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Abstract. Recent efforts in computer vision consider joint scene and
object classification by exploiting mutual relationships (often termed as
context) between them to achieve higher accuracy. On the other hand,
there is also a lot of interest in online adaptation of recognition models
as new data becomes available. In this paper, we address the problem
of how models for joint scene and object classification can be learned
online. A major motivation for this approach is to exploit the hierarchical
relationships between scenes and objects, represented as a graphical
model, in an active learning framework. To select the samples on the
graph, which need to be labeled by a human, we use an information
theoretic approach that reduces the joint entropy of scene and object
variables. This leads to a significant reduction in the amount of manual
labeling effort for similar or better performance when compared with
a model trained with the full dataset. This is demonstrated through
rigorous experimentation on three datasets.
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1 Introduction

Scene classification and object detection are two challenging problems in com-
puter vision due to high intra-class variance, illumination changes, background
clutter and occlusion. Most existing methods assume that data will be labeled
and available beforehand in order to train the classification models. It becomes
infeasible and unrealistic to know all the labels beforehand with the huge corpus
of visual data being generated on a daily basis. Moreover, adaptability of the
models to the incoming data is crucial too for long-term performance guaran-
tees. Currently, the big datasets (e.g. ImageNet [1], SUN [2]) are prepared with
intensive human labeling, which is difficult to scale up as more and more new
images are generated. So, we want to pose a question, ‘Are all the samples equally
important to manually label and learn a model? ’. We address this question in the
context of joint scene and object classification.

Active learning [3] has been widely used to choose a subset of most informative
samples that can achieve similar or better performance than all the data being
manually labeled. In order to identify the informative samples, most active learn-
ing techniques choose the samples about which the classifier is most uncertain.
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Fig. 1. This figure presents the motivation of incorporating relationship among scene
and object samples within an image. Here, scene (S) and objects (O1, O2, . . . , O6) are
predicted by our initial classifier and detectors with some uncertainty. We formulate a
graph exploiting scene-object (S-O) and object-object (O-O) relationships. As shown in
the figure, even though {S,O2, O3, O4, O5, O6} nodes have high uncertainty, manually
labeling only 3 of them is good enough to reduce the uncertainty of all the nodes if S-O
and O-O relationships are considered. So, the manual labeling cost can be significantly
reduced by our proposed approach.

Expected change in gradients [3], information gain [4], expected prediction loss [5]
are some approaches used in the literature to obtain the samples for query. These
approaches consider the individual samples to be independent. However, there
are various tasks, such as document classification [6] and activity recognition
[7], where interrelationships between samples exist. In such cases, it will be
advantageous to exploit these relationships to reduce the number of samples to be
manually labeled. Some active learning frameworks consider this idea and exploit
different contextual relations such as link information [8], social relationships [9],
spatial information [10], feature similarity [11], spatio-temporal relationships [12].

We leverage upon active learning for identifying the samples to label in the
problem of joint scene and object recognition. Similar to the applications men-
tioned above, exploiting mutual relationships between scene and objects can yield
better performance [13] than if no relationships are considered. For example, it is
unlikely to find a ‘cow’ in a ‘bedroom’, but, the probability of finding ‘bed’ and
‘lamp’ in the same scene may be high. Thus gaining information about a scene
can help in enhanced prediction on objects and vice versa. Previously, research
in [14–17] has shown how to exploit the scene-object relationships to yield better
classification performance. However, these methods require data to be manually
labeled and available before learning. Although there exist some works involving
active learning in scene and object classification [4, 5, 18], they do not exploit
the scene-object(S-O) and object-object(O-O) inter-relationships. This is critical
because of the hierarchical nature of the relationships between objects and scenes.
This relationship can be represented as a graphical model with the samples on
the graph, which need to be labeled by a human, chosen using a suitable criterion.
The labeling effort can be significantly reduced in this process - labeling a scene
node in the graph can possibly resolve ambiguities for multiple object classes.
This motivation is portrayed in Fig. 1.
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Fig. 2. This figure presents a pictorial representation of the proposed framework. At
first, initial classification models and relationship model are learned from a small
set of labeled images. Thereafter, as images are available in batches, scene & object
classification models provide prediction scores of scene and objects. With these scores
and the relationship model, the images are represented as graphs with scene and object
nodes. Then, the active learning module is invoked which efficiently chooses the most
informative scene or object nodes to query the human. Finally, the labels provided by
the human are used to update the classification & relationship models.

