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1 Abstract

Pose and illumination variations remain a persistent challenge in face recog-
nition. In this paper, we present a framework for face recognition from wvideo
sequences that is robust to large changes in facial pose and lighting condi-
tions. Our method is based on a recently obtained theoretical result that can
integrate the effects of motion, lighting and shape in generating an image us-
ing a perspective camera. This result can be used to estimate the pose and
structure of the face and the illumination conditions for each frame in a video
sequence in the presence of multiple point and extended light sources. The
pose and illumination estimates in the probe and gallery sequences can then
be compared for recognition applications. If similar parameters exist in both
the probe and gallery, the similarity between the set of images can be directly
computed. If the lighting and pose parameters in the probe and gallery are
different, we will synthesize the images using the face model estimated from
the training data corresponding to the conditions in the probe sequences.
The method can handle situations where the pose and lighting conditions in
the training and testing data are very different. We will show results on a
video-based face recognition dataset that we have collected.

2 Introduction

Pose and illumination variations remain a persistent problem in face recogni-
tion, and has been documented in different studies [47, 30]. These two factors
affect low-level tasks like face registration and tracking, which, in turn, re-
duce the final accuracy of the recognition algorithms. Also, it is often difficult
to estimate illumination conditions accurately so as to factor them into the
recognition strategies. Pose estimation problems are often made difficult by
the fact that illumination is unknown. Therefore, it is extremely important
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to develop methods for face recognition that are robust to variations in pose
and illumination.

It is believed by many that video-based systems hold promise in certain
applications where motion can be used as a cue for face segmentation and
tracking, and the presence of more data can increase recognition performance
[47]. However, video-based face recognition systems have their own challenges
such as low resolution of the face region, segmentation and tracking over
time, 3D modeling, and developing measures for integrating information over
the entire sequence. In this paper, we present a novel framework for video-
based face tracking and recognition that is based on learning joint illumination
and motion models from video, synthesizing novel views based on the learned
parameters, and designing metrics that can compare two time sequences while
being robust to outliers. We show experimentally that our method achieves
high identification rates under extreme changes of pose and illumination.

2.1 Overview of the Approach

The underlying concept of this paper is a method for learning joint illumi-
nation and motion models of objects from video. The application focus is on
video-based face recognition where the learned models are used to i) auto-
matically and accurately track the face in the video, and ii) synthesize novel
views under different pose and illumination conditions. We can handle a va-
riety of lighting conditions, including the presence of multiple and extended
light sources, which is natural in outdoor environments (where face recogni-
tion performance is still poor [47, 30, 31]). We can also handle gradual and
sudden changes of lighting patterns over time. This is achieved using the spher-
ical harmonics based representation of illumination [3, 33] and our previous
work that integrates motion and illumination models for video analysis [43].
In [3, 33], the reflectance image was represented using a linear combination
of spherical harmonics basis functions. For Lambertian objects, a ninth order
expansion was deemed sufficient to capture most of the energy in the signal,
while non-Lambertian objects required higher order coefficients. In [43, 44],
we showed that the appearance of a moving object under arbitrary lighting
could be represented as bilinear combination of 3D motion and the spherical
harmonics coefficients for illumination.

This bilinear model of illumination and motion parameters allows us to
develop an algorithm for tracking a moving object with arbitrary illumination
variations. This is achieved by alternately projecting onto the appropriate mo-
tion and illumination bases of the bilinear space. In addition to the 3D motion
estimates, we are also able to recover the illumination conditions as a function
of time, which allows us to synthesize novel images under the same lighting
conditions. The framework does not assume any model for the variation of
the illumination conditions - lighting can change slowly or drastically and can
originate from a combination of point and extended sources. The method relies
upon image differences and does not require computation of correspondences
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between images. It leads to the development of an illumination invariant model
based tracking algorithm that is initialized by registering the model (e.g., a
generic face model) to the first frame of the sequence.

The recognition algorithm proceeds as follows. We assume that a 3D model
of each face in the gallery is available. (We later show experimentally that
an approximate 3D model with the correct texture is often good enough).
Given a probe sequence, we track the face automatically in the video sequence
under arbitrary pose and illumination conditions (as explained above). During
the process, we also learn the illumination model parameters. The learned
parameters are used to synthesize video sequences for each gallery under the
motion and illumination conditions in the probe. The distance between the
probe and synthesized sequences is then computed for each frame. Next, the
synthesized sequence that is at a minimum distance from the probe sequence
is computed and is declared to be the identity of the person. Robust distance
measures are studied for this purpose.

