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building. Classical statistical analysis once
insisted on the use of mathematical models
for which compact mathematical solutions
could be found. This generated a tendency on
the part of analysts to restrict their stud-
ies to such tractable models, even at the
expense of making them unrealistic. With
the computer’s capabilities we need not be
afraid of formulating more realistic models,
thereby freeing scientists from the fetters of
analytic tractability. As an example, the rate
equations governing the time dependence of
chemical reactions are usually assumed to be
linear first-order differential equations with
constant rate coefficients. These give rise to
the well-known analytic solutions of mixtures
of exponentials that have often been fitted
to data obtained from a study of chemical
reaction processes. It is well known to the
chemist that a model with constant rates is
often an oversimplification. Nonlinear rate
equations are often more realistic. However,
we usually cannot solve the resulting nonlin-
ear rate equations analytically. By contrast,
the computer has no difficulty solving more
realistic rate equations by numerical inte-
gration and fitting these numerical integrals
directly to the data. The parameters in the
rate equations then become the unknown
parameters in the nonlinear regression fit.
The rapidity of numerical integration sub-
routines is essential for this approach to be
feasible.

There are many other instances in which
numerical analysis can and will replace ana-
lytic solutions. Future research will therefore
be able to search more freely for information
that is at the disposal of scientists. Indeed,
they will use the computer as a powerful tool
in trying alternative model theories, all of a
complex but realistic form, to advance their
theories on empirical phenomena.
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WHAT IS COMPUTER VISION?

The general goal of computer vision (also
known as image understanding) is to derive
information about a scene by computer anal-
ysis of images of that scene. Images can be
obtained by many types of sensors, such as
still or video cameras, infrared, laser radar,
synthetic aperture radar, millimeter wave
radar, etc. Obtaining a description of a scene
from one or more images of it can be useful in
applications like automatic navigation, vir-
tual reality scene modeling, object tracking,
detection and recognition, etc.

Animals and humans have impressive
abilities to interact with their environments
using vision. This performance constitutes a
challenge to vision researchers; at the same
time, it serves as an existence proof that
the goals of computer vision are achievable.
Conversely, the algorithms used by vision
systems to derive information about a scene
from images can be regarded as possible com-
putational models for the processes employed
by biological visual systems. However, con-
structing such models is not the primary goal
of CV; it is concerned only with the correct-
ness of its scene description algorithms, and
not whether they resemble biological visual
processes.

Computer vision techniques have numer-
ous practical applications, some of them being
character recognition, industrial inspection,
medical image analysis, remote sensing,
target recognition, robot navigation, scene
modeling, surveillance, human identification,
activity analysis, etc. There have been many
successful applications, but many other tasks
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are beyond current capabilities, thus provid-
ing major incentives for continued research in
this area. Since the goal of computer vision is
to derive descriptions of a scene from images
or videos of that scene, it can be regarded as
the inverse of computer graphics, in which
the goal is to generate realistic images of
a scene, given a description of the scene.
The goal of CV is more difficult because
it involves the solution of inverse prob-
lems that are highly under-constrained (‘‘ill-
posed’’), not amenable to precise mathemat-
ical descriptions, and often computationally
intractable. Solutions to these problems have
been obtained using a combination of tech-
niques drawn from statistics, physics, applied
mathematics, signal and image processing,
neural networks, psychophysics, biology, and
artificial intelligence.

STATISTICS AND COMPUTER VISION

Computer vision presents numerous chal-
lenging problems at the sensor, data and
algorithm levels. Traditionally, problems in
CV have been grouped into three areas that
have vaguely defined boundaries. At the so-
called low level, the goal is to extract features
such as edges, corners, lines, and segmented
regions, track features over a sequence of
frames or to compute optical flow. At the
intermediate level, using the output of the
low-level modules, one is interested in group-
ing of features, in estimation of depth using
stereopsis, and in motion and structure esti-
mation. At the high level, the intermediate-
level outputs are combined with available
knowledge about the scene, objects and tasks
so that descriptions of objects can be derived.
Thus, CV can be described as a geometric
inference problem since it aims to obtain an
understanding of the 3D world that we live
in from 2D images of it.

