of the 3D models obtained at different stages
of the algorithm. (a) represents the generic mesh, (b) the model obtained from
the SfM algorithm (the ear region is stitched on from the generic model in
order to provide an easier comparison between the different models), (c) the
smoothed mesh obtained after the optimization procedure, (d) a finer version of
the smoothed mesh for the purpose of texture mapping.

For each vertex, we need to identify a neighborhood set of vertices for the
optimization function in (4.8). The vertices which are within a certain radial
distance are identified as belonging to the neighborhood set of the central vertex.
However, if a line process is encountered within this region, only those vertices
which are in the same equivalence class as the central one are retained in the

neighborhood. Since the entire process of determining the line processes and

neighborhood sets is done on the generic mesh, it need not be done separately
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(©) (d)

Figure 4.10: Different views of the 3D model after texture mapping.

for each 3D model.

4.4.5 The Optimization Procedure

The combinatorial optimization function in (4.8) was implemented using the
simulated annealing procedure based on a Metropolis-Hastings sampler. At each
temperature we carried out 100 iterations and this was repeated for a decreasing
sequence of 20 temperatures. Although this is much below the optimal anneal-
ing schedule suggested by Geman and Geman [68] (whereby the temperature
Ty should decrease sufficiently slowly, as O(log(XF_, N;)~!, N; being the total
number of iterations at temperature T;), it does give a satisfactory result for our

face modeling example. We used a value of = 0.7 in (4.8). The final smoothed
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model is shown in Figure 4.9(c).

Figure 4.11: Two frames from the second video sequence to which we applied
our algorithm.

4.4.6 Texture Mapping

Next, we need to map the texture onto the smoothed model in Figure 4.9(c).
Direct mapping of the texture from the video sequence is not possible since the
large size of the triangles smears the texture over its entire surface. In order to
overcome this problem, we split each of the triangles into smaller ones. This is
done only at the final texture mapping stage. The initial number of triangles
is enough to obtain a good estimate of the depth values, but not to obtain a
good texture mapping. This splitting at the final stage helps us save a lot of
computation time, since the depth at the vertices of the smaller triangles is
obtained by interpolation, not by the optimization procedure. The final mesh
onto which the texture is mapped is shown in Figure 4.9(d). Different views of

the 3D model after the texture mapping are shown in Figure 4.10.
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(a) (b)
. '

(c) (d)

Figure 4.12: Different views of the 3D model after texture mapping on the second
video sequence.

4.4.7 Face Modeling: Different Examples

We have applied our algorithm to several video sequences. We present here
the results on two video sequences different from the one on which the detailed
experimental results have been shown. Figure 4.11 shows two frames from the
second video sequence. The set of procedures described above were carried out
for this example also. Since the line processes and the neighborhood set are
calculated from the generic model, the pre-computed results from the previous

model were used for this experiment also. Figure 4.12 shows four views of the
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Figure 4.13: Two frames from the third video sequence to which we applied our
algorithm.

final 3D model reconstructed from this video sequence. Two frames of the third
video sequence on which we present our results in this thesis are shown Figure
4.13. Projections from the 3D model reconstructed using our algorithm are

shown in Figure 4.14.

4.5 Conclusions

In this chapter, we have presented a novel method of 3D modeling of a face from
a video sequence using an SfM algorithm and a generic face model. In previous
approaches, the generic model was used to initialize the SfM algorithm. The
problem with this approach was that the final solution often converged very close
to the initial value, resulting in a reconstruction which had the characteristics
of the generic model rather than those of the particular face in the video which
needs to be modeled. The main contribution of our work lies in the fact we
incorporated the generic model after the SfM algorithm, which obtains the 3D
estimate purely from the input video sequence. Also, instead of combining the

depth values of the two models, we used an optimization framework whereby
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(c) (d)

Figure 4.14: Different views of the 3D model after texture mapping on the third
video sequence.

the local trends in the 3D structure between the two models are compared and
errors in the specific model are corrected for. The 3D structure estimation
process was based on fusing the estimates obtained from pairs of frames from
the video sequence, after computing the uncertainties of the two-frame solutions.
The quality of the fusion algorithm was tracked using a distortion function. In
order to combine the generic model with this 3D estimate, we used an energy
function minimization procedure. Optimization was done using a Metropolis-

Hastings sampling strategy. The results of our method at different stages of the

83



algorithm were presented.
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Chapter 5

Evaluating the Quality of 3D Reconstructions

5.1 Introduction

In Chapters 2 and 3 we analyzed methods of quantifying the errors in 3D recon-
struction from a video sequence and derived expressions for the first and second
order statistics of the errors. We developed a robust 3D face reconstruction al-
gorithm in Chapter 4. We now turn our attention to automatically evaluating
the quality of 3D reconstructions in the most general setting.

The accuracy of SfM solutions is limited by various factors which can be
broadly classified into inherent geometric indeterminacies [2],[3] and statistical
inaccuracies [21],[23],[27]. Our work deals with the statistical aspect of the error
in the 3D estimates. The main reason for the unacceptable quality of the recon-
structions is the poor quality of the input images and the lack of robustness in
reconstruction algorithms to deal with this issue [1, 6]. Therefore, many applica-
tion systems process more images than necessary, hoping to minimize the effect
of the errors because of the redundancy in the processed input data. For such
cases, in order to obtain an optimal 3D reconstruction system, it is important

to understand how the quality of the 3D estimates is affected by the number of
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images processed. Is it possible to obtain a quantitative measure of the quality
as a function of the number of images and to recognize situations where the in-
put data is so poor that it is not possible to obtain a 3D estimate of the desired
fidelity?

This is the question this chapter will address. We pose the SfM problem
in a classical information-theoretic framework and propose a cost function for
quality evaluation based on computing the mutual information (MI) between
the scene structure and its estimates. We track the change in MI, which we
term incremental MI (IMI), with an increasing number of input images. The
underlying idea is the following: as more images are considered, the change in
the MI between the estimate obtained from these images and the scene structure
decreases. We propose methods for estimating the MI using statistical sampling
techniques. Using the example of reconstructing a scene from video using optical
flow [1, 7] under a Gaussian noise distribution, we show how the incremental MI
can be computed from first principles in terms of the input parameters.

This chapter is organized as follows. We start with a brief survey of the use
of information theory in computer vision. Section 5.2 provides a formal problem
description. Section 5.3 introduces the incremental MI criterion and provides a
motivation for its use. We also show how it can be computed in the most general
setting using Monte-Carlo sampling techniques. In Section 5.4, we consider an
example of reconstructing a 3D scene with video corrupted by Gaussian noise
and derive the incremental MI from first principles. Finally, in Section 5.5, we

provide the results of experiments on both simulated and real data.
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5.1.1 Information Theoretic Concepts in Image and Video Pro-

cessing

Recently, information-theoretic concepts have been used in various problems in
image processing and computer vision, like image registration [76], object recog-
nition [77],[78], and feature extraction and clustering [79],[80]. One of the earliest
applications of MI in vision was in the performance evaluation of relaxation la-
beling algorithms [81]. In [76], the authors propose a method for aligning two
images by maximizing the MI between them and use a stochastic optimization
algorithm to perform the maximization. The underlying continuous pdfs (prob-
ability distribution functions) were represented using Parzen window densities
[82]. In [77], the MI (termed “transinformation”) was used to optimally place re-
ceptive fields over the object of interest. This was extended to include sequential
decision processes in [78]. A slightly different technique using the ”average loss
of entropy” was used in [83], [84] for viewpoint selection. In the area of feature
extraction, an information-theoretic approach using Fano’s inequality for the er-
ror rate in classification was proposed in [79]. Information theory was used in
clustering and other pattern recognition problems by Watanabe [85], [86] and a
few other authors [80], [87]. In [80], the authors developed a clustering algorithm
based on a sample-by-sample estimate of Renyi’s entropy [88].