Experimental evaluation is carried out on a database of 32 people that we
collected for this purpose. One of the challenges in video-based face recogni-
tion is the lack of a good dataset, unlike in image-based approaches [47]. The
dataset in [23] is small and consists mostly of pose variations. The dataset
described in [28] has large pose variations under constant illumination, and il-
lumination changes in natural environments but mostly in fixed frontal /profile
poses (these are essentially for gait analysis). An ideal dataset for us would
be similar to the CMU PIE dataset [37], but with video sequences instead
of discrete poses. This is the reason why we collected our own data, which
has large, simultaneous pose and illumination variations. We are presently
enlarging this dataset and adding expression variations.

2.2 Relation to Previous Work

We divide our survey of the relevant literature into two broad parts. First we
look at face recognition, especially the problem of pose and illumination vari-
ations. Next, we compare our joint illumination and motion models with other
some approaches that deal with illumination variations in motion analysis.

Face Recognition

Due to want of space, we refer the reader to a recent review paper for existing
work on face recognition [47]. A recently edited book [48] also deals with many
of well-known approaches for face processing, modeling and recognition. For
a comparison of the performance of various face recognition algorithms on
standard databases, the reader can refer to [31, 30]. We will briefly review a
few papers most directly related to this work.

Recently there have been a number of algorithms for pose and/or illumina-
tion invariant face recognition, many of which are based on the fact that the
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image of an object under varying illumination lies in a lower-dimensional lin-
ear subspace. In [22], the authors propose to arrange physical lighting so that
the acquired images of each object can be directly used as the basis vectors of
the low-dimensional linear space. In [46], the authors proposed a 3D Spherical
Harmonic Basis Morphable Model (SHBMM) to implement a face recognition
system given one single image under arbitrary unknown lighting. Another
morphable model based face recognition algorithm was proposed in [6], but
they use the Phong illumination model, estimation of whose parameters can
be more difficult than the spherical harmonics model in the presence of mul-
tiple and extended light sources. In [16], a method was proposed for using
Locality Preserving Projections (LPP) to eliminate the unwanted variations
resulting from changes in lighting, facial expression, and pose. The authors
in [12, 13] proposed to use Eigen Light-Fields and Fisher Light-Fields to do
pose invariant face recognition. They used generic training data and gallery
images to estimate the Eigen/Fisher Light-Field of the subject’s head, and
then compare the probe image and gallery light-fields to match the face. In
[49], the authors used photometric stereo methods for face recognition under
varying illumination and pose. Their method requires iteration over all the
poses in order to find the best match. Correlation filters have been proposed
for illumination invariant face recognition from still images in [36]. A novel
method for multilinear independent component analysis was proposed in [41]
for pose and illumination invariant face recognition. All of these methods deal
with recognition in a single image or across discrete poses and do not consider
continuous video sequences. The authors in [23] deal with the issue of video-
based face recognition, but concentrate mostly on pose variations. A method
for video-based face verification using correlation filters was proposed in [42].
The advantage of using 3D models in face recognition has been highlighted in
[8], but their focus is on 3D models obtained directly from the sensors and not
estimated from video. This paper provides a method for learning the pose and
illumination conditions from video, using a 3D model that can be estimated
from images.

Modeling Illumination Variations in Video

Learning the parameters of the joint illumination and motion space is a novel
contribution of this paper and we briefly review some related work. One of the
well known approaches for 2D motion estimation is optical flow [18]. However,
it involves the brightness constancy constraint, which is often violated in prac-
tice. Many researchers have tried overcoming this by introducing an illumina-
tion variation term within the standard optical flow formulation. In [29], the
author coined the term “photometric motion” to define the intensity change
of an image point due to object rotation, and applied it to solve for shape and
reflectance. In [14], a parameterized function was proposed to describe the
movement of the image points taking into account the illumination variation.
In [27], the author combined the geometric and photometric effects for flow
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computation and highlighted the need for integrating the different variabili-
ties in the process of image analysis. A method for shape reconstruction of
a moving object under arbitrary, unknown illumination, assuming motion is
known, was presented in [38]. Lighting changes were modeled by introducing
illumination-specific parameters into the standard optical flow equations in
[45]. lumination invariant optical flow estimation was also the theme of [11],
where an energy function was proposed to account for illumination changes
and optimized using graph cuts. Another well-known approach for 2D mo-
tion estimation in monocular sequences is the Kanade-Lucas-Tomasi (KLT)
tracker [40], which selects features that are optimal for tracking, and its ex-
tensions to handle illumination variations [19]. All of these approaches deal
with 2D motion estimation that can handle only small changes in the pose of
the object.