The input to vision algorithms at the low
level is the data obtained from one or more
sensors, which is usually corrupted by noise
from the sensor or the environment. For
example, poor lighting conditions can lead
to erroneous results in feature extraction or
optical flow computation. Similarly, track-
ing features or objects in dense visual clut-

ter is a challenging problem. In many of
these problems, statistical methods can play
very important roles in understanding and
modeling the noise processes in order to
obtain ‘‘optimal’’ signal estimates and sym-
bolic inferences. Some of the problems which
can provide challenges to statisticians are: a)
Analysis of non-Gaussian models, b) Object
tracking and recognition in cluttered environ-
ments, c) Non-stationary image processing,
d) Evaluation and performance characteri-
zation of algorithms, e) Multi-sensor fusion,
f) Robust inference of structure, g) Content
analysis in video sequences.

Numerous statistical tools have been ap-
plied to computer vision problems with vary-
ing degrees of success. One of the most influ-
ential models applied to problems in image
processing, analysis and understanding is
Markov Random Fields (MRFs) [1]. It has
led to more meaningful representations that
include discontinuities such as edges, lines,
etc. An MRF consists of a probability distribu-
tion over a set of variables {fi} such that the
probability of a specific variable fi depends
only on the states of its neighbors. More
precisely, we can define a neighborhood Ni
such that P(fi|fj, j ∈ Ni) = P(fi|fj, ∀j). The rela-
tion between MRFs and statistical physics
through the Gibbs distribution has led to
several interesting optimization algorithms
such as simulated annealing [12]. Geman
and Geman formulated the image segmen-
tation problem in terms of MRFs in order to
smooth images except at places where the
image values change rapidly [7].

Tracking an object over a sequence of video
frames is another area where ideas from
statistics have been applied. Many motion
estimation problems have been formulated
as posterior state estimation problems, i.e.
estimating the position of an object given a
set of observation images. They have been
typically solved using a Kalman filter or
extended Kalman filter [14]. However, the
Kalman filter is an optimal estimator in the
mean square sense only among the class
of linear estimators for a general statisti-
cal distribution. For a Gaussian distribution,
it is the minimum mean square error esti-
mator. In situations where the state and
observation equations are non-linear, the
extended Kalman filter has been used. It
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uses a linearization of the state equations
and the observation equations about the cur-
rent best estimate of the state to produce
‘‘approximate’’ minimum mean-square esti-
mates of the state. In many tracking appli-
cations (which we will discuss later in detail)
the observation process is highly non-linear,
or even non-analytical. A generalization of
the Kalman filter to the non linear case
exists based on the Zakai equation [24]. It
has been applied to object detection in [8]
and to object tracking in [16]. The problem
of tracking in visual clutter was addressed in
[10] by estimating and propagating the pos-
terior state density from image data using
sampling techniques, and was extended in
[13] to simultaneous tracking and verifica-
tion using sequential importance sampling
(SIS) [14].

One of the most challenging problems to
vision researchers is estimating the 3D struc-
ture of a scene from a sequence of images
of the scene obtained by a moving camera.
This is known as the structure from motion
(SfM) problem and has been at the forefront
of vision research for over two decades [5,9].
SfM is solved by estimating the scene struc-
ture from a set of tracked feature points or
from optical flow, both of which can be com-
puted from the sequence of video frames. One
of the challenges to solving this problem is
inability to understand the errors in esti-
mating the motion between pairs of images
and the effect of these errors on structure
estimation. Robust solutions to this problem
require an understanding of not only the geo-
metrical relationships of the 3D scene to its
2D projections on the image plane, but also
the statistical characteristics of the image
data [11].

Recently, various robust statistical meth-
ods have been applied to computer vision
problems. Notable among them are boot-
strapping techniques [4] for performance
evaluation and the mean shift procedure
for analyzing feature spaces [15]. It is not
possible to discuss here all the statistical
techniques that have been applied to vision
problems. We will concentrate on two prob-
lems, namely tracking and structure from
motion, in order to highlight the importance
of statistics to computer vision.