We are not aware of any previous work on the use of information-theoretic
ideas for the quality evaluation of 3D reconstruction algorithms from video. The
closest reference we can draw to our work is the Geometric Information Crite-
rion (GIC) of Kanatani [89], which deals with model selection for geometric data.
Model order selection is an important area of research in statistics [90]. Among

the earliest and most influential ideas in this area are the Bayesian information
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criterion (BIC) [91], the Akaike information criterion (AIC) [92], and the prin-
ciple of Minimum Description Length (MDL) [93], which discriminate between
competing models based on the complexity of their descriptions. The idea of
fitting models to geometric data was formalized by Kanatani using a Geometric
Information Criterion (GIC) [89]. We will show later that our criterion, the in-
cremental mutual information, for evaluating the quality of 3D reconstructions
is related to the idea of reduction of uncertainty in the reconstructions, which,

in turn, is conceptually related to the MDL principle.

5.2  Problem Formulation

Theoretically speaking, it is possible to solve for the scene structure and camera
motion from two images of the scene [34]. From (2.2) and (2.4) in Section 2.2, we
see that for N corresponding points in two frames, we can write 2N equations
relating the horizontal and vertical components of the image plane motion at
each point to the depth at the point and the camera motion between the two
frames. The number of unknowns is N +5: the depths at NV points, three camera
rotation parameters and two camera translation parameters (since we can get
only the translation direction because of the scale ambiguity [34]). Thus it is
possible to solve for the unknowns from the motion equations in a least-squares
framework.

Since the motion between adjacent frames of a video sequence is usually small,
the SfM equations based on motion estimates from optical flow [7] are typically
valid. However, since the motion is small, even a small amount of error in the
motion estimates can lead to large errors in the structure estimates. This is the

classical low signal to noise ratio case in signal processing. In our experiments,
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Figure 5.1: Block diagram representation of the reconstruction framework. X is
the inverse depth that we want to estimate, (H(1), ..., H(L)) are the intermediate
reconstructions (e.g. from pairs of frames), and X is the final fused estimate.

we have observed that the error can often be as large as (sometimes even larger
than) the actual motion between two corresponding points. Hence, in order to
obtain accurate solutions to 3D structure estimation problems, it is necessary to
understand the nature of these errors and their effects. In the previous chapters,
we studied the first-order and second-order statistical effects of these errors. We
also explored the use of robust estimation techniques from statistical approxi-
mation theory to deal with errors that cannot be suitably modeled, i.e. outliers.
We showed (and so have many other authors [6],[51]) that one of the ways to
reduce the effects of these errors is to integrate the estimates obtained from pairs
or triples of frames over the entire video sequence. In this chapter, we try to
understand how the quality of the final reconstruction is affected by the number
of images in the video sequence. We pose the SfM reconstruction problem in an
information-theoretic framework and use the mutual information between the
unknown scene structure and the 3D estimate to get a precise idea of the quality

of the reconstruction.
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5.2.1 Notation

Figure 5.1 is a block-diagram representation of the 3D structure estimation al-
gorithm. {H(%),7 =1, ..., L} represents the inverse depths ! from individual re-
constructions, which in our case are the structure estimates from pairs of frames
from the video sequence. We assume that all the depth values are aligned to
a common frame of reference. Feature points will be represented by subscripts,
separate reconstructions will be within parentheses. Thus H;(k) represents the
estimate of the it! feature point for the k0 reconstruction. Unless required
for purposes of clarity, the subscript will often be omitted from the notation.
The vector of estimates of the inverse depth [H;(1), ..., H;(N)]' will be denoted
by H,(N). The boldface notation H(i) will represent all the features in the ;th
reconstruction. The final estimate X of X = [X7, ..., X )|  is obtained by fusing
the individual reconstructions (H(1), ..., H(L)). Our analysis will assume that
the noise in the feature points is independent and each of them will be treated
separately. Hence, we will use the notation H™) to denote all the reconstructions
for a particular feature point, which we do not represent explicitly. Similarly, X

will represent the inverse depth at a particular unspecified point.

5.2.2 System Model

We assume that the individual estimates are corrupted by additive noise, i.e.

H(i) = X +V (i), (5.1)

! The inverse depth is used throughout this chapter since it is the quantity that is estimated
from the SfM equations for reconstruction from optical flow and its statistics can be obtained
in an analytic form more easily than the statistics of the depth.
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Figure 5.2: A channel model representation of the 3D reconstruction framework.
The channel is characterized by the probability distribution function P(H™|X).
where X is the inverse depth value of the particular feature. A more abstract
representation of Figure 5.1 is shown in Figure 5.2, where the 3D reconstruc-
tion strategy is represented in a channel model. The input to the channel is
the unknown 3D scene in the form of a video sequence. The output is the se-
quence of inverse depths of the scene (aligned to a particular frame of reference),

(M) The channel is a conceptual representation of the 3D recon-

represented by H
struction strategy comprising the video sequence, the correspondence algorithm,
and the two-frame SfM algorithm. It is characterized by the probability distri-
bution function P(H®™)|X), which is assumed to be known. If the components
of H™) are statistically independent, P(H™)|X) = [[¥, P(H(i)|X). In a later
section, we will show how the channel characteristic can be estimated in terms
of known parameters of the input video sequence.

The fusion algorithm is treated as a post-processing stage, separate from the
channel. From Figure 5.2, it is clear that X, H®) and X form a Markov chain,
ie. X - H®™ — X. Representing by I (X,Y), the mutual information between

two random variables X and Y, we can use the data processing inequality [94]

and obtain

I(X,X) < I1(X,HM). (5.2)
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This allows us to use the mutual information between an unknown scene struc-
ture and its intermediate estimates as a criterion for evaluating the reconstruc-
tion quality, since we are assured that the mutual information between the final
reconstruction and the actual scene depth will always be lower than or equal to

it.

5.3 Incremental Mutual Information

Consider the channel model representation of the reconstruction strategy in Fig-
ure 5.2 and the data processing inequality of (5.2). A typical representation of
the mutual information I(X, X) and I(X,H®™) is shown in Figure 5.3, which
is a diagrammatic representation of the data processing inequality as a function
of the number of frames, n.

Most algorithms address the issue of evaluating the quality of a reconstruction
by considering the error covariance of the final estimate. The usual practice is
to estimate it from the data. In Chapter 2, we showed that it is possible to
obtain the error covariance analytically when we use the optical flow equations
for the motion, which is usually a valid assumption when considering a monocular
video sequence. In Chapter 3, we showed that it is not enough to consider the
error covariance only because the estimate of the structure from optical flow is
statistically biased, even when the camera motion is exactly known. However,
the bias and covariance capture the first-order and second-order characteristics
of the error in reconstruction. The advantage of using a criterion based on
mutual information is that it is able to take into account the effect of the entire
probability distribution, e.g. the effect of outliers, which is usually manifest in

the higher-order statistics.
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The data processing inequality allows us to evaluate the quality of the recon-
struction even before the final estimate, X , has been obtained. This enables us
to understand the effect of intermediate reconstructions and the fusion strategy
separately. Since our evaluation criterion is based on I(X, HW )), we can decide
whether considering more images from the video sequence will add to the qual-
ity of the final reconstruction. Thus it is possible to monitor the progress of a
multi-frame 3D reconstruction algorithm as it proceeds by using more and more
images.