Our approach is illumination-invariant 3D motion estimation, while simul-
taneously learning the parameters of the illumination model. The 2D motion
obtained by any of the above methods can be used along with the well-known
structure from motion (SfM) methods [15] to compute 3D motion and struc-
ture. However, the accuracy of the 3D estimates will be limited by the accuracy
of the 2D motion estimates in the case of lighting changes. As an alternative,
model-based techniques have been used for direct 3D motion estimation from
video [24]. Many 3D model based motion estimation algorithms rely on opti-
cal flow for the 2D motion and most existing methods are sensitive to lighting
changes. The authors in [5] use probabilistic models and particle filters within
a Bayesian framework to robustly track the human body, thus accounting for
moderate illumination variations indirectly. A related work is [25], which uses
SfM with photometric stereo to estimate surface structure. However, all the
frames are needed a priori and an orthographic camera is assumed. Illumi-
nation invariant motion estimation is possible within the Active Appearance
Model framework [10, 20], but the method requires training images under dif-
ferent illumination conditions. While these methods can handle illumination
variations within the video sequence, they are not able to explicitly recover
the illumination conditions of each frame in the video.

In [3] and [33], the authors independently derived a low order (9D) spher-
ical harmonics based linear representation to accurately approximate the re-
flectance images produced by a Lambertian object with attached shadows.
This was an approximation of the infinite-dimensional convex cone represen-
tation derived in [4]. All of these methods work only for a single image of an
object that is fixed relative to the camera, and do not account for changes
in appearance due to motion. We proposed a framework in [43, 44] for in-
tegrating the spherical harmonics based illumination model with the motion
of the objects leading to a bilinear model of lighting and motion parameters.
This approach to illumination modeling takes into account the 3D shape of
the object, which is in contrast to the 2D approaches for handling illumina-
tion variation, like gradient orientation histograms [9], scale-invariant feature
transforms [26] and others [2, 39]. This is motivated by a number of rea-
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sons. Our final goal is to estimate the 3D motion and shape of the objects,
in addition to the lighting conditions. Thus it makes sense to integrate the
illumination models with the 3D shape models. Secondly, a number of authors
have shown that 2D approaches to handle illumination variations have lim-
ited ability due to lack of knowledge of the underlying geometry of the object
[1, 17, 32]. Thirdly, we not only want to achieve illumination invariance, but
also learn the parameters of the illumination models from video sequences.
The 3D approaches to illumination modeling allow this from video sequences
of natural moving objects.

2.3 Organization of the Chapter

The rest of the paper is organized as follows. Section 3 presents a brief overview
of the theoretical result describing the bilinear model of joint motion and illu-
mination variables. Section 4 describes the algorithm for learning the param-
eters of the bilinear model. Section 5 describes our recognition algorithm. In
Section 6 experimental results are presented. Section 7 concludes the paper
and highlights future work.

3 Integrating Illumination and Motion Models in Video

The authors in [3, 33] proved that for a fixed Lambertian object, the set of
reflectance images can be approximated by a linear combination of the first
nine spherical harmonics, i.e,

I(z,y) = Z Z lijbij(n), (1)

i=0,1,2 j=—i,—i+1...i—1,

where [ is the reflectance intensity of the image pixel (x,y), i and j are the
indicators for the linear subspace dimension in the spherical harmonics rep-
resentation, /;; is the illumination coefficient determined by the illumination
direction, b;; are the basis images, and n is the unit norm vector at the re-
flection point. The basis images can be represented in terms of the spherical
harmonics as

bij(n) :primj(n)aizoalaQ;j = —dy..., 1, (2)

where p is the albedo at the reflection point, 7; is constant for each spherical
harmonics order, and Y;; is the spherical harmonics function. For brevity, we
will refer to the work in [3] as the Lambertian Reflectance Linear Subspace
(LRLS) theory.