Motivated by the above, we propose a novel active learning framework which
exploits the S-O and O-O relationships to jointly learn scene and object classi-
fication models. Using mutual relationships between scene and objects, we can
leverage upon the fact that manual labeling of one reduces the uncertainty of
the other, and thus reduces labeling cost. This is achieved using an information
theoretic approach that reduces the joint entropy of a graph. As presented in
the figure, exploiting relationships between scene and objects can lead to lesser
human labeling effort, compared to when relationships are not considered.
Framework Overview. The flow of the proposed algorithm is presented in Fig.
2. We perform two tasks simultaneously:
1. Selection of an image that contains the most informative samples (scene,objects)
2. Given an image, a sample (i.e., a node in the graph representing that image)
is chosen in a way that reduces the uncertainty on other samples.
Our framework is divided into two phases. At first, we learn the initial classifica-
tion models as well as the S-O and O-O relationship model with small amount of
labeled data. In the second phase, with incoming unlabeled data, we first classify
the unlabeled scene and object samples using the current models. Then, we
represent each incoming image as a graph, where scene classification probabilities
and object detection scores are utilized to represent the scene and object node
potentials. S-O and O-O relations delineate the edge potentials. We compute the
marginal probabilities of node variables from the inference on the graphs.

Thereafter, we formulate an information-theoretic approach for selecting the
most informative samples. Joint entropy of a graph is computed from the joint
distribution of scene and objects that represents the total uncertainty of an image.
For a batch of data, our framework chooses the most informative samples based
on some uncertainty measures (discussed in Sec. 3) that lead to the maximum
decrease in the joint entropy of the graph after labeling. After receiving the label
of a node from the human, we infer on the graph conditioned upon the known
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label. Due to this inference, the other unlabeled nodes gain information from the
node labeled by human, which leads to a significant reduction in uncertainties of
other nodes. The labels obtained in this process are used to update the scene
and object classification models as well as the S-O and O-O relationships.
Main Contributions. Our main contributions are as follows.
• In computer vision, most of the existing active learning methods involve learning
a classification model of one type of variable, e.g., scene, objects, activity, text,
etc. On the other hand, the proposed active learning framework learns scene and
object classification models simultaneously.
• In the proposed active learning framework, both scene and object classification
models take advantage of the interdependence between them in order to select
the most informative samples with the least manual labeling cost. To the best
of our knowledge, any previous work using active learning to classify scene and
objects together is unknown.
• Leveraging upon the inter-relationships between scene and objects, we propose
a new information-theoretic sample selection strategy along with inference on a
graph based on the intuition that learning a sample reduces the uncertainties of
other samples. Moreover, our framework facilitates continuous and incremental
learning of the classification models as well as the S-O and O-O relationship
models, thus dynamically adapting to the changes in incoming data.