Our criterion for evaluating the quality of the reconstruction depends on
estimating the difference in mutual information for the two sets of observations,

H™) and H™ =Y. We term this the incremental mutual information, i.e.
AI(N) = I(X,H™) — 1(x, H®~1), (5.3)

The term gives us an idea of the contribution of the N gbservation to the
reconstruction strategy with respect to the previous (IV — 1) observations. As
the number of observations increases, the effect of an additional observation
decreases and approaches zero in the limit.

Using the relationship between mutual information and entropy, it is possi-
ble to obtain a different interpretation of the incremental mutual information.

Denoting by h(X) the entropy of the random variable X, we know that [94]

I(X;Y) = h(X)-—hX|Y)
= KY) - h(Y|X)

= h(X)+h(Y)—-h(X,Y). (5.4)
Thus AI(N) in (5.3) can be written as

AI(N) = I(X;H™) - 1(X; HYY)
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Mutual Information

Number of Individual Reconstructions (n)
Figure 5.3: A typical plot of the mutual information in the data processing
inequality of (5.2).

= A(X|HY V) - p(Xx|HW). (5.5)

The quantity defined as the incremental mutual information can also be referred
to as the incremental conditional entropy. Since the entropy of a random variable
is a measure of its uncertainty, Al measures the reduction in the uncertainty as
we add an extra observation. Since the incremental mutual information tends to
zero in the limit, the difference in the conditional entropy also approaches zero.
Thus we will consider more and more images from the video sequence until the
uncertainty in the final structure estimate can be reduced no further. This is
the intuitive idea behind our criterion in (5.3).

The rate at which the incremental mutual information decreases is also an
important measure of the progress of the algorithm. An extremely slow rate
of fall indicates that more images will be necessary to achieve an acceptable

level of quality. Since there is motion between adjacent frames of the video, a
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particular point will move out of the field of view of the camera after a certain
amount of time. A very slow rate of fall of Al might mean that the quality of
the reconstruction is not good enough even when the point is no longer visible.

The rate of change of Al can be obtained as

A2I(N) = AI(N)— AI(N —1)

= I(X,HM) + 1(X, HV-?) — 21(X, HN V), (5.6)

Combining (5.3) and (5.6), we can state that an acceptable reconstruction
quality has been achieved when both the following conditions are satisfied simul-

taneously:

A2I(N) < 0, VN > N,

AI(N) < (5.7)

where Nj is a constant and 7 is a threshold defining an acceptable quality of
reconstruction. Since AI(N) is monotone non-increasing for N > N, and is
bounded below by zero, the monotone convergence theorem [33] applied to (5.5)
implies that h(X|[HY V) — r(X|H™) — hy for some N > Ny, in the case
where an acceptable quality of reconstruction has been reached. Thus, A is the

minimum level of uncertainty in a scene described by /N observations.

5.3.1 Estimating the Mutual Information

We now turn our attention to estimating the IMI from the data. This requires
a knowledge of the probability density functions of the random variables, which
we do not know a priori and have to estimate from samples. The entropy of a

random variable z can be expressed as the expectation of the negative logarithm
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of the probability density p(z), i.e
h(z) = E,[—Inp(2)]. (5.8)

Thus, if we can estimate the probability densities we can obtain the MI using
(5.4).

We assume that the channel characteristic, P(H")|X), is known. Using
the observation model of (5.1) and assuming that the noise process {V (i)}, is

independent of X, we can write

PHM|X) = P{X+V()}L|X)

= PV, (5.9)

Thus knowledge of the channel characteristic implies that we know the joint
distribution of the noise process. If {V (i)} is an independent sequence of random
variables, the joint distribution is simply the product of the noise distributions in
the individual reconstructions. In the next section, we show by an example how
the channel characteristic can be estimated from first principles starting with the
basic equations of SfM from optical flow. Alternatively, the noise process can be
assumed stationary and the probability distribution estimated from the initial
few frames using histogram techniques. A method of estimating the probability
distributions and mutual information using statistical sampling techniques can
be found in [95].

Once P(H™)|X) is known, we can obtain

PHM) = /X P(H(N)|X)px(x)d:v

> P(HW)|z)px (2;), (5.10)

T, €X

&
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where px(z;) is the probability that the random variable X = z;. Knowing
px (z) implies that we have an a priori statistical model on the scene structure

X.

Expressing the MI in terms of the entropies, we can write
I(X,HM) = h,(EHWM) — ,EHD)| X). (5.11)

Using P(H®™|X) and P(H®™)), we can compute (5.11) by estimating the en-
tropies using the law of large numbers [36]. The expected value of a random
variable f(Z) can be computed by sampling z; from the distribution P(z) and
computing

Ez[f(Z2)] = %if(zi). (5.12)

This can be used to compute the entropies from (5.8).

5.4 A Case Study: Reconstructing With Gaussian Noise

In this section, we consider the special case of Gaussian noise in the motion
estimates. We show that for this case we can derive a closed-form expression for
the IMI, as opposed to the Monte Carlo simulations necessary for the general
case.

Recall equation (2.4). Also recall that we derived an expression for the er-
ror covariance in the structure and motion estimates, R, in (2.23), which was
partitioned to obtain Ry. The IMI can be expressed in terms of Ry under the
Gaussian noise assumption.

Using our previous notation as in (5.1), let X be the unknown true in-

verse depth. Assume that X ~ N(0,02 = Px)? and {V(i),i = 1,..,N} is

2The mean of X is subtracted out.
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a sequence of independent random variables distributed as N(0,07,;). Let
Py = diag[Py(i)l,_, v = diag[o%), ., 0% |- Now Cov[H(i)|X] = Ry(i)
from (2.36). Thus Py = diag [Ry(1), ..., Ra(V)], where Ry, (4) is the value of Ry,
at a particular point for the inverse depth obtained from the it and (1 + 1)st
frames.

From (5.1), E[H(i)] = 0 and
EH@H()] = E[(X+V(@)(X+V()))]
where §;; is a Kronecker delta function. Thus the covariance of H™ is PH(N) =
P‘(,N) + 15 Px1%, where 1y is a vector of N 1’s. Using the fact that the entropy

(differential) of a Gaussian random variable Z ~ N(0,X) is 1 log(2rexpX~!)

[94], the mutual information between X and H (i) is
I(X;H(i) = h(H(i)) - h(H ()| X)

— %log (1 + P]:’((l,)> . (5.14)

Next, consider the mutual information between the unknown X and the vector

of observations H¥). We will denote by |K| the determinant of a matrix K.

I(X;H(N)) — h(H(N))—h(H(N)|X)
N

a 1 :
@ R(HWM) =3 3 log(2mePy (1))
i=1
® 1 |Pv+1NPX1%|)
= —lo . 5.15
o (P 19

(a) is the result of applying the chain rule of entropy and substituting the ex-
pression for the differential entropy of a Gaussian random variable [94]; (b) is
due to the fact that |Py| = IN, Py (i) = [I~, ‘712/(2')- Using the method of induc-

tion and the properties of determinants, it can be shown that |Py + 1xyPx1%| =
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Iy, Oy + 05 POrTE | oy (see Appendix B). Then from (5.15), the expres-
JFi
sion for the mutual information becomes

I(X; HWY) = ! 5108 (1 + Z ) (5.16)
V)

Thus, the incremental mutual information AI(N) is

AI(N) = I(X;HW) - 1(x; BV

_ llog < | Py vy + ].NPX].JJH |Pv(N—1)|>
|PV(N n+ 1y Px1}_ 1‘ [Py

A UV(i) + o2 N, T 0\2/0')
= llog J7i
2 [y 03y + 02 00 TS vy
JFi
1 1/0%
= —log|1l+ -
é + Zf\ill U%/l(_)
1 1/Py(N
= “log |1+~ / ;(_1)1 . (5.17)
2 0'_2+ 1=1 Pv(Z)

Hence we are able to obtain a closed-form expression for AI(N) in terms of the
parameters of the input video sequence by starting from the basic equations of

3D reconstruction from optical flow.