This result does not consider the relative motion between the object and
the camera. In [43], it was shown that for moving objects it is possible to
approximate the sequence of images by a bilinear subspace. We exploit this
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result for 3D motion estimation under arbitrarily varying illumination. We as-
sume a perspective projection model for the camera, consider the focal length,
f, of the camera as the only intrinsic parameter (can be relaxed), and assume
the reference frame to be attached to the camera with the z-axis being along
the optical axis. At time instance t;, assume we know the 3D model of the
object, its pose, and the illumination condition in terms of the coefficients lfjl
The ray from the optical center to the pixel (x,y) intersects with the surface
at P1. Define the motion of the object in the above reference frame as the
translation T = [T, T, TZ}T of the centroid of the object and the rotation

Q= [wx Wy wz]T about the centroid. After the motion, P; moves to P4/,
and another point Py moves to Py’. At the new time instance t,, the direction
of this ray does not change, and it intersects with the surface at Py’. The new
illumination condition is represented in terms of the coefficients lfj This is
represented pictorially in Figure 1.
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Fig. 1. Pictorial representation showing the motion of the object and its projection.

The authors in [43] proved that reflectance image at new time instance to
can be expressed as:

I(z,y,t) = Y > li3bij (npy), (3)

i=0,1,2 j=—i,—i+1...i—1,i

where
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bij(npy) = bij(np,) + AT + BRQ. (4)

In (3), bij(np;) and lsz are the basis images and illumination coefficients
after motion. In (4), b;;(np, ) are the original basis images before motion. A
and B contain the structure and camera intrinsic parameters. Substituting (4)
into (3), we see that the new image spans a bilinear space of six motion and
approximately nine illumination variables (for Lambertian objects). The basic
result is valid for general illumination conditions, but require consideration of
higher order spherical harmonics.

When the illumination changes gradually, we can use the Talyor series
to approximate the illumination coefficients as lf; = lf; + Al;;. Ignoring the
higher order terms, the bilinear space now becomes a combination of two
linear subspaces, as

I(w,yto) = I(z,y,t0)+ > > (AT +BQ)

i=0,1,2 j=—1i,...,i

+ )Y Algby(ne,). ()

i=0,1,2 j=—1i,...,i

If the illumination does not change from ¢; to to (often a valid assumption
for a short interval of time), the new image at ¢o spans a linear space of the
motion variables, since the third term in (5) is zero.

We can express the result in (3) succinctly using tensor notation as

z=(8+<:x2<£))><11, (6)

where X, is called the mode-n product [41], and 1 € R? is the vector of ;;
components. The mode-n product of a tensor A € RIV<I2XXInX.XIN by o
vector V. € R denoted by A x,, V,isthe I; x Iy x ... x 1 x ... x Iy
tensor

(A xp V)il...in_llin+1...iN = Zail...in_linin+1...iNUin~

n

For each pixel (p,q) in the image, Cripg = [A B] of size N; x 6, where N,
is the dimension of the illumination basis (N; &~ 9 for Lambertian objects).
Thus for an image of size M x N, C is N; x 6 x M x N. B is a subtensor of
dimension N; x 1 x M x N, comprising the basis images b;;(np, ), and 7 is a
subtensor of dimension 1 x 1 x M x N, representing the image. 1 is still the
N; x 1 vector of the illumination coefficients.

These theoretical results can be used to synthesize video sequences of
objects under different conditions of lighting and motion. This would rely on
computing the basis images which are a function of the surface normal. In
practice, the surface normals are computed by finding the intersection of the
ray passing through a pixel with a 3D point, assuming that the 3D model is
represented by a cloud of points. The normal is then calculated by considering
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neighboring points. If a mesh model of the object is used, the intersection of
the ray with a triangular mesh is computed, and the normal to this mesh
patch is calculated.

4 Learning Joint Illumination and Motion Models from
Video

The joint illumination and motion space provides us with a novel method for
3D motion estimation under varying illumination. This is based on inverting
the generative model for motion and illumination modeling. It can not only
track the 3D motion under varying illumination, but also can estimate the
illumination parameters.