1.1 Related Works

Scene and Object Recognition. Many of the scene classification methods
use low dimensional features such as color and texture [19], GIST [20], SIFT
descriptor [21] and deep feature [22]. In object detection, current state-of-the-art
methods are R-CNN [23], SPP-net [24] and fast R-CNN [25]. Another promising
approach in recognition tasks has been to exploit the relationships between
objects in a scene using a graphical model [26], [27], [13]. A Conditional Random
Field (CRF) for integrating the scene and object classification for video sequences
was proposed in [14]. A model for joint image segmentation, object and scene
class inference was proposed in [13]. In [15], the spatial relationships between the
objects within an image were exploited to compute the scene similarity score,
based on which the indoor scene categories were predicted. In [16], a CRF model
was constructed based on scene, object and the textual data associated with the
images on the web, to label the scenes and localize objects within the image.
In [28], a projection was formulated from images to a space spanned by object
banks, based on which, the image was classified into different categories. In [17], a
framework was developed for multiple object classification within an image, where
a conditional tree model was learned based on the co-occurrences of objects.
Active Learning. Although the above mentioned works exploit the contextual
relationships, they assume that all the data are labeled and available beforehand,
which is not feasible and involves huge labeling cost. Active learning has been
widely used to reduce the effort of manual labeling in different computer vision
tasks including scene classification [4], video segmentation [29], object detection
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[30], activity recognition [12], tracking [31]. A generalized active learning frame-
work for computer vision problems such as person detection, face recognition
and scene classification was proposed in [32]. They used the two concepts of
uncertainty and sample diversity to choose the samples for manual labeling. Some
of the common techniques to measure uncertainty for selecting the informative
data points are presented in [33]. Active learning has been separately used for
scene or object classification [4, 18, 30, 34], but not in their joint classification.

In [18], a framework for actively learning scene classification model was pro-
posed, where the authors incorporated two strategies - Best vs. Second Best
(BvSB) and K-centroid to select the informative subset of images. A framework
based on information density measure and uncertainty measure to obtain the
best subset of images for querying the human was proposed in [5]. Although their
algorithm can be applied separately for both scene and object classification, they
do not exploit the relationships between scene and objects. An active learning
framework for object categories was proposed in [35] which considers the case
where the labeler itself is uncertain about labeling an image.

In [4], the authors present an active learning framework for scene classification.
In their hierarchal model, they focus on querying at the scene level, and whenever
unexpected class labels are returned by the human, queries are made at the object
level. Thus in their method, there exists a flow of information from the object
level to the scene level. However, in our method, there is a flow of information
from scene to object level and vice versa, in a collaborative manner, which paves
the path for a joint scene-object classification framework.

2 Joint Scene and Object Model

In this section, we discuss how we represent an image in a graphical model with
scene and object as hidden variables.
A. Scene Classification Method. In order to represent scenes, we extract
features using Convolution Neural Networks (CNN). Given an image, we get a
feature vector f from the fc7 layer of a CNN architecture, where f ∈ <4096×1.
We train a linear multi-class Support Vector Machine (SVM) [36] to compute
the probability of nth class, p(S = sn|f j), where f j implies the feature vector
corresponding to sample j. We denote the learned model for scene classification
as Ps. Given an image, ΦS ∈ <N represents the classification score. N is the
total number of scene categories considered in the experiment.
B. Object Detection Method. We use R-CNN presented in [23] to detect the
objects in an image. In R-CNN, we extract features from deep network for each
object proposal. Then, we train a binary SVM classifier for each object category
to get the probability of appearance of an object. After classifying the region we
form a vector that represents the confidence scores of the binary classifiers for
each category. Thus, for each pth region we get ΦOp that represents the detection
score vector. Finally, we use bounding box regression method [37] for better
object localization. We denote the learned model for scene classification as Po.
C. Graphical Model Representation. In this model, two levels of nodes are
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used - one represents scene υs and other set of nodes implies detected objects υo.
υo is generally represented by υo = {υo1 , υo2 , ..υoD}, where D is the number of
bounding boxes appearing in an image. The link between them is depicted by
edges. The joint distribution of υs and υo over the CRF can be written as

P (υs, υo) =
1

Z
Ψξ(υs, υo)

∏
i,j∈D
i6=j

Ψξ(υoi , υoj )
∏

w∈{υs,υo}

Ψv(w) (1)

where, Z is normalizing constant. Ψv(.) and Ψξ(.) denote node and edge potentials.
Node Potentials. Given an image, the scene classifier (Ps) produces a vector

that contains the probabilities of all the scene labels. From these probabilities we
compute scene node potential Ψv(υs) as presented in Eqn. 2. Similarly, given an
image, the object detection scores are used to model the object node potentials
Ψv(υo) as shown in Eqn. 3.