5.4.1 An Estimation-Theoretic Interpretation:

Since we have considered the case of Gaussian noise, it is possible to give an
alternative interpretation to the results in (5.17) from an estimation-theoretic
perspective. The mean squared distortion for M feature points is defined as
D(X, X —ZE[ (X; — X) ] (5.18)
] 1
Let p(Xj, Hj(1),..., Hj(N)) denote the joint density function of the parameter

and observations. The mean square error estimator X; of X, obtained from
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H™ is X;(N) = F [Xj\H](-N)]. From the Cramer-Rao lower bound (CRLB) we

can write the following set of inequalities:

M
D > 352

1 % 1

M= A+ 3N, B[~ logp(H, ()| X)]
N I
A 1

(5.19)

The last step is a result of the application of Jensen’s inequality [35] and that
E [ aX2 log p(H; (i )|X)] 2 (Z) Recalling that (5.17) is for a particular feature
point where the subscript has been suppressed for clarity of notation, let us de-
note Aljél (X3 HS-N)) —I(Xj; H;N_l)). Then from (5.19) and the last expression

n (5.17), we get

Al; = %log (%) : (5.20)

Alternatively, the innovation at the N th stage is 7y = Xy —Xy. Then following
the standard derivation for the Kalman filter [35], it can be shown that the
variance of the innovations is

1/‘7\2/ N)

1 )
£+ ——
oy 1= ]. UV(z)

Py = 012/(1\7) 1+ (5.21)

which shows that for each feature point, the incremental mutual information is

Al = —log( Py ) : (5.22)

related to P,, by

2 O’V(N)
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5.5 Simulation Results

In this section we present the results of experiments that were carried out in order
to analyze our criterion of incremental mutual information using both simulated

and real data.

5.5.1 Experiment 1

A set of 3D points was generated so that their true positions were known. Per-
spective projections of these points were generated and GGaussian noise with zero
mean and known variance was added to these 2D locations. The projections were
taken for different positions of the camera, so that finally a set of tracked fea-
tures was obtained. From every pair of such tracked features, the positions of the
original 3D points were estimated, which resulted in a set of 3D reconstructions.
The first plot of Figure (5.4) shows the true values of the 3D points and their
estimated reconstructions from all the frames over which the features could be
tracked. 3 The second diagram in Figure (5.4) plots the decrease in incremental

mutual information with an increasing number of intermediate reconstructions.

5.5.2 Experiment 2

As in the previous simulation, a set of features were tracked over a number of
frames. However, noise was added according to a uniform distribution. The
magnitude of the noise was larger than in the previous experiment. This led to
mismatches among some of the features. The 3D positions of the points were

estimated using the SfM algorithm and some of the results were erroneous, as is

3The first point was used to set the scale of the reconstruction, so that the geometric
indeterminacies do not affect the result.
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True and Estimated Depth Values
T T T T

Plot of Incremental Mutual Information

Figure 5.4: The upper plot shows the true depth values of the 3D points (the solid
line) and the fused estimate from the intermediate reconstructions from all the
frames (the dotted lines). The lower plot shows the decrease in the incremental
information with increasing number of frames.

clear from the first plot in Figure (5.5). The second plot in Figure (5.5) shows

this case, where the incremental mutual information remains large and does not

follow a steadily decreasing trend as in the previous example.

5.5.3 Experiment 3

We now present a result on a real video sequence. The video consists of a person
moving his head in front of a static camera. The aim was to reconstruct the
model of the head of the person from this video. The focal length of the camera
was known. Figure (5.6)(a) represents an image from the video along with some
of the feature points which were tracked. Figure (5.6)(b) represents the change
in the incremental mutual information between the unknown 3D structure and
the intermediate reconstructions from every pair of frames. The covariance of
the error in the intermediate reconstructions was estimated using (2.24) and

(2.36). This was used to estimate the incremental mutual information using
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Plot of Incremental Mutual Information
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Figure 5.5: The upper plot shows the true depth values of the 3D points (the
solid line) and the fused estimate from the intermediate reconstructions from
all the frames (the dotted lines). The lower plot is the change in the mutual
information with increasing number of frames. This is the case where the esti-
mated reconstruction does not converge to the true value even with an increasing
number of observations.

(a) (b) (c)

Figure 5.6: The above figures represent a 3D reconstruction from video using the
method of measuring the incremental mutual information to judge the quality of
the result. (a) is one of the images from the video along with the set of tracked
features used for the reconstruction. (b) represents the change in the incremental
mutual information with the number of images; (c) depicts one view from the
reconstructed model.
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(5.17). Based on this measure, the 3D model was reconstructed from 25 frames
using the algorithm described in Chapter 4. Figure (5.6)(c) shows one view of

this model.

5.6 Conclusions

In this chapter we introduced a method of evaluating the quality of 3D recon-
structions from video sequences in information-theoretic terms. We showed that
the 3D reconstruction problem using multi-frame SfM can be represented using
a channel model, where the channel characteristic can be estimated from the
input parameters of the video. Such a conceptual representation allows us to de-
rive a criterion for evaluating the reconstruction by computing the change in the
mutual information between the unknown scene structure and the 3D estimates
obtained from increasing numbers of images from the video sequence. Since we
can obtain the mutual information using Monte Carlo simulations, our criterion
goes beyond the second-order distortion estimates which have been the standard
evaluation criterion for 3D reconstruction algorithms. Through an example, we
showed how it is possible to obtain analytical expressions for incremental mutual
information in terms of the parameters of the feature points tracked across the
video sequence. Finally, we carried out experiments on simulated and real data

and the results were presented.
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Chapter 6

Registration of Partial 3D Models

Thus far, we have concentrated on obtaining 3D models from monocular video
sequences. Complete 3D models of a scene are usually created by stitching
together separate partial models obtained from different views. This process
requires registration of features in different partial representations. Establishing
correspondence of features between two or more images obtained from different
views of the same object is still a challenging problem. The difficulty of the
problem lies in the fact that the images may be obtained under different condi-
tions of lighting and camera settings. In this chapter, we propose a technique
for registration of partial models of an object reconstructed from video. We
show that prior information extracted from the video sequence used to obtain
the partial 3D models, or from a similar sequence, can be used to design a ro-
bust correspondence algorithm. The prior information can be collected once for
a class of objects and then used for different objects in that class. The method
works by matching the 2D shapes of different features. A doubly stochastic ma-
trix, representing the probability of match between the features, is derived using
the Sinkhorn normalization procedure. The final correspondence is obtained by

minimizing the probability of error of a match between the entire constellation
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of features in the two sets, thus taking into account the global spatial structure
of the object. The method is applied to create holistic 3D models of a face from
partial representations.

Numerous methods have been used to attempt to solve the registration prob-
lem, ranging from techniques which take advantage of knowledge of the geometry
of the scene to ones which use different information-theoretic measures to com-
pute similarity. One of the best-known methods of registration is the iterative
closest point (ICP) algorithm [96] of Besl and McKay. It uses a mean-square
distance metric which converges monotonically to the nearest local minimum. It
was used for registering 3D shapes by considering the full six degrees of freedom
in the motion parameters. It has been extended to include Levenburg-Marquardt
non-linear optimization and robust estimation techniques to minimize the reg-
istration error [97]. Another well-known method of registering 3D shapes is the
work of Vemuri and Aggarwal, where they used range and intensity data to re-
construct complete 3D models from partial ones [98]. Registering range data for
the purpose of building surface models of three-dimensional objects was also the
focus of the work in [99]. Matching image tokens across triplets, rather than
pairs, of images has also been considered. In [100], the authors developed a ro-
bust estimator for the trifocal tensor based upon corresponding tokens across an
image triplet. This was then used to recover 3D structure. Reconstructing the
3D structure was also considered in [101] using stereo image pairs from an uncal-
ibrated video sequence. However, most of these algorithms work only when given
good initial conditions, e.g. for 3D model alignment, the partial models have
to be brought into approximately correct positions. The problem of automatic

“crude” registration (in order to obtain good initial conditions) was addressed
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in [102], where the authors used bitangent curve pairs which could be found and
matched efficiently.