STOCHASTIC FILTERING FOR TRACKING

Conditional Density Propagation

Tracking outlines and features of objects as
they move in densely cluttered environments
is a challenging problem. This is because ele-
ments of the background clutter may mimic
features of foreground objects. One of the
best-known approaches to this problem is
to resolve the ambiguity by applying proba-
bilistic models of object shape and motion to
analyze the video stream. Prior probability
densities can be defined over the curves rep-
resented by appropriate parameter vectors
x, and also over their motions. Given these
priors, and an observation density character-
izing the statistical variability of the image
data z given a contour state x, a posterior
distribution can be estimated for xt, given
zt at successive times t. This problem has
been studied with thoroughly using Kalman
filtering in a relatively clutter-free case [9].
In the presence of clutter, however, there
are usually competing observations which
tend to encourage a multi-modal, and hence
non-Gaussian, density for xt. If the Kalman
filter is applied to this case, it will give
an estimator which is optimal only within
the class of linear estimators. Besides, the
state and observation equations are rarely
linear in practice. A well-known probabilistic
algorithm for solving this problem is CON-
DENSATION, which is an acronym for Con-
ditional Density Propagation [10].

Suppose that the state of the modeled
object at time t is denoted by xt and its his-
tory by Xt = {x1, . . . , xt}. Similarly, let the set
of image features at time t be zt with history
Zt = {z1, . . . , zt}. No functional assumptions
are made about the densities or about the
relation between the observation and state
vectors. It is assumed that the object dynam-
ics follows a temporal Markov chain such
that

p(xt|Xt−1) = p(xt|xt−1), (1)

i.e. the new state depends only the imme-
diately preceding state, independent of the
earlier history. Observations zt are assumed
to be independent, both mutually and with
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respect to the dynamic process. This is expre-
ssed mathematically as

p(Zt−1, xt|Xt−1) = p(xt|Xt−1)	t−1
i=1p(zi|xi),

(2)

which leads to

p(Zt|Xt) = 	t
i=1p(zi|xi). (3)

The observation process is therefore defined
by specifying the conditional density at each
time t.

The problem of analyzing the dynamic
system (in this case, solving the tracking
problem) can be formulated as evaluation of
the conditional density p(xt|Zt). In [10], the
following rule for propagating the conditional
density was proved:

p(xt|Zt) = ktp(zt|xt)p(xt|Zt−1), (4)

where

p(xt|Zt−1) =
∫

xt

p(xt|xt−1)p(xt−1|Zt−1), (5)

and kt is a normalization constant that does
not depend on xt.

In [13], the authors proposed a similar
method using Sequential Importance Sam-
pling (SIS) [14] for estimating the condi-
tional density p(xt|Zt). The SIS method is
a recently proposed technique for approxi-
mating the posterior distribution of the state
parameters of a dynamic system which is
described by observation and state equations.
The authors showed that the tracking and
verification problems could be solved simul-
taneously. The visual tracking problem was
solved through probability density propaga-
tion, and verification was realized through
hypothesis testing using the estimated pos-
terior density.

The method of propagating the conditional
density using SIS works as follows. If the
measurement is denoted by zt and the state
parameter by xt, the observation equation
essentially provides the conditional distri-
bution of the observation given the state,
ft(zt|xt). Similarly, the state equation gives
the Markov transition distribution from time
t to time t + 1, qt(xt+1|xt). The goal is to

find the posterior distribution of the states
(x1, x2, · · · , xt) given all the available obser-
vations up to t, πt(Xt) = P(Xt|Zt), where Xt =
{xi}t

i=1 and Zt = {zi}t
i=1. One way to repre-

sent the approximation of the posterior dis-
tribution is by a set of samples and their
corresponding weights.