Ψv(υs) =
∑
n∈N
I(Sn)βTn ΦS (2)

Ψv(υo) =
∑
p∈D

∑
m∈M

I(Opm)ΩTm ΦOp (3)

Here, ΦS is a vector of the probability of the scene labels obtained from multi-class
SVM classifier. βn is the feature weight vector corresponding to scene label Sn
and I(.) is the indicator function, i.e., I(Sn) = 1 when S = Sn, otherwise 0.
Ωm is the weight corresponding to the detection score of the object Om. ΦOp is
the score vector of detecting all the objects in the pth bounding box. M is the
number of object Classes.

Edge Potentials. We use two type of relationships, S-O and O-O. We use co-
occurrence frequencies to represent edge potential. The probability of the presence
of an object in a particular scene is determined by the co-occurrence statistics.
For instance, in a context of ‘highway’ scene, the probability of appearance of
‘car’ will be higher than ‘table’ or ‘chair’. In Eqn.4, Ψξ(υs, υo) represents the
relationship between S and O. Similarly, Ψξ(υoi , υoj ) models the O-O relations.

Ψξ(υs, υo) =
∑
p∈D

∑
n∈N

∑
m∈M

I(Sn)I(Opm)Φξ(Sn, Om) (4)

Ψξ(υoi , υoj ) =
∑
m′∈M

∑
m∈M

I(Oim′)I(Ojm) Φξ(Om′ , Om) (5)

Φξ(Sn, Om) represents the co-occurrence statistics between scene and objects.
Larger value implies higher probability of co-occurrence of Sn and Om. Here,
Φξ(O

i, Oj) is the co-occurrence [38] between the detected objects Oi and Oj . It
encodes the information about how often two objects can co-occur in a scene.

Parameter Learning. The initial model parameters of the CRF model
are learned from a set of annotated images, object detectors and scene classi-
fier. Given the ground truth object bounding boxes, we use object detectors to
obtain detection scores for the corresponding bounding box region. Similarly,
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we get the classification score from the annotated scene label. Thus, we can
easily apply maximum likelihood estimation approach to learn all the parameters
{β,Ω, Φξ(Sn, Om), Φξ(Om′ , Om)} in the model.

Inference of Scene and Object Labels. To compute the marginal distri-
butions of the node and edge, we use Loopy Belief Propagation (LBP) algorithm
[39], as our graph contains cycles. LBP is not guaranteed to converge to the true
marginal, but has good approximation of the marginal distributions.

3 Active Learning Framework

In the previous section, we represent an image as a graph containing υs and υo
nodes. If we select a node from a graph, such that querying it will minimize the
joint entropy of the graph maximally, then it means that the classifier will be
able to gain maximum amount of information by labeling that node.

Formulation of Joint Entropy. Consider a fully connected graph G =
(V,E), where V and E are the set of nodes and edges respectively. It may be
noted that V = {S,O1, O2, . . . , OD}. Let µi(υi) and µij(υi, υj) be the marginal
probabilities of the node and edge of the graph. Let υi and υj represent the
random variables for nodes i, j ∈ V . In our joint scene and object classification,
i ∈ {S,O1, O2, . . . , OD} as discussed in Sec. 2. The node entropy H(υi) and
mutual information I(υi, υj) between a pair of nodes are defined as,

H(υi) = E[− log2 µi(υi)] I(υi, υj) = E[log2

µij(υi, υj)

µi(υi)µt(υj)
] (6)

Considering Q nodes in the graph, its joint entropy can be expressed as,

H(V ) = H(υ1) +

Q∑
i=2

H(υi|υ1, . . . , υi−1)

= H(υ1) +

Q∑
i=2

[
H(υi)− I(υ1, . . . , υi−1; υi)

]
(7)

using I(υ1, . . . , υi−1; υi) = H(υi) − H(υi|υ1, . . . , υi−1). Again, using the chain

rule, I(υ1, . . . , υi−1; υi) =
∑i−1
j=1 I(υj ; υi|υ1, . . . , υj−1), Eqn. 7 becomes

H(V ) =

Q∑
i=1

H(υi)−
Q∑
i=2

i−1∑
j=1

I(υj ; υi|υ1, . . . , υj−1) (8)