In the above methods, geometric properties are used to align 3D shapes.
Another important area of interest for registration schemes is 2D image match-
ing, which can be used for applications like image mosaicking, retrieval from a
database, medical imaging, etc. 2D matching methods rely on extracting fea-
tures or interest points. In [103], the authors show that interest points are stable
under different geometric transformations and define their quality based on re-
peatability rate and information content. One of the most widely used schemes
for tracking feature points is the KLT tracker [104], which combines feature selec-
tion and tracking across a sequence of images by minimizing the sum of squared
intensity differences over windows in two frames. A probabilistic technique for
feature matching in a multi-resolution Bayesian framework was developed in
[105] and used in uncalibrated image mosaicking. In [106], the authors intro-
duced the use of Zernike orthogonal polynomials to compute the relative rigid
transformations between images. It allows the recovery of rotational and scaling
parameters without the need for extensive correlation and search algorithms.
Precise registration algorithms are also required for medical imaging applica-
tions. A mutual information criterion, optimized using the simulated annealing
technique, was used in [107] for aligning images of the retina.

Various probabilistic schemes have also been used for registration problems.
One of the best-known techniques is the work of Viola and Wells for aligning
2D and 3D objects by maximizing mutual information [76]. The technique is
robust with respect to the surface properties of objects and illumination changes.

A stochastic optimization procedure was proposed for maximizing the mutual
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information. A probabilistic technique for matching the spatial arrangement of
features using shape statistics was proposed in [108]. Most of these techniques in
image registration work for rigid objects. Constraints using intensity and shape
usually break down for non-rigid objects. The problem of registering a sequence
of images of a non-rigid observed scene was addressed in [109]. The images in
the sequence were treated as samples from a multi-dimensional stochastic time
series (e.g. an auto-regressive model) which is learned. This stochastic model
can then be used to extend the video sequence arbitrarily in time.

The above methods for establishing correspondence rely, in essence, on match-
ing image tokens across groups of images. However, extraction of such image
tokens (like the intensities or shapes of significant features) is an inherently noisy
process, and most methods of extracting them are error-prone. In addition, it
is extremely difficult to compute quantities that are invariant under different
imaging conditions; both intensity and shape, the two most easily obtainable
characteristics in an image, are dependent on the viewing angle. In this paper,
we show that the availability of data in the form of a video sequence can help
in developing robust correspondence schemes. We also show that the incorpora-
tion of proper prior information, easily extracted from a spatio-temporal volume
of video data, into the registration scheme can produce a robust algorithm for
matching.

The method presented here works with the edge images of local features
(which gives approximate notions of the 2D shapes of the features). A doubly
stochastic matrix, representing the probability of match between the features,
is obtained using Sinkhorn normalization [110] and the prior information. The

method works by matching the entire constellation of features in the two sets
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by minimizing the probability of error of a match, after taking into account
the constraints on the relative configuration of the parts. The motivation for
this global strategy (as opposed to the correspondence of individual features
which are local to that region) is that it emphasizes the structural description of
the object. Our matching technique also supports the identifications of missing
features and occlusions between the two views.

Use of prior information about the shape adds robustness to the scheme.
The prior information can be collected once for different classes of objects and
used across different objects in that class; e.g., in our application to building
holistic 3D face models, the prior information can be collected once from a video
sequence of a particular person’s face and used across a large number of faces
with similar characteristics. Computation of the prior requires tracking features
across the frames of a video sequence. Tracking algorithms usually work well
when the motion between consecutive frames is small, but would perform very
poorly in trying to match features from two viewing angles with a wide baseline,
which is the case in our application [82]. Thus the extraction of the priors
(which also requires correspondence) and the registration of views for 3D model
alignment are not the same problem. The tracking algorithm, which works for
small baselines, is taken advantage of to solve the wide-baseline correspondence
problem. Also, since the prior needs to be extracted only once, a time-consuming
method (even a manual one) can be used; however, the model alignment has to
be automatic, as it needs to be done for every 3D model we create.

This chapter is organized as follows. In the next section, we present our
method of computing the probabilities for matching the individual features. Sec-

tion 6.2 explains how to incorporate the spatial structure of the object into the
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matching scheme. The correspondence algorithm is described in Section 6.3. The
results of our algorithm applied to the problem of creating holistic 3D models

from partial ones is presented in Section 6.4.

6.1 3D Registration Using Prior Models

6.1.1 Obtaining the Partial Models

The first step toward creating the holistic 3D models is to obtain the partial
models. Each of these partial models is obtained from a video sequence or from
portions of a longer video sequence using structure from motion (SfM). Almost
any method of reconstructing the 3D model from video can be used. For details,
the interested reader may refer to [1], [3]. For our application, we used the

method outlined in Chapter 4 to obtain each of the partial models.

6.1.2 Formulation of the Registration Problem

Our aim is to obtain correspondences between two sets of features, each extracted
from one of the partial models and represented as sets of random variables,
X =[Xy,...,Xpland Y = [Y7, ..., Yy,]. Each of the elements of the sets represents
the collection of corners in a local region around the feature of interest, thus
giving an idea of the 2D shape of the region (see Figures 6.5 and 6.6); hence
we use the term shape cues. Though the shapes of different features are usually
significantly different, and therefore easier to match, they are dependent on the
viewing angle and the extraction process is extremely sensitive to noise. To
overcome this, we use priors, which are the mean shape of each feature (“mean

feature”) collected from the video sequence over a range of viewing angles. Since
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the shapes of the features do not vary drastically for different people, the prior

information can be collected only once and used across different video sequences.

6.1.3 Computing the Feature Correspondence Probabilities

Let 4 = pq, ..., px represent the prior information of K features. Let H; be the
hypothesis that ¥; matches X; we wish to compute the a posterior: probability
P(H;|X). Defining the event £x,, = {X matches u;}, we hypothesize that the
probability of X matching p; is directly proportional to the inner product of X
with u; (since the inner product gives a measure of similarity). Since X and p;

are binary images, the inner product will always be non-negative. Then

1
Zjl'(zl < Xna g >

P(g)(“j‘X = Xn) = < Xn,,l,l,j > (61)

where < . > denotes inner product. For two images of size P x Q, < X,,, p; >=
1:1—@25:1 Efle Xn(p,q)pi(p-q). Similarly, the probability that Y; matches X

given the event £, is proportional to the inner product of ¥; and p;,

1
Z]K:l < Yzau] >

P(H;|X,Exy;) = <Y, pj>. (6.2)

Then, from the theorem of total probability, the a posteriori probability (which

is the probability of X, matching Y;) is
K

Maximizing this a posteriori probability is equivalent to minimizing the error of

a match.
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6.1.4 Prior Information

Assume that a feature X;(n) ! is corrupted by independent, zero-mean, additive
noise v. Let

X;(n) = Si(n) +v(n), n=1,.., L. (6.4)

where S;(n) is the true unknown value of the feature. Then p;, = E[X;]| =
E[S;] = ﬁ > (n), since the noise is zero-mean and independent of the
parameter, and the mean is computed over a range of viewing angles L(z) (L(z)
can be different for different features). Thus we can compute the probability of
a feature X, in one model matching another feature Y; in another model from

(6.3). The probability is maximum when both X,, and Y; match a particular

prior feature p;.