Definition. [14] A random variable X
drawn from a distribution g is said to be
properly weighted by a weighting function
w(X) with respect to the distribution π if for
any integrable function h,

Egh(X)w(X) = Eπh(X).

A set of random draws and weights (x(j),
w(j)), j = 1, 2, · · ·, is said to be properly weigh-
ted with respect to π if

lim
m→∞

∑m
j=1 h(x(j))w(j)∑m

j=1 w(j)
= Eπh(X)

for any integrable function h.

Suppose {X (j)
t }m

j=1 is a set of random sam-
ples properly weighted by the set of weights
{w(j)

t }m
j=1 with respect to πt and let gt+1 be

a trial distribution. Then the recursive SIS
procedure for obtaining the random samples
and weights properly weighting πt+1 is as
follows:

SIS steps: for j = 1, · · · , m,

(A) Draw Xt+1 = x(j)
t+1 from gt+1(xt+1|X (j)

t ).
Attach x(j)

t+1 to form X (j)
t+1 = (X (j)

t , x(j)
t+1).

(B) Compute the ‘‘incremental weight’’
ut+1 by

u(j)
t+1 = πt+1(X (j)

t+1)

πt(X (j)
t )gt+1(xt+1|X (j)

t )

and let w(j)
t+1 = u(j)

t+1w(j)
t .

It can be shown [14] that {X (j)
t+1, w(j)

t+1}m
j=1 is

properly weighted with respect to πt+1. Hence
the above SIS steps can be recursively applied
to get a properly weighted set for any future
time instant when corresponding observa-
tions are available. It is not difficult to show
that given a set of properly weighted samples
{Xt} with respect to the joint posterior distri-
bution πt(Xt), the ‘‘marginal’’ samples formed
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by the components of xi in {Xt} are prop-
erly weighted by the same set of weights
with respect to the marginal posterior dis-
tribution πt(xi). Once the properly weighted
samples of the joint distribution are obtained,
the marginal distributions are approximated
by the ‘‘marginal’’ samples weighted by the
same set of weights.

Verification

Assume now that there are C classes {ω1, . . . ,
ωC} to which the tracked object can belong
(e.g., C different people). Then given an obser-
vation Z, the Bayesian maximum a posteri-
ori (MAP) probability rule chooses ω = maxi
P(ωi|Z), where P(ωi|Z) is the posterior prob-
ability of the class ωi given Z and can be
computed as

P(ωi|Z) =
∫

A
pi(X|Z)dX, (6)

where pi(X|Z) is the posterior density of class
ωi, A being some properly defined region.
Further details can be found in [13].

We now illustrate tracking using SIS.
Fig. 1 (left column) shows sample frames of
a video sequence in which two persons are

moving around; the face templates of these
persons are to be verified from the video.
In the middle and right columns, the tem-
plates are overlapped on the video. For easy
visualization, a black block is used for the
template corresponding to the face of the
man in the white shirt (denoted by M1), and
a white block for the template correspond-
ing to the face of the second man (denoted
by M2). The middle column illustrates the
situation where the algorithm is correctly
initialized, meaning that the templates are
correctly put on their respective persons. The
figures show that tracking is maintained for
M1 over the entire sequence, and is able
to recover from occlusion for M2 (since the
two people switched positions). The right col-
umn in Fig. 1 shows a case in which we
switch the hypotheses by putting the tem-
plates on the wrong persons. We observe that
M2 eventually gets dropped into the cluttered
background, while M1, after first sticking to
the wrong person, is attracted to the right
person.

Zakai Equation

Another stochastic filtering approach to the
tracking problem is the use of the Zakai

Figure 1. Left column: Sample frames of a sequence. The top row is a frame from the beginning
of the sequence, while the bottom row is a frame from the end of the sequence. Middle column:
Templates overlaid on the video when the hypotheses are true. Right column: Results when the
hypotheses are false.
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equation [3,17,24], which can be regarded
as a generalization of the Kalman filter to
the non-linear case. T. Duncan, R. Mortensen
and M. Zakai derived equations that must be
solved in order to find the optimal filter (in
the same least squares sense as the Kalman
filter) which, given a set of not necessarily lin-
ear observations, produces the best estimates
of the required coordinates. This is possible
provided a certain second-order partial differ-
ential equation can be solved. For a long time,
this remarkable result was mostly of theoret-
ical interest. One of its first applications to
image processing and computer vision can be
found in [8], where the Zakai equation and
wavelets were used to address the problem of
tracking an object over a sequence of frames.
The smoothness of the wavelets was used in
the derivation of the equation describing the
evolution of the conditional density giving the
filter.