It becomes computationally expensive to compute the conditional mutual in-
formation, as the number of node increases [40]. As we consider only pair-wise
interactions between S-O and O-O, we approximate the conditional mutual in-
formation I(υj ; υi|υ1, . . . , υj−1) ≈ I(υj ; υi). Thus, the joint entropy of the graph
can be approximated as,

H(V ) ≈
Q∑
i=1

H(υi)−
Q∑
i=2

i−1∑
j=1

I(υj ; υi) =
∑
i∈V

H(υi)−
∑

(i,j)∈E

I(υi; υj) (9)
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This expression is actually exact for a tree, but approximate for a graph having
cycles. The approximation leads to the expression of joint entropy in Eqn. 9,
which is similar to the joint entropy expression in Bethe method [40].

Informative node selection. In our problem, an image is represented by a
graph having several nodes with two types of hidden variables υs and υo. So, we
require not only to find the most informative image but also need to choose the
node to be manually labeled. If we manually label a node, then we assume that
there is no uncertainty involved in that node. Thus, after labeling a node υi with
the label l, the node entropy becomes zero, i,e. H(υi = l) = 0.

Let Hp(V ) be the the joint entropy of image p which can be computed using
Eqn. 9. We query the node such that Hp(V ) is maximally reduced after labeling
the node and inferring the graph conditioned on the new label. Then, after
labeling υi, we find the optimal node q of image p to be queried as 1,

q∗ = arg max
q

[
Hp(υq)−

1

2

∑
j∈N (q)

Ip(υq, υj)
]

(10)

where N (q) represents the neighbor nodes of q. For simplicity, let us define the un-
certainty associated with node q of image p as Jpq = Hp(υq)− 1

2

∑
j∈N (q) I

p(υq, υj)

where the joint entropy for an image p is Hp(V ) =
∑n
q=1 J

p
q from Eqns. 9 and 10.

From Eqn. 10, we choose the node to query, which has the maximum uncertainty
considering not only the node entropy but also the mutual information between
the nodes. Next, we explain how to choose a set of nodes from a batch of images.

Simultaneous Image and Node Selection. We query the nodes of image
p only if its joint entropy Hp(V ) ≥ δ, where δ is a threshold. Since we have
the information about all the node uncertainties of all images, we can perform
multiple queries across multiple different images such that the learner can learn
faster and more efficiently. In this paper, we consider that there is no relation
between the images, thus the conditional inference on one image is independent
of the other images. Thus, graphs of different images can be conditionally inferred
in a parallel manner.

Let, a vector, Jp = [Jp1 , J
p
2 , . . . , J

p
Q]T contain the uncertainty associated with

Q (dependent on the image) nodes for an image p. Consider another vector,
Ĵ = [J1 J2 . . . JP ]T which is obtained after concatenating all the vectors Jp for
P images, whose joint entropy is higher than threshold δ. We sort the vector Ĵ in
descending order to obtain a new vector Ĵs. Then, we perform multiple queries
based on Ĵs, which contain uncertainty of nodes from multiple images of a batch.
For each image, we choose the node appearing first in Ĵs for labeling. We perform
conditional inference with the new labels in a parallel manner over all the images.
The Ĵs vector is again obtained using the updated uncertainties of the nodes and
the process is repeated until Hp(V ) ≤ δ, ∀p. It may be noted that P decreases
or at least remains same in succeeding iterations, because nodes belonging to
images attaining joint entropy less than δ are not queried and thus not included
in Ĵs. Inference reduces the uncertainty on other nodes of the same image.