6.1.5 Identifying Unpaired Features

In matching features from two different views, it is important to identify features
present in one view but not in the other. If a particular feature X,, does not have
a corresponding match in the set Y, then P(H;|X = X,,),7 = 1, ..., M will not
have any distinct peak and X,, can be identified. Similarly, P(H;|Y = Yy,),1 =
1,..., N will have a relatively flat profile if Y,, does not have a corresponding

match in X.

6.1.6 Correspondence Matrix

From the posterior probabilities, we would like to obtain a single doubly-stochastic

matrix C(X,Y), each row of which denotes the probability of matching the el-

h

!The notation X;(n) represents the ith feature from the nt viewing position.
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ements of Y given a particular X, and each column the probability of matching
the elements of X given a particular Y. This is done by using the Sinkhorn nor-
malization procedure to obtain a doubly-stochastic matrix by alternating row
and column normalizations [110]. This allows us to use either X or Y as the

reference feature set.

6.2 Matching the Spatial Arrangement of Features

Rather than computing a probability of match for individual features, a more
reliable correspondence can be obtained if we consider the entire set of features,
taking into account their spatial arrangement in the object, i.e. the constraints
on the relative configuration of the features. Consider, for the purposes of this
analysis, two sets of features X and Y having the same cardinality, say N (after
identifying the unpaired features). We want to assign a probability of match of
X against all possible permutations of Y. Let the permutations of Y be repre-
sented by Y', ..., YN with Y = [Y{y),..., ()], where [Y{1), ..., ()] represents
an ordering of [V1, ..., Yy|. Let H® represent the hypothesis that Y* matches X
(note the superscript used to distinguish the hypothesis for individual features).
Then

P(H'|X) = I, P(H;)|X;), (6.5)

where H(; is the hypothesis that Y{;) matches X; for a particular permutation
Y®. This assumes the conditional independence of each hypothesis H;. This is
a valid assumption for the features of a face without much change in expression;
however, for other examples like the whole human body in motion, such an
assumption is not true, as the different parts usually move together. Computing

each of the probabilities in (6.5), we see that P(H!|X) is maximum when the
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permutation Y? matches the set X, element to element.

Our method works by maximizing the posterior density. Viewed from a
Bayesian perspective, this is equivalent to minimizing the Bayes risk, which is
the probability of error under the condition that incorrect decisions incur equal
costs [111]. Thus, our algorithm is optimal in the sense that it produces a

minimum probability of mismatch.

6.3 The Correspondence Algorithm

We are given two images Z; and Z,, obtained from projections of the two partial
models, and the pre-computed prior information 1, ..., k.

1.Feature Eztraction: Compute the set of features X = [X;,...,Xp] and Y =
[Y1,..., Y] using a suitable feature extraction method (in our case, a corner-
finder algorithm).

2.Compute Probability of Match: Compute the match probabilities from (6.3)
using the prior information pq, ..., ix-.

3.Identify Unpaired Features: Identify those features present in one view, but
not in the other as explained above. At the end of this process, we are left with
two sets with the same cardinality (denoting the paired features) which have to
be matched. Denote them by X = [X7, ..., Xy| and Y = [V7, ..., i

4.Sinkhorn Normalization: Compute the correspondence matrix C(X,Y) by
applying the Sinkhorn normalization procedure to the match probabilities after
removing the unpaired features.

5.Compute Probability for the Spatial Arrangement of the Features: Compute the
posterior probability for matching X with all permutations of Y, i.e. P(H!|X),: =
1,...,N! from (6.5).
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6.Search for Best Match: Obtain i = argmax; P(H'|X). Assign Y* = [Y(1), ..., ()]

as the match to X.

6.3.1 Reducing the Search Space

The search space in the last step of the above algorithm is of size N!. In practice,
the search space can be reduced. For each X = X,,,n =1,..., N for the paired
sets of features, identify the set Y,, = {Y; : P(H;|X = X,,) > p}, where p is an
appropriately chosen threshold. Alternatively, we can choose the {Y;} that have
the largest [ values of the posterior densities. This smaller set identifies those
features in Y which are the closest to a particular feature in X. We can then
compute the probability of match for the permutations of Y in this reduced set.
The actual number of elements contained in the search space will depend on the

exact values of the probabilities of ¥,,,n =1, ..., N.

6.4 Experimental Analysis and Applications

We present the results of our algorithm applied to the problem of aligning partial
3D models obtained from two different video sequences. Two images obtained
from each of the partial models were used to identify the features and obtain
the correspondences. The prior information was pre-computed from a video
sequence which was different from the one used to obtain the 3D models. The
same prior can be used to obtain different holistic 3D face models of different

people. We present here detailed results on one such model.
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6.4.1 Feature Selection and Prior Extraction

To select the features that need to be registered, we use a corner finder algorithm
based on an interest operator ? [82]. Figure 6.1 shows the outputs of the corner
finder algorithm, represented by small dots. Given this set of points defining the
corners in the image, a clustering algorithm, like k-means, was used to identify
feature points that need to be matched. Fig. 6.2 plots two sets of features
identified using this strategy. However, in order to avoid the feature matching
problems that can arise due to the symmetry of a face, we only considered
features located in the right 70% of the original images. In addition, features
lying in the region near the image boundaries were neglected. We will present
our results on this smaller set of features. The number of features is sufficient
for our application, as the number of distinct features on a face is limited and
we are considering not just the specific points represented by these features but
the regions around them. Figures 6.3 and 6.4 plot the intensities in the local
regions around the features and Figures 6.5 and 6.6 plot the output of the corner-
finder algorithm around these features. Fig. 6.7 represents the pre-computed
prior information in the form of the mean features. The prior was collected by
tracking a set of features across multiple frames of a video sequence and then

integrating them.

6.4.2 Estimation of Posterior Probabilities

Figure 6.8 gives a graphical representation of the posterior probability matrix

P(X,Y) obtained before the Sinkhorn normalization procedure. It can be seen

2The interest operator computes the matrix of second moments of the local gradient and
determines corners in the image based on the eigenvalues of this matrix.
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N

Figure 6.1: The output of the corner finder algorithm on two images obtained
from projections of the partial models, represented by small dots.

Figure 6.2: Features identified in the front and side view images by applying a
k-means clustering to the output of the corner-finder.

that there is a distinct peak for each row and column of the matrix, corresponding
to matching of a pair of features. The valleys of this surface plot, representing
rows or columns with no peaks, correspond to unmatched pairs of features.
Figures 6.9 and 6.10 plot the rows and columns of P(X,Y) respectively. The
true values (as obtained manually) are marked by a * on the horizontal axis,

except for those which are unmatched (the unpaired features).
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Figure 6.3: Intensity blocks around the features to be matched in the front view.
The numbers represent the positions of the corresponding features in the image.

6.4.3 Matching the Spatial Arrangement of Features

Figure 6.11 plots the probabilities for matching X against all possible permu-
tations of Y. Comparison with Figures 6.9 and 6.10 shows that there is a very
distinct peak in this case, justifying our earlier assertion that taking into account

the spatial arrangement of the features leads to a more robust algorithm.

6.4.4 Importance of Prior Information

In Figure 6.12, we plot the probabilities of matching each feature in X to the
different features in Y, where we do not have the pre-computed prior informa-
tion. The probabilities were estimated using the shape similarity of the two
features. This was done using the standard technique of computing the ratios of
the eigenvalues of the first and second central moments of the coordinates of the
set of points representing the features [82]. This was extended to consider the

permutations of the features so as to take advantage of the global arrangement.
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Figure 6.4: Intensity blocks around the features to be matched in the side view.
The numbers represent the positions of the corresponding features in the image.