We will now provide a brief outline of
the theory of the Zakai equation and its
application to the tracking problem. Let Xt
be a stochastic process in �n satisfying the
stochastic equation

dXt = h(Xt)dt + g(Xt)dBt, (7)

where h : �n → �n and g : �n → {n × m
matrices} are twice-differentiable functions
modeling the state noise structure, and Bt
is a Brownian motion in �m. If the state
vector Xt represents geometric parameters
of an object, such as its coordinates, then
the tracking problem is solved if we can
compute the state updates given information
from the observations. We are interested in
estimating some statistic φ of the states of
the form

πt(φ) = E[φ(Xt|Zt)] (8)

given the observation history Zt up to time
t.

In [16], the authors used the Zakai equa-
tion for 3D object tracking. They used an
approximate shape model of an object for
tracking and motion estimation and showed
that it is possible to derive a simplified form
of the Zakai equation. The branching particle
propagation method was used for computing
the solution [2]. This demonstrated that it is

possible to construct a sequence of branch-
ing particle systems Un which converges to
the solution of the Zakai equation pt, i.e.
limn→∞ Un(t) = pt.

Statistical Methods in Motion Analysis

Error Analysis in Structure from Motion. Re-
constructing the 3D structure of a scene
from a video sequence has been one of
the most prominent areas of research in
computer vision and is known as structure
from motion. The first step toward solv-
ing this problem is to estimate the motion
between corresponding points in two frames
of the video sequence. If the frames are
close enough in time, the motion can be
estimated using optical flow [5]. In general,
however, determining corresponding points
automatically is extremely difficult because
of poor image quality, similarities between
textures, changes of viewpoint, etc. It is
important to understand the effects of the
errors which arise and which propagate
through the reconstruction process. We will
now briefly describe the problem and outline
the statistical approaches which have been
applied to it.

Consider a coordinate frame attached
rigidly to a camera, with origin at the
center of perspective projection and z-axis
perpendicular to the image plane. Assume
that the camera is in motion relative to a
stationary scene with translational velocity
V = [vx, vy, vz] and rotational velocity � =
[ωx,ωy,ωz]. We further assume that the cam-
era motion between two consecutive frames
of the video sequence is small, and use the
small-motion approximation to the perspec-
tive projection model for motion field analy-
sis. If p(x, y) and q(x, y) are the horizontal and
vertical velocity fields of a point (x, y) in the
image plane, they are related to the 3D object
motion and scene depth z by [5]

p(x, y) = (xvz − fvx)/z(x, y) + 1
f

xyωx

−
(

f + 1
f

x2
)
ωy + yωz

q(x, y) = (yvz − fyvy)/z(x, y) +
(

f + 1
f

y2
)
ωx

−1
f

xyωy − xωz, (9)
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where f is the focal length of the cam-
era. Examination of these equations reveals
that only the translational component of the
image velocity depends on the 3D location
of the scene point; the rotational component
depends only on the image position (x, y).
Also, the image velocity field is invariant
under equal scaling of the depth z and the
translational velocity vector V; this is known
as the scale ambiguity in 3D reconstruction,
and shows that we can determine the relative
motion and scene structure only up to a scale
factor. Since only the direction of the trans-
lational motion can be obtained from (9), the
equations can be rewritten as

p(x, y) = (x − fxf )h(x, y) + 1
f

xyωx

−
(

f + 1
f

x2
)
ωy + yωz

q(x, y) = (y − fyf )h(x, y) +
(

f + 1
f

y2
)
ωx

− 1
f

xyωy − xωz, (10)

where (xf , yf ) = ( vx
vz

, vy
vz

) is known as the focus
of expansion (FOE), and h(x, y) = vz

z(x,y) is the
inverse scene depth.