1 See derivation in supplementary
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As uncertainty of nodes decreases, joint entropy is also reduced. Consider a
matrix S having dimension Nn × 2, where Nn is the total number of nodes of all
images in the batch. The first and second columns of S contain the node index
of a graph (image) and the image index respectively. The order in which the
elements of S are populated is the same as that of Ĵs. We refrain from choosing
more than one node per image in each iteration because labeling one node can
help the other nodes attain a better decision after inference. The set of nodes
M, chosen for labeling in each iteration can be expressed as,

M∗ = arg max
M

s.t.|M|=P
Si,2 6=Sj,2,i,j∈M

∑
k∈M

[
Ĵs

]
k

(11)

where
[
Ĵs
]
k

denote the kth element of Ĵs and Si,m denote the ith row and mth

column of S, where m ∈ {1, 2}. All the steps of active learning are shown in
Algorithm 1. The first column of S is used to identify which node of an image
should be labeled. To summarize Eqn. 11, the optimal set M can be obtained by
choosing one node which has the highest entropy from each image.
Classifier Update. To classify scene and objects, we use a linear support vector
machine (SVM) classifier. The probability of predicted label can be defined as
ŷ = wT f(x) + b, where f(x) is the feature of scene or objects and w, b are param-
eters that determine the hyperplane between two classes. We use soft margins
formulation presented in [36] to find the solution of w, b. The solution can be
found by optimizing, 1

2w
2 + C

∑n
1 εi subject to yi(w

T f(xi) + b) ≥ (1− εi) and
εi ≥ 0 for all i samples, where εi is the slack variable.
Edge Weight Update. We update the co-occurrence statistics with new manu-
ally labeled data as presented in Eqns. 4 and 5. lets denote them by Φ′ξ(Sn, Om)
and Φ′ξ(Om′ , Om). The updated co-occurrence matrix will be [Φξ(Sn, Om)]t+1 ←
[Φξ(Sn, Om)]t+Φ

′
ξ(Sn, Om) and [Φξ(Om′ , Om)]t+1 ← [Φξ(Om′ , Om)]t+Φ

′
ξ(Om′ , Om),

where the subscript t+ 1 indicates the edge potentials after t updates.

4 Experiments

In this section, we provide experimental analysis of our active learning framework
for joint scene and object recognition models on three challenging datasets. For
convenience, we will use terms ‘inter-relationship’ and ‘contextual relationship’
to denote scene-object and object-object relationship.
Datasets. In our experiments, we use SUN [41], MIT-67 Indoor [42] and MSRC
[43] datasets in order to analyze scene classification and object recognition
performance and compare our results. These datasets are appropriate as they
provide rich source of contextual information between scene and objects. In SUN
dataset, we choose 125 scene classes and 80 object categories to evaluate scene
classification and object detection performance, as those contain annotation for
both scene and objects. MIT-67 indoor [42] dataset consists of 67 indoor scene
categories with large varieties of object categories. For MSRC [43] dataset, we
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Algorithm 1: Online Learning for Scene and Object Sample Selection

INPUTS. 1. Learned scene, object and relation models after processing images
in BatchK−1 : {Ps,Po, Φξ(Sn, Om) & Φξ(Om′ , Om)}

2. Unlabeled BatchK : U
OUTPUTS. Learned Models after processing images in BatchK : {Ps,Po,
Φ′ξ(Sn, Om) & Φ′ξ(Om′ , Om)
Initialize: Ls = {} (Empty set)
Step 1: Compute H(υi) and I(υi, υj) using Eqn. 6
Step 2a: Compute vector Jp = [Jp1 , J

p
2 , . . . J

p
Q] containing the node uncertainties

involving entropy and mutual information, for all images.
Step 2b: Obtain vector Ĵ by concatenating the vectors Jp, ∀p, s.t. Hp(V ) ≥ δ
Step 2c: Ĵs ← sort(Ĵ) in descending order
Step 2d: Obtain a vector S storing the image id in the sequence as in Ĵs
if length(Ĵs) 6= 0 then

Step 3a: Select nodes for manual labeling to form a set M using Eqn. 11
Step 3b: Query the nodes in M to the human
Step 4: Ls = Ls ∪M (Labels provided by human)
Step 5: Infer on the graphs conditioned on the labels provided by human
Step 6: Update Ĵs, S using Steps 1 & 2a-d

else
Step 7: Update models {Ps,Po, Φξ(Sn, Om) & Φξ(Om′ , Om)} with Ls

evaluate our results comparing with the ground truth which is available in [13].
Experimental Setup. We use a publicly available software- ‘UGM Toolbox ’ [44]
to infer the node and edge belief in image graphs. We use pre-trained model ‘VGG
net’ [22] which is trained on ‘places-205’ dataset to extract the scene features
from CNN. For object recognition, we use the model as presented in [25].