Equation (3) provides us an expression relating the reflectance image Io
with new illumination coefficients lfi and motion variables m = [T, 2|7, which
lead to a method for estimating 3D motion and illumination as:

i
(LT,Q) = arglfr%i,?z [ Zt2 — Z Z Lijbij (npy)[|?,

i=0,1,2 j=—i
. T 2
= arg min |Zt2 — (B + Ci1 X2 Q ) xq 1%, (7

where & denotes an estimate of x. The cost function is a square error norm,
similar to the famous bundle-adjustment [15], but incorporates an illumination
term. Motion and illumination estimates are obtained for each frame. Since
the motion between consecutive frames is small, but illumination can change
suddenly, we add a regularization term to the above cost function. It is of the
form o||m]||?.

Since the image I;> lies approximately in a bilinear space of illumination
and motion variables (ignoring the regularization term for now), such a min-
imization problem can be achieved by alternately estimating the motion and
illumination parameters by projecting the video sequence onto the appropri-
ate basis functions derived from the bilinear space. Assuming that we have
tracked the sequence upto some frame for which we can estimate the motion
(hence, pose) and illumination, we calculate the basis images, b;;, at the cur-
rent pose, and write it in tensor form B. Unfolding' B and the image 7 along
the first dimension [21], which is the illumination dimension, the image can
be represented as:

10,y = Bl)L (8)

! Assume an Nth-order tensor A € CIXI2XXIN_  The matrix unfold-
ing Ay € ClnxUntilngz - InIil2In—1)  containg the element Qirin...iy ab
the position with row number i, and column number equal to (in4+1 —
1)In+21n+3...IN11]2...In71+(in+2—1)fn+3ln+4...INI1IQ...IH71+-~~+(Z'N—
1)]1]2..‘In,1+(’i1—1)]2[3...]n,1+"-+in,1.
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This is a least square problem, and the illumination 1 can be estimated as:
1= (Bw)B(y)) ™" BuyThy- 9)

Keeping the illumination coefficients fixed, the bilinear space in equations (3)
and (4) becomes a linear subspace, i.e.,

1:3x11+((3x11)x2(£>. (10)

Similarly, unfolding all the tensors along the second dimension, which is the
motion dimension, and adding the effect of the regularization term, T and €2
can be estimated as:

(;) = ((c X1 1)(2)(C x1 1){y) +aI)_1 Cx1 D)) (T -Bx11)f, (11)

where I is an identity matrix of dimension 6 x 6. The above procedure for
estimation of the motion should proceed in an iterative manner, since B and
C are functions of the motion parameters. This should continue until the
projection error ||Z — B x; 1||*> does not decrease further. This process of
alternate minimization leads to the local minimum of the cost function (which
is quadratic in motion and illumination variables) at each time step. This
can be repeated for each subsequent frame. We now describe the algorithm
formally.

4.1 Algorithm

Consider a sequence of image frames Iy, t =0,..., N — 1.

Initialization: Take one image of the object from the video sequence, reg-
ister the 3D model onto this frame and map the texture onto the 3D model.
Calculate the tensor of the basis images By at this pose. Use (9) to estimate
the illumination coefficients. Now, assume that we know the motion and illu-
mination estimates for frame ¢, i.e., Ty, 2; and I;.

e Step 1. Calculate the tensor form of the bilinear basis images B; at the
current pose using (4). Use (11) to estimate the new pose from the estimated
motion.

e Step 2. Assume illumination does not change, i.e. it+1 =1. Compute the
motion m by minimizing the diﬁerer}ce between an input frame and the ren-

dered frame [|Z;41 — (B + C¢ X2 <£t+1>) X1 it+1||2, and estimate the new
t+1

pose.

e Step 3. Using the new pose estimate, re-estimate the illumination using (9).
Repeat Steps 1 and 2 with the new estimated it+1 for that input frame, till
the error is below an acceptable threshold.

e Step 4. Set t =t + 1. Repeat Steps 1, 2 and 3.

e Step 5. Continue till t = N - 1.
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In many practical situations, the illumination changes slowly within a se-
quence (e.g., cloud covering the sun). In this case, we use the expression in
(5) instead of (3,4) in the cost function (7) and estimate Al;;.

