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1.1 ABSTRACT

A number of methods in tracking and recognition have successfully exploited low-
dimensional representations of object appearance learned from a set of examples. In
all these approaches, the construction of the underlying low-dimensional manifold
relied upon obtaining different instances of the object’s appearance and then using
statistical data analysis tools to approximate the appearance space. This requires
collecting a very large number of examples and the accuracy of the method depends
upon the examples that have been chosen. In this chapter, we show that it is pos-
sible to estimate low-dimensional manifolds that describe object appearance using
a combination of analytically derived geometrical models and statistical data analy-
sis. Specifically, we derive a quadrilinear space of object appearance that is able to
represent the effects of illumination, motion, identity and shape. We then show how
efficient tracking algorithms like inverse compositional estimation can be adapted
to the geometry of this manifold. Our proposed method significantly reduces the
amount of data that needs to be collected for learning the manifolds and makes the
learned manifold less dependent upon the actual examples that were used. Based
upon this novel manifold, we present a framework for face recognition from video
sequences that is robust to large changes in facial pose and lighting conditions. The
method can handle situations where the pose and lighting conditions in the train-
ing and testing data are completely disjoint. We show detailed performance analysis
results and recognition scores on a large video dataset.
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1.2 INTRODUCTION

Low dimensional representations of object appearance have proved to be one of the
successful strategies in computer vision for applications in tracking, modeling and
recognition. Active appearance models (AAMs) [8, 16], multilinear models [10, 23,
9, 24], and other low-dimensional manifold representations [14] fall in this genre. In
all these approaches, the construction of the underlying low-dimensional manifold
relies upon obtaining different instances of the object’s appearance under various
conditions (e.g., pose, lighting, identity and deformations) and then using statistical
data analysis and machine learning tools to approximate the appearance space. This
approach requires obtaining a large number of examples of the object’s appearance
and the accuracy of the method depends upon the examples that have been chosen
for the training phase. Representation of appearances that have not been seen during
the training phase can be inaccurate. In mathematical modeling terms, this is a data-
driven approach.

In this chapter, we show that it is possible to learn complex manifolds of ob-
ject appearance using a combination of analytically derived geometrical models and
statistical data analysis. We term this as a “Geometry-Integrated Appearance Mani-
fold” (GAM). Specifically, we derive a quadrilinear manifold of object appearance
that is able to represent the combined effects of illumination, motion, identity and
deformation. The basis vectors of this manifold depend upon the 3D geometry of
the object. We then show how to adapt the inverse compositional (IC) algorithm to
efficiently and accurately track objects on this manifold through changes of pose,
lighting and deformations. Our proposed method significantly reduces the amount
of data that needs to be collected for learning the appearance manifolds during the
training phase and makes the learned manifold less dependent upon the actual ex-
amples that were used. The process for construction of this appearance manifold
is relatively simple, has a solid theoretical basis, and provides a high level of accu-
racy and computational speed in tracking and novel view synthesis. Depending upon
the application, it may be possible to derive the manifold in a completely analytical
manner, an example being tracking a rigid object (e.g., vehicle) through pose and
lighting changes. In other examples, like face recognition, a combination of analyti-
cal approaches and statistical data analysis will be used for learning the manifold.

Based upon the GAM, we present a novel framework for pose and illumination
invariant, video-based face recognition. This video-based face recognition system
works by (i) learning joint illumination and motion models from video using the
GAM, (ii) synthesizing novel views based on the learned parameters, and (iii) de-
signing measurements that can compare two time sequences while being robust to
outliers. We can handle a variety of lighting conditions, including the presence of
multiple point and extended light sources, which is natural in outdoor environments
(where face recognition performance is still relatively poor[31, 19, 20]). We can
also handle gradual and sudden changes of lighting patterns over time. The pose
and illumination conditions in the gallery and probe can be completely disjoint. We
show experimentally that our method achieves high identification rates under ex-
treme changes of pose and illumination.
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1.2.1 Novel Contributions and Relation to Past Work