In our online learning process, we perform 5 fold-cross validation, where one
fold is used as testing set and the rest are used as training set. We divide the
training set into 6 batches. We assume that human-labeled samples are available
in the first batch and we use it to obtain the initial S and O classification models
and the S-O and O-O relations. It might be possible that we do not have all
the classes for scene and objects in the first batch. So, new classes are learned
incrementally as batches of data come in. Now, with current batch of data we
apply our framework to choose the most informative samples to label and then,
update the classification and relationship models with newly labeled data. Finally,
we compute our recognition results on the test set with each updated models.
Evaluation Criterion. In order to train the object detectors, we first choose
positive and negative examples. We apply standard hard negative mining [37]
method to train the binary SVM. We calculate the average precision (AP) of each
category by comparing with the ground truth. Precision depends on both correct
labeling and localization (overlap between object detection box and ground truth
box). Let the computed bounding box of an object be Ob and the ground truth
box be Gb, then the overlap ratio, OR = Ob∩Gb

Ob∪Gb
. OR ≥ 0.5 is considered as

correct localization of an object. Before presenting our results, we define all the
abbreviations that will be used hereafter
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� SOAL: proposed scene-object active learning (SOAL) as discussed in Sec. 3.
� Bv2B: Best vs Second Best active learning strategy proposed in [18].
� IL-SO: Incremental learning (IL) approach presented in [45] is implemented
for scene and object (SO) classification.
� No Rel: No relation is considered between scene and objects.
� S-O Rel: Only S-O relations are considered but not O-O relations.
� S-O-O Rel: Both S-O and O-O relationships are considered.
� All+S-O: All samples with S-O relations are considered.
� All+S-O-O: All samples with both S-O and O-O relations are considered.
� All+No Rel: All samples without any relation are considered.
� SO+All: All samples in batch are considered for scene and object classification
with S-O-O relationship.
� NL, AL: NL implies no human in the loop, i.e., we do not invoke any human
to learn labels. AL denotes active learning. For example, S-NL+O-AL means
scene nodes are not queried but object nodes are queried..
Experimental Analysis. We perform the following set of experiments - 1.
Comparison with other active learning methods, 2. Comparison of the baselines
with different S-O and O-O relations, 3. Comparison against other scene and
object recognition methods, and 4. Recognition performance of scene and object
models while labeling either scene or object.

Comparison with Other Active Learning Methods. In Figs. 3(a,b,c)
and 4(a,b,c), we compare our active learning framework with some existing active
learning approaches- Bv2B [18], Random Selection, Entropy [46] and IL-SO [45].
In the case of random selection, we pick the samples with uniform distribution. For
Bv2B,Entropy and IL-SO, we implement the methods to select the informative
samples for scene and objects. The feature extraction stages are the same as ours.
We observe that our approach outperforms other methods by a large margin in
selecting the most informative samples in both scene and object recognition.

Is Contextual Information Useful in Selecting the Most Informative
Samples? We conduct an experiment that implements our proposed active
learning strategy by exploiting different set of relations of scene (S) and objects
(O). Figs.3(d,e,f) and 4(d,e,f) show the plots for S and O respectively on three
datasets. It is noticed that the highest accuracy is yielded by S-O-O Rel (proposed),
followed by S-O Rel and No-Rel in scene classification as well as in object
recognition. This brings out the advantage of exploiting both S-O and O-O
relations in actively choosing the samples for manual labeling. Moreover, the
manual labeling cost is significantly reduced when we consider more relations. It
may also be noted that our proposed framework achieves similar or even better
performance by only choosing a smaller subset of training data than building a
model with full training set for both scene and objects. For scenes, this subset
is 35%, 30% and 42% of whole training set on MSRC, SUN and MIT datasets
respectively. Similarly, for objects, we require only 39%, 61%, 60% of whole
training set to be manually labeled on these three datasets.
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Fig. 3. In this figure, we present the scene classification performance for three datasets-
MSRC [43], SUN [2] and MIT-67 Indoor [42] (left to right). Plots (a,b,c) present the
comparison of SOAL (proposed) against other state-of-the-art active learning methods.
Plots (d, e, f) demonstrate comparison with different contextual relations. Plots (g,h,i)
demonstrate the comparison of other scene classification methods. Plots (j,k,l) show the
classification performance by utilizing our active learning framework either on scene or
objects and both. Please see the experimental section for details. Best viewable in color.