4.2 Handling Occlusions

The optimization function (7) yields the maximum likelihood estimate under
the assumption of additive Gaussian noise to the image observations. However,
in the presence of occlusion, the optimization function can be used only if we
can work with the unoccluded pixels, which will have to be estimated a priori.
A simple way to do this is to set a threshold and discard those pixels that
have an intensity change (with respect to the previous frame) greater than
the threshold. However, a simple threshold strategy may eliminate the pixels
that are not occluded, but whose intensity changes because of the change in
illumination conditions. Therefore, we propose the following modification to
our algorithm to handle occlusion.

Assume that we are able to obtain the tracking and illumination estimates
upto some instance t. Then, we can calculate the bilinear basis images at the
current pose, and project the frame at the next time instance, ¢t + 1, onto the
linear subspace of the basis images. This gives an estimate of the illumination
coefficients for the frame. Using the basis images, we can synthesize the image
with the newly estimated illumination coefficients Iy 1. In order to do this, the
motion between I;41 and I; is assumed to be the same as between I; and I;_1
(i.e, uniform motion). If the difference between the synthesized image and the
observed one is larger than some threshold for some pixels, we will discard
these pixels. By doing this, we store a mask for the pixels which are occluded.
Note that the synthesized image has the new illumination condition, and thus
is not affected by the problem noted above. Using the unoccluded pixels and
the algorithm described in Section 4.1, we re-estimate the 3D motion as well as
the new illumination coefficients it+1. For the image at time instance t 42, we
will use the mask at time instance £+ 1 to estimate the illumination condition
it+2, then repeat what we have done for t+1 frame and update the mask. This
method works provided the occlusion happens slowly(most practical cases).
For sudden occlusion, a RANSAC approach [15], that works with random
subsets of feature points, will be adopted.

5 Face Recognition From Video

The generative framework for integrating illumination and motion models
described in Section 2 and the method for learning the model parameters
as described in Section 4 set the stage for developing a novel face recognition
algorithm that is particularly suited to handling video sequences. The method
is able to handle arbitrary pose and illumination variations and can integrate
information over an entire video sequence.
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In our method, the gallery is represented by a 3D model of the face. The
model can be built from a single image [7], a video sequence [35] or obtained
directly from 3D sensors [8]. In our experiments, the face model will be esti-
mated from video. Given a probe sequence, we will estimate the motion and
illumination conditions using the algorithms described in Section 4. Note that
the tracking does not require a person-specific 3D model - a generic face model
is usually sufficient. Given the motion and illumination estimates, we will then
render images from the 3D models in the gallery. The rendered images can
then be compared with the images in the probe sequence. Given the rendered
images from the 3D models in the gallery and the probe images, we will design
robust metrics for comparing these two sequences. A feature of these metrics
will be their ability to integrate the identity over all the frames, ignoring
some frames that may have the wrong identity. Since 3D shape modeling is
done for the gallery sequences only, we avoid the issues of high computational
complexity of 3D modeling algorithms in real-time.

One of the challenges faced is to design suitable metrics capable of com-
paring two video sequences. This metric should be general enough to be ap-
plicable to most videos and robust to outliers. Let P(f;),i = 1,...,N be N
frames from the probe sequence. Let SG;(f;),i = 1,..., N be the frames of
the synthesized sequence for galley j, where j = 1,..., M and M is the total
number of individuals in the gallery. Note that the number of frames in the
two sequences to be compared will always be the same in our method. By
design, each corresponding frame in the two sequences will be under the same
pose and illumination conditions, dictated by the accuracy of the estimates of
these parameters from the probes and the synthesis algorithm. Let d;; be the
distance between the i*" frames of P and G;. We now compare two distance
measures that can be used for obtaining the identity of the probe sequence.

1. ID = argmin; min; d;;
2. ID = arg min; max; d;; (12)

The first alternative computes the distance between the frames in the probe
and each synthesized sequence that are the most similar and chooses the
identity as the individual with the smallest distance in the gallery. This can
be looked upon as obtaining the identity of the probe from one image of it that
is most similar to the gallery. The second distance measure can be interpreted
as minimizing the maximum separation between the probe and synthesized
gallery images. Both of these measures suffer from a lack of robustness, which
can be critical for their performance since the correctness of the synthesized
images depend upon the accuracy of the illumination and motion parameter
estimates. For this purpose, we replace the max by the f** percentile and the
min (in the inner distance computation of 1 in (12)) by the (1— f)* percentile.
In our experiments, we choose f to be 0.8 and use the first option.