Analysis of these equations shows that
errors in estimating the motion u = [p1, q1,
. . . , pN , qN] between two corresponding points
will affect the results of the 3D reconstruc-
tion z = [h1, . . . , hN , xf , yf ,ωx,ωy,ωz], where N
is the number of points tracked in each
image (in the dense case, it is the total
number of pixels in the image). It should
be noted that the system of equations (10)
is non-linear, and the unknown vector z
lies in an extremely high-dimensional space
((N + 5)-dimensional). Nevertheless, it is pos-
sible to derive precise expressions for the
error covariance Rz in z as a function of the
error covariance Ru in terms of the parame-
ters in (10). Define

Aip = [−(xi − xf )Ii(N) | hi 0 −ri],

= [Aiph|Aipm],

Aiq = [−(yi − yf )Ii(N) | 0 hi −si],

= [Aiqh|Aiqm] (11)

where i = 	i/2
 is the upper ceiling of i (i then
represents the number of feature points N,
and i = 1, . . . , n = 2N), ri = [xiyi, −(1 + x2

i ),
yi]T, si = (1 + y2

i , −xiyi, −xi)T, and In(N) de-
notes a 1 in the nth position of an array of
length N that has zeros elsewhere. The sub-
scripts p in Aip and q in Aiq denote the fact
that the elements of the respective vectors are
derived from the pth and qth components of
the motion in (10). In [23], the authors proved
that if p and q were corrupted by additive IID
white Gaussian noise with variance r2, i.e.
Ru = r2I2Nx2N , then

Rz = r2H−1, (12)

where

H =
N∑

i=1

(
Aip

TAip + Aiq
TAiq

)
. (13)

An extension this result has been recently
proposed; a more general expression was
derived using the implicit function theorem,
without the strong assumptions of (12) and
(13). In [19, 20] the authors proved that

Rz = H−1


 N∑

i=1

(Aip
TAipRuip

+ Aiq
TAiqRuiq)


H−T . (14)

The importance of the expressions in (12),
(13) and (14) lies in the fact that they pro-
vide precise mathematical expressions for
the errors in reconstruction in terms of the
parameters of the basic equations in (10).
These expressions can then be used to obtain
robust engineering solutions to the 3D recon-
struction problem.

Statistical Bias in Motion Estimates

As mentioned earlier, noise in the image
intensities causes errors in the estimation
of features such as points, lines, edges, etc.
It has recently been proposed that the esti-
mation of these features is biased, which
causes them to be perceived incorrectly [6]:
the appearance of the pattern is altered, and
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this provides a possible explanation for many
geometrical optical illusions. For example,
consider the estimation of a point x as an
intersection of two straight lines. It is pos-
sible to obtain a linear system of equations
represented in matrix form by Ix = C, where
I is a n × 2 matrix of n measurements of
image gradients, and C is an n-dimensional
vector. The coordinates of x can then be
obtained by a least squares (LS) solution.
It is well known that the LS solution to a lin-
ear system of the form Ax = b with errors in
the measurement matrix A is biased. In our
case, the matrix I of estimated image gradi-
ents will almost always have measurement
errors; hence the estimate of the position
of the point of intersection will be biased.
Under IID noise in the parameters of I, an
exact expression for the bias was derived in
[6], and through experiments, it was shown
that this could be used to explain many of the
commonly occurring illusions.

This result about the bias in the esti-
mation of image features can be extended
to prove that 3D depth estimates are also
biased, and through simulations, it can be
shown that the effect of this bias is signifi-
cant [21]. Consider once again (10). In cases
where the FOE (xf , yf ) is known, it is possi-
ble to obtain a linear system of equations for
N points. Since many SfM algorithms work
by first estimating the camera motion and
then the depth, this situation often occurs in
practice. Once an over-determined system of
linear equations has been obtained, its LS
solution introduces bias. In [21], the authors
derived an expression for the bias and ana-
lyzed the effects of different camera motions
on it.