Figure 6.13 plots the probability of matching the spatial arrangement of the
features without taking advantage of the prior information. In both cases, we
see that the peaks of the probabilities do not correspond to the true match, as
indicated in the plots. This emphasizes the importance of the prior information
and shows how a simple correlation-based matching technique can be modified
to provide a very robust solution by incorporating suitable information gathered

from the video data.

6.4.5 Importance of Considering the Relative Configuration of
Features

Even though the search over all possible permutations of one feature set leads to

increased computational load, the advantage in terms of robustness of the final

solution makes it worthwhile. Comparison of Figures 6.8 and 6.11 shows that the

peak of the probability curve is much more pronounced when the configuration of
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Figure 6.5: The shapes of the significant image attributes in the front view
around the feature point whose position in the original image is indicated on
top.

the feature set is taken into account than when we try to obtain the registration

by considering the probabilities of match of the individual features.

6.4.6 Application to 3D Model Alignment

We now demonstrate the application of our correspondence algorithm to aligning
two models of a human face obtained from different views. Each of the models
was obtained from a video sequence of a person moving his head in front of a
static camera. The video sequence was split into two portions, corresponding
to the front and side views of the face. The two partial models were obtained
from these two portions of the video sequence. In order to obtain the 3D models
from video, a set of features were tracked and the depth and camera motion at
these points were computed using a multi-frame structure from motion (SfM)
algorithm. The SfM algorithm worked by fusing the depth estimates obtained

from two images using optical flow techniques. The fusion was done using robust
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(99,81)

(96,100

Figure 6.6: The shapes of the significant image attributes in the side view around
the feature point whose position in the original image is indicated on top.

statistics and a generic model of a face. The error in the reconstruction was
estimated and compensated for. Details of the 3D modeling algorithm were
presented in Chapter 4. Fig. 6.14 shows the two models, one from the front, the
other from the side, which we aim to integrate into one holistic model.

In order to align these two partial models, one image, obtained from each
of the views, was considered, and our algorithm was used to obtain a corre-
spondence between the features automatically selected in these images. Prior
information about important features in a human face was pre-computed and
used for this application. The prior information was automatically obtained by
tracking features across a video sequence and obtaining an average representa-
tion for each feature over the entire video sequence. Our algorithm in Section
6.3 was then used to obtain the correspondences between the different features.
Having obtained the feature correspondence, we compute the affine transforma-

tion between the two models for all of the features, i.e. y; = Rx; + T where x;
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Figure 6.7: The prior information (the shape representation averaged over a
large number of viewing angles) which was pre-computed.

and y; are the 3D coordinates of a matching pair of points and R and T the ro-
tation and translation between the two models. Any other method of obtaining
the transformation would work just as well, or even better. Fig. 6.14 also shows

two views of the complete model after alignment.

6.5 Conclusions

In this chapter, we have presented an algorithm for creating holistic 3D models
by matching two sets of features extracted automatically from the models, taking
into consideration the relative configuration of the feature sets. The Sinkhorn
normalization procedure is used to obtain a doubly-stochastic matrix denoting
the probabilities of match for the two feature sets. The method works by mini-
mizing the probability of a mismatch (using the Bayes error criterion) between
the shapes of the features, after taking into account their spatial arrangement.
Robustness is achieved by including prior information about the feature sets.

We emphasize that the prior can be obtained from the video data collection,
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Figure 6.8: The posterior density matrix.

and thus needs to be done only once for each class of examples. The incorpora-
tion of the prior information and the spatial structure of the object leads to an

extremely robust algorithm.
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Figure 6.9: The a posterior: probabilities for each of the features in the front
image, obtained from each of the rows of the correspondence matrix.
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Figure 6.10: The a posterior: probabilities for each of the features in the side
image, obtained from each of the columns of the correspondence matrix.
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Figure 6.11: The probability of matching X against all permutations of Y. The
true value is marked with a 1} below the horizontal axis.
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Figure 6.12: The probability of match for each of the features in the front image,
for the case where prior information is not available.
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Figure 6.13: The probability of match for the shape of each feature in the front
image against all possible combinations of the features in the side view, for the
case where prior information is not available. The true value is marked with a
1 below the horizontal axis.

Front View Side View

| = £

View 1 After Alignment View 2 After Alignment

Figure 6.14: 3D models from the front and side which are used as input to the
algorithm, and two views of the 3D model obtained after the alignment.
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Chapter 7

Conclusions and Future Work

In this thesis, we have addressed the problem of reconstructing a 3D scene from
a video sequence using optical flow to estimate the motion between pairs of
frames. Since optical flow computations assume small inter-frame motion, the
errors in the motion estimates are often of comparable magnitude to the actual
displacements. This is the typical low signal to noise (SNR) ratio problem of
signal processing and any method which relies on using flow needs to take into
account this aspect of the problem. In our work, we have tried to solve the
problem of estimating 3D structure and camera motion after compensating for
the effects of errors in the motion estimates. We have applied our knowledge
of the statistics of the errors to obtain robust 3D face reconstructions. The

following were the main contributions of the thesis.

Error Covariance of 3D Reconstruction: In Chapter 2, we derived a pre-
cise expression relating the error covariances of the camera motion and
structure estimates as a function of the error covariances in the measure-
ments of the feature positions. We showed that we could derive a second
order statistic to measure the error in a multi-frame reconstruction as a

function of the number of frames.
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Bias in 3D Reconstruction: We showed in Chapter 3 that the depth estimate
is statistically biased and the magnitude of the bias is significant. We
analyzed how the camera motion affects the bias and found that different
motion trajectories have drastically different effects on the bias. We also
noted that our analytical results are in accordance with the phenomenon

of bias observed in psychophysics experiments on human observers.

3D Estimation Algorithm: The main application of our work was in building
accurate 3D models of human faces from a video sequence. We showed that
a combination of robust statistics and our error analysis could be used to
achieve this purpose. A generic face model was used to correct for the

residual errors from such a scheme in an MCMC optimization framework.

Information-Theoretic Quality Evaluation: To evaluate the quality of a
3D reconstruction algorithm from multiple images, we proposed a criterion
termed incremental mutual information (IMI). IMI allows us to estimate
the number of frames necessary to obtain a reconstruction of the desired
fidelity. We showed how the IMI can be estimated using Monte Carlo

techniques.

Combining Partial 3D Models: Since holistic 3D models are usually obtained
by stitching together partial ones, we proposed a probabilistic algorithm
for matching the shapes of significant features in two partial models and

applied it to the face reconstruction problem.
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7.0.1 Future Work

Being able to build accurate 3D models is the holy grail of computer vision since
it can lead to the solution of numerous other problems like recognition, tracking,
automatic navigation, etc. Our work thus opens up possibilities in numerous
other areas. We will outline two directions which can lead to future work, one
dealing with the understanding of the fundamentals of the 3D reconstruction

problem, and the other with its applications.

Error Analysis for Surfaces: Our study of the accuracy of 3D reconstruction
from video has concentrated on the errors in point features sampled from
the optical flow. An important extension would be to obtain similar results
for surfaces rather than individual points. The optical flow framework is
particularly suited to this as it gives a dense flow field. Also, partial differ-
ential equation methods used to derive the flow are suitable for analyzing
continuous surface patches. It would be interesting and useful to obtain
expressions for the error in the reconstruction along the lines of the bias,

covariance, and mutual information for surfaces.