There are three main parts of this paper - learning GAMs using a combination of
geometrical models and statistical analysis, adapting the IC algorithm for tracking
and view synthesis using these manifolds, and developing the framework for video-
based face recognition using the GAM.
• Learning GAMs: The analytically derived geometrical models represent the effects
of motion, lighting and 3D shape in describing the appearance of an object [4, 21,
27]. The statistical data analysis approaches are used to model the other effects
like identity (e.g., faces of different people) and non-rigidity which are not easy to
represent analytically. First, lighting is modeled using a spherical harmonics based
linear subspace representation [4, 21]. This is then combined with a recent result
by the authors that proved the appearance of an image is bilinear in the 3D motion
and illumination parameters, with the 3D shape determining the basis vectors of the
space [27]. The variations of this analytically derived bilinear basis over identity and
deformation are then learned using multilinear SVD [13], and they together form a
quadrilinear space of illumination, motion, identity and deformation. The GAM can
be visualized (see Figure 1.1) as a collection of locally linear tangent planes along
the pose dimension, where each tangent plane represents 3D motion in a local region
around each pose. See Figure 1.1.

Fig. 1.1 Pictorial representation of variation of a GAM cross-section. Only two axes are
shown for simplicity. At each pose, we have the manifold for illumination, identity and
deformation. Around each pose, we have the tangent plane to the manifold.

The major difference of GAMs with other methods for computing appearance
manifolds and subspaces [23, 9, 14, 16] is that the object appearance space is de-
rived using a combination of analytical models and data analysis tools, while the
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previous approaches rely purely on data analysis. This significantly reduces the data
collection procedures for computing such manifolds and allows representations of
appearances that were not included in the learning phase. We will provide some
concrete numerical examples to justify this in the experimental section. Thus our
method combines the precision and generalizability of model-based approaches with
the robustness provided by statistical learning methods to deviations from the model
predictions.
• Probabilistic Inverse Compositional Tracking and Synthesis on GAMs: We show
how to track and synthesize novel views of an object using the learned GAMs. This
is done by adapting the inverse compositional (IC) algorithm to the geometry of the
manifold and embedding it within a stochastic framework. This can account for
changes in pose, lighting, shape and non-rigidity of the object, as well as local errors
in two-frame motion estimation. The inverse compositional (IC) approach [3] is an
efficient implementation of the Lucas-Kanade image alignment method and works by
moving the expensive computation of gradients and Hessians out of an iterative loop.
Due to 3D motion estimation in our case, the expensive computations of derivatives
need to take place only at a few discrete poses (not once every frame).

Our tracking algorithm provides 3D estimates of motion, illumination model pa-
rameters, and identity and deformation parameters, thus going beyond illumination-
invariant 2D tracking [12, 10]. It does not require a texture mapped 3D model of the
object as in [28], which can be a severe restriction in many application scenarios, like
face recognition. For tracking faces, it is more computationally efficient than 3DMM
approaches [6] since it approximates the pose appearance space as a series of locally
linear tangent planes, while 3DMM works by finding the best fit on the non-linear
manifold (requiring computationally expensive transformations). There is a small,
but not significant (for most applications), tradeoff in accuracy in the process.
• Video-based Face Recognition Using GAMs: The probabilistic IC tracking on the
GAMs described above is then used for video-based face recognition. We assume
that a 3D model of each face in the gallery is available. For our experiments, the 3D
model is estimated from images, but any 3D modeling algorithm, including directly
acquiring the model through range sensors, can be used for this purpose. Given
a probe sequence, we track the face automatically in the video sequence under ar-
bitrary pose and illumination conditions using the probabilistic IC tracking on the
GAMs. This tracking requires only a generic 3D shape model. The learned illumi-
nation parameters are used to synthesize video sequences for each gallery under the
motion and illumination conditions in the probe. The distance between the probe
and synthesized sequences is then computed for each frame. Different distance mea-
surements are explored for this purpose. Next, the synthesized sequence that is at a
minimum distance from the probe sequence is computed and is declared to be the
identity of the person.

1.2.2 Review of Face Recognition

A broad review of face recognition is available in [31]. Recently there have been a
number of algorithms for pose