A third possible option is to assign a weight to each image of each syn-
thesized gallery that is inversely proportional to its distance from the corre-
sponding probe image, sum all the weights and choose the gallery with largest
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weight as the identity. The problem with this method is that the recognition
accuracy depends upon the choice of the weighting function, which in turn
can vary with the probe and gallery sequences.

One point that still needs to be addressed is on how do we compute d;;.
Recall that a generic face model is used to track the face in the probe video
and the estimated illumination and motion parameters are used to synthesize
the videos for each person in the gallery using their 3D model. This sets up a
mapping between the pixels in the synthesized images with the probe images
through the 3D models. Also, the number of synthesized images is the same
as the number of images in the probe, thus obviating any synchronization
issues. Thus d;; can be computed directly as the squared difference between
the synthesized and probe image frames.

We now describe formally the video-based face recognition algorithm. Us-
ing the above notation, let P(f;),i = 1,...,N be N frames from the probe
sequence. Let Gy, ..., Gps be the 3D models for each of M galleries.

e Step 1. Register a 3D generic face model to the first frame of the probe
sequence. Estimate the illumination and motion model parameters for each
frame of the probe sequence using the method described in Section 4.

e Step 2. Using the estimated illumination and motion parameters, synthesize,
for each gallery, a video sequence using the generative model of (4). Denote
these as SG;(f;),i=1,..,Nand j=1,..., M.

e Step 3. Compute d;; in (12).

e Step 4. Obtain the identity using a suitable distance measure from (12),
modifying it for robustness as necessary (see discussion above).

6 Experimental Results

Since the tracking and synthesis algorithms are the foundation for the recog-
nition strategy, we first present results on these two aspects highlighting the
accuracy of the methods in a controlled environment. We then describe our
face video database and the results of the recognition algorithms.

6.1 Tracking and Synthesis Results

We synthesized a video sequence of a face with known motion and lighting. A
generic 3D model was registered to the first frame of the sequence manually
and tracked using the algorithm described in Section 4. Figures 2, 3 and 4
show the results of our tracking algorithm on this sequence. The images in
Fig. 2 are synthesized from a 3D model, and thus the motion and illumination
are known. The face is rotating along y axis from —30° to +30°, and the
illumination is changing such that the light always comes from the front of
the face. The resolution of the image is 240 by 320. Figures 3 and 4 show plots
of the estimated motion and illumination against the true values.
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Fig. 2. The back projection of the mesh vertices of the 3D face model using the
estimated 3D motion onto some input frames. Face is rotating about the y axis, and
illumination is changing in the same way as pose.
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Fig. 3. The solid line shows the true pose (represented by the angle of face about
y axis) and the broken line is the estimated pose.
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Fig. 4. (a), (b), (c) are the estimates of the 3rd, 5th, and 8th illumination coefficients
respectively. The solid line shows the true illumination coefficients using the LRLS
method, and the dotted line shows the estimated illumination coefficients.

Frame number

We also show results of the synthesis algorithm on a real-life video se-
quence. Frames from a synthesized video sequence using learned motion and
illumination parameters are shown in Figure 5. Motion and illumination are
learned from the frames in the first and second row respectively, and images
in the third row are synthesized with the motion and illumination parameters
learned from the corresponding frames in the same column. The reader can

0
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visually compare the synthesized images for accuracy of pose and illumination
estimates.

Motion Sequences

Illumination Sequences

b“’

Synthesis Sequences
Fig. 5. An example of video synthesis with learned motion and illumination mod-
els. Motion and illumination are learned from the frames in the first and second

row respectively, and images in the third row are synthesized with the motion and
illumination parameters learned from the corresponding frames in the same column.

6.2 Face Recognition Results
Face Database

Our database consists of videos of 32 people. Each person was asked to move
his/her head as they wished and the illumination was changed randomly. The
illumination consisted of ceiling lights, lights from the back of the head and
sunlight from a window on the left side of the face. Random combinations
of these were turned on and off and the window was controlled using dark
blinds. An example of some of the images in the video database is shown in
Figure 6. The resolution of the face varied depending on the person and the
movement. A statistical analysis showed that the average size was about 70 x
70, with the minimum size being 50 x 50. Each sequence was divided into two
parts - gallery and probe. The frames in Figure 6 are arranged in the same
order as in the original video, with the first column representing a frame from
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Fig. 6. Sample frames from the video sequences collected for our database.

the gallery, the third column representing the image in Expt. 1 (see below),
and the fifth column representing the image in Expt. 3 (see below).