Comparison against other Scene and Object Classification Meth-
ods. We also compare our S and O classification performance with other state-of-
the-art S and O recognition methods. For scene, we choose Holistic [13], CNN [22],
DSIFT [21], MLRep[47], S2ICA [48] and MOP-CNN [49]. Similarly, we compare
against Holistic [13], R-CNN [23], DPM [37] for object detection performance.
Holistic approach exploits interrelationship among S and O using graphical model.
We also compare with SO-All. From Figs. 3(g,h,i) and 4(g,h,i), we can see that
our proposed framework outperforms the other state-of-the-art methods.

How does scene and object sample selection affect classification
score of each other? We perform an experiment to observe how S and O
recognition performs, when we implement active sample selection of either scene
or object nodes and exploit S-O and O-O relationships to improve the decisions
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of the other type of nodes. The results are shown in Figs. 3(j,k,l) and 4(j,k,l).
Let us consider the first scenario (S-NL+O-AL) where we perform AL on the
O nodes but use relationships to update the classification probabilities of the S
node. We use the first batch to learn the S and O models, but thereafter query
to label only object nodes and not scene nodes.
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Fig. 4. In this figure, we show the object detection performances on MSRC [43], SUN
[2] and MIT-67 Indoor [42] (left to right). Plots (a, b, c) present the comparison of
SOAL with other state-of-the-art active learning methods. Plots (d, e, f) demonstrate
comparison with different graphical relations. Plots (g, h, i) present the comparison
of other object detection methods. Plots (j,k,l) show the detection performance by
implementing our active learning framework either on scene or objects and both. Please
see the experimental section for details. Best viewable in color.

The relationship models are updated based on the confidence of scene classifier
and manual labeling of the objects obtained from a human annotator. With each
update on context model, scene classification accuracy goes up even though the
scene classification model is not updated. Similarly, the second scenario involves
manual labeling of only S nodes but not O nodes. In this scenario, we do not
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consider O-O relationships. We can not rely on confidence of object classifiers
to model O-O relations as it might provide wrong prediction of object labels.
However, involvement of human in both scene and objects makes the sample
selection even more efficient and outperforms all the scenarios mentioned above.
As shown in Figs. 3(j,k,l) and 4(j,k,l), S-AL+O-AL achieves better performance
than S-AL+O-NL by approximately 4-5% and 4.5-5.5% in both scene and
objects on three datasets.
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Fig. 5. Scene prediction and object detection performance on test image with updated
model learned from the data of 1st, 4th and 6th batch.

Some Examples of Active Learning (AL) Performance. We provide some
examples of scene prediction and object detections as shown in Fig. 5. Here, scene
prediction and detections are changing as models are learned over samples from
each batch. Scene and object models are updated continuously with upcoming
batch of data using our AL approach. With each improved model from the batch
of data, classifiers become more confident in predicting scene and object labels
on test image. More such examples are provided in the supplementary material.

5 Conclusions

In this paper, we propose a novel active learning framework for joint scene and
object classification exploiting the interrelationship between them. We exploit
the scene-object and object-object interdependencies in order to select the most
informative samples to develop better classification models for scenes and objects.
Our approach significantly reduces the human effort in labeling samples. We show
in the experimental section that with only a small subset of the full training set
we achieve better or similar performance compared with using full training set.
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