The use of total least squares (TLS) does
not help us to avoid this bias, because the
TLS estimate is unbiased only if the error in
estimating A is equal in variance to the error
in estimating b [22], and this would be very
difficult to maintain in (10). Also, estimating
the bias of a TLS estimate is extremely cum-
bersome, and the covariance of an unbiased
TLS estimate is larger than that of the LS
estimate, in first order approximation as well
as in simulations. Hence there is no funda-
mental gain in choosing the TLS over the LS
solution.

SIS for SfM

We previously discussed the use of SIS tech-
niques for propagating the posterior density
function for tracking applications. The SIS
procedure has also been applied to the prob-
lem of structure estimation, by formulating it
as a state estimation problem [18]. We briefly
describe this formulation of the problem, the
approach, and some results.

The problem can be formulated as first
estimating the camera motion using geomet-
ric rigid body constraints like the epipolar
constraint [9], and then recovering scene
structure using the motion estimates. Two
coordinate systems are required to model the
motion. One coordinate system, denoted by
C, is attached to the camera and uses the
center of projection of the camera as its ori-
gin. The Z axis of C is along the optical axis
of the camera, with the positive half-axis in
the looking direction. The X-Y plane of C is
perpendicular to the Z axis, with the X and
Y axes parallel to the borders of the image
plane, and the X-Y-Z axes of C satisfy the
right-hand rule. The other coordinate sys-
tem is a world inertial frame, denoted by I,
which is fixed on the ground. Five parame-
ters are employed to describe the motion of
the camera:

xt = (ψx,ψy,ψz,α, β)

Here (ψx,ψy,ψz) are the rotation angles of
the camera about the coordinate axes of the
inertial frame I, and (α, β) are the elevation
and azimuth angles of the camera translation
direction, measured in the world system I.

Given the above motion parameterization,
a state space model can be used to describe
the behavior of a moving camera:

xt+1 = xt + nx (15)

yt = Proj(xt,St) + ny (16)

where xt is the state vector and yt is the
observation at time t. Proj(·) denotes the
perspective projection, a function of camera
motion xt and scene structure St. nx denotes
the dynamic noise in the system, describing
the time-varying property of the state vec-
tor. If no prior knowledge about the motion
is available, a random walk is a suitable
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alternative for modeling the camera posi-
tion.

Based on this state space model, the
authors designed an SIS method for finding
an approximation to the posterior distribu-
tion of the motion parameters. The method
was based on computing the likelihood func-
tion f (yt|xt) by taking advantage of the
epipolar constraint. The results of 3D recon-
struction from a video sequence of a face is
shown in Figure 2. The first image shows
one frame of the video sequence and the
remaining images show different views of the
reconstructed 3D model.

CONCLUSION

The area of research concerned with extract-
ing useful 2D and/or 3D information from
one or more images is known as computer
vision. It is an interdisciplinary field which
draws ideas from mathematics, physics, biol-
ogy and computer science, among others. The
input data to most vision algorithms consists
of images, which are corrupted by noise from
the sensors or the environment. Statistical
concepts have been applied to understand

and model the characteristics of this noise.
In this article we have reviewed some of the
relevant literature on uses of statistics in
computer vision, and have discussed in detail
two of the most important vision applications,
tracking and 3D reconstruction.
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CONCAVE AND LOG-CONCAVE
DISTRIBUTIONS

A real function g defined on the interval (a, b)
(−∞ � a < b � ∞) is convex if

g(αx + (1 − α)y) � αg(x) + (1 − α)g(y) (1)

whenever α ∈ [0, 1] and x, y ∈ (a, b) (see
GEOMETRY IN STATISTICS: CONVEXITY). A func-
tion g is concave if −g is convex. A positive
valued function g is said to be log-concave
if log g is concave, and log-convex if log g is
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