A 3D model of each face was constructed from the gallery sequence. In the
set of experiments shown, a generic model was registered to one approximately
frontal image in the gallery manually by choosing seven points on the face.
Thereafter the texture of the face was mapped onto the model. The shape
was not changed from the generic model. We would like to emphasize that
any other 3D modeling algorithm would also have worked and we plan to
integrate our previous work in [34] with this system.

From the portion of each sequence designated as probe, we designed five
experiments by choosing different parts of it, as described below.

e Expt. 1: A single image, some examples of which are shown in the third
column of Figure 6, was used as the probe.

e Expt. 2: A video sequence starting with the frame in Expt. 1 was used as
the probe. Examples of these frames can be seen from the third column and
beyond in Figure 6.

e Expt. 3: A single image, some examples of which are shown in the fifth
column of Figure 6, was used as the probe.

e Expt. 4: A video sequence starting with the frame in Expt. 3 was used as
the probe. Examples of which can be seen from the third column and beyond
in Figure 6.

e Expt. 5: A video sequence that has a portion with frontal face and illumina-
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Fig. 7. Tracking and synthesis results are shown in alternating rows for three of the
probes.

tion similar to the gallery was used as the probe. This is achieved by consid-
ering the probe sequence to start immediately after the gallery sequence ends
in our collected data.

As can be seen from Figure 6, the pose and illumination varies randomly
in the video. The reason for choosing the experiments in this way are the fol-
lowing: i) to study the advantage video provides over image-based recognition,
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ii) how sensitive recognition rates are with respect to the actual frames in the
video (hence the change in the starting frame in Expt. 4 compared to Expt.
2), and iii) how recognition rates are affected if there is a small portion of the
video in the probe very similar to the gallery, even though the other frames
may not be.

Identification Rate

75 —+— Expt 1
Expt 2

—e— Expt 5
T

70 Il Il Il Il Il
5 10 15 20 25 30 35

Rank

Fig. 8. CMC curve for video-based face recognition experiments.

The results on tracking and synthesis on three of the probes are shown in
Figure 6. We plot the Cumulative Match Characteristic (CMC) [47, 30] for
all the experiments in Figure 8. The following are the main conclusions that
we can draw from our experiments.

e Our proposed algorithm gives relatively high performance (about 90% on
the average for Expts. 1, 3 and 5 that deal with video sequences) on videos
with large and arbitrary variations of pose and illumination.

e There is a significant change increase in performance in considering a video
sequence compared to a single image, as evidenced by the improvements be-
tween Expts. 1 and 2, and between Expts. 3 and 4. Between Expts. 1 and 2
there is a 10% increase in the Rank 1 identification rate, as well as a signifi-
cant increase in the slope of the CMC curve. Between Expts. 3 and 4, there
is again a 10% increase in the identification rate. However, the recognition
rates between Expts. 2 and 4 are different, demonstrating the sensitivity of
the algorithm to the actual frames in the sequence (which is to be expected).
e When a part of the video sequence has overlap with the gallery (even one
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frame), our system gives a 100% recognition rate (Expt. 5).

All these experiments demonstrate the effectiveness of video-based face
recognition methods over still image-based approaches. However, the recog-
nition rate is affected significantly by the actual conditions under which the
video was captured.

7 Conclusions

In this paper, we have proposed a method for video-based face recognition
that relies upon a novel theoretical framework for integrating illumination
and motion models for describing the appearance of a video sequence. We
started with a brief exposition of this theoretical result, followed by meth-
ods for learning the model parameters. Then, we described our recognition
algorithm that relies on synthesis of video sequences under the conditions of
the probe. Finally, we demonstrated the effectiveness of the method on video
databases with large and arbitrary variations in pose and illumination. In fu-
ture, we will work on improving the tracking and synthesis algorithms (which
we believe will improve recognition performance), performing thorough exper-
imentation to understand the effect of the different variabilities, and analyzing
performance on larger datasets.
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