Multi-resolution surface reconstruction: Our algorithm concentrates on re-
constructing the 3D surface at one resolution. However, analysis of most
real objects reveal that there are portions which are rich in detail and oth-
ers which are not. This fact has been taken advantage of in other areas
of image processing like image compression. There, those areas which are
rich in texture are usually represented with more bits than those which
are not. A similar idea can be applied to depth values. Those portions

of a surface which have detailed depth variations can be reconstructed at
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higher levels of resolution than parts which are smooth. The use of differ-
ent multi-resolution techniques like the Laplacian pyramid scheme [112] or

wavelets [113] can be investigated for this purpose.

Recognition and Retrieval Applications: Most face recognition algorithms
perform very well when the training and test images are from similar view-
points. However, if the training image is a frontal face view and the test
image is a profile view of the same person, existing algorithms usually do
not perform satisfactorily. The ability to create accurate 3D models from
a few images obtained from a particular view can be used to solve this
problem. In our work, we have shown how to build 3D models of a face
from a few frames of a video sequence which concentrate on the front view.
However, once the 3D model has been obtained, its projections at different
viewing angles can be used to synthesize novel views (e.g. profile views)
and match them against the test images. Hence 3D models can be used for
recognition, human ID and surveillance applications. Similar ideas can be
used for identifying objects from a video sequence in image retrieval and

content analysis problems.

Multimedia Communications: Video communications, like video conferenc-
ing, usually use MPEG-2 standards where individual frames of the se-
quence are coded either individually (intra-coding) using image transforms
(usually discrete cosine transforms) or by predicting from previous and fu-
ture frames (predictive coding). A completely different approach, which
is an area of active research today, is to use 3D models in communica-
tions. Once the 3D model has been built and transmitted to the decoder

side, the encoder needs to send the camera positions and the differences
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between the images and the projections of the 3D model at these posi-
tions. The decoder can then reconstruct the original video sequence, up to
limits imposed by coding and transmission errors. The use of 3D models
for communications is one of the most important ideas in MPEG-4 stan-
dards, and present research in this area is investigating the advantages of
such methods over MPEG-2 transmission in terms of bit-rate efficiency and

reconstruction accuracy.

Flexible Appearance Modeling and 3D Tracking: Our work on building
3D models of faces assumes that the object is rigid. A very interesting
application of the 3D models would be to make them flexible so as to
model different human expressions and emotions. The models can then be
used for face tracking. The motions of certain control points on the face
can be learnt for different expressions and then combined with the 3D face

model to obtain flexible appearance models.
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Appendix A

Stochastic Approximation

The concept of stochastic approximation has been developed in statistics for
certain sequential parameter estimation problems [12, 53, 58, 114, 115]. It “may
be considered as a recursive estimation method, updated by an appropriately
weighted, arbitrarily chosen error corrective term, with the only requirement
that in the limit it converges to the true parameter value sought” [116]. The
multiplicity of the sources of error that combine in a complicated manner and
the danger of assuming a statistical model that is incorrect and will produce
erroneous reconstructions inspired us to use SA in SfM, as we do not need to
know the distribution function of the error. Besides, it provides a recursive
algorithm and guarantees local optimality of the estimate, which can be non-
linear. On the other hand, in non-Gaussian cases, the Kalman filter is optimal
only among the class of linear filters (in the mean square sense). For the Gaussian
distribution, it is an optimal filter in the mean square sense. Since LMedS is a
non-linear estimator and the distribution of the depth sub-estimates is unknown,
SA is used to obtain an optimal solution based on the method of calculating
the quantile of any distribution recursively, proposed originally by Robbins and

Monro in their seminal paper [70].

132



Let {e(k)} be a sequence of random variables with the same distribution

indexed by a discrete time variable k. A function Q(z,e(k)) is given such that

ElQ(z,e(k))] = g(z) = 0 (A1)
where E denotes expectation over e. The distribution of e(k) is not known;
the exact form of the function Q(z,e) may also be unknown, though its values
are observed and it can be constructed for any chosen x. The problem is to
determine the solution of g(x) = 0. Robbins and Monro (RM) suggested the

following scheme for solving (A.1) recursively as time evolves [70]:
(k) =2k —1)+ aQ(z(k —1),e(k)) (A.2)
where the gain sequence {a;} must satisfy the following conditions [114, 12, 58|:
ap, >0, a,—0, iakzoo, iai<oo. (A.3)
k=1 k=1

A popular choice of the gain sequence, which was used in our experiments also,
is ar, = a/(k + 1)%50L

The stochastic gradient is only one of the ways of applying stochastic ap-
proximation ideas. It can be viewed as the stochastic analog of the method of
steepest descent [117]. However, as is well known in the optimization literature,
steepest descent is fairly inefficient, especially when the iterates get close to
the minimum. Since Newton’s method gives an improvement over the steepest
descent method for deterministic problems, it is reasonable to assume that it
will perform better in the stochastic approximation case also. Suppose that for
each z, we can construct an approximation of the Hessian, denoted by f"(a;, ek),

k

where e* = [e(k),e(k — 1),...,e(1)]. Then the natural stochastic equivalent of

Newton’s method is

(k) =2k —1) — ax[L" (z, €))7 Q& (k — 1), ex). (A.4)
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We shall call this the “stochastic Newton’s method”.
It can be shown that the estimate obtained from SA is unbiased, consistent

and asymptotically normal , and in many cases, also efficient [12, 35].
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Appendix B

Computation of Mutual Information

We will show how to compute the determinant of the matrix Py w) + 1xyPx1%
in (5.15), which is required for computing the incremental mutual information
in Chapter 5.

Let us denote by Ay the following matrix:

2 2 2 2
0, + 0y o, ce o
2 2 2 2
o Oyt 0y, - o
Ay = (B.1)
2 2 2 2
i o <. o, 05+ Oun |

The aim is to compute the determinant of A ;. We will do so by using the method
of induction. Consider N = 2. Then the determinant of A, is denoted by |Ay| =
o2(o) +02,)+05 02, For N =3, |As| = 02(02,05,+05,02,+02.02 ) +0, 05,05,

Assume that
N N N
|AN| = 1_[1031, + Zlag H agj. (B.2)
1= 1= ]

.']21.
JF i
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Now consider the matrix

AN+1 -

2 2
o+ Oy,

2 2 2
o’w . e e o-w O’w
2 2 2 2
O-LE + 0-1}2 Uz 0:6
2 2 2 2
Jw Uz + JvN G:c

2 2 2 2
oy ce o o+ Tyt

Subtracting the second to last row from the last one, we get the following matrix:

Then

where

2 2 2 2 2
Oy + 0y, o o oy
2 2 2 2 2
o Oy + 0y, -+ o o,
2 2 2 2 2
Uz Uac Uac + UUN Gz
2 2
0 0 Ton Ounis
_ 2 2
|Ani1| = oy, |AN| + 03, B,
2 2 2 2 2
O—CU + 01}1 O-SU U.CE O—CE
2 2 2 2 2
0—11? O-CE + 0-1)2 O—CL‘ 0—11?
2 2 2 2 2
Uz G;U e Uac + UUN_l Uz
2 2 2 2

(B.6)

Now using the fact that the determinant of a matrix remains unchanged by

elementary row and column operations, we get

B| =

2 2 2 2 2
Op + 0y, —0y Oy 0 —0y
2 2
o, 0, 0 0
0 o2
2 2
oy 0 0 o
o2 0 0 0
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2 2 2
Oy T Oy Oy
2
o, 0 0
N+1 __2 2
- ( 1) Oy 0 0-1;3
0 0 JgN_l
2.2 2 2
= 0,050y, " Oy

Then, substituting (B.2) and (B.7) into (B.5), we get

N+1 N
Ava = Tetvei,, | Lo 1T
i= =1 _
J#i
N+1 N+1
= HU +ZO’ H o2 +02Hav,
J#Z
N+1 N+1 N+1
= Ho —|—Z H o,
i

which proves the hypothesis about |Ay| in (B.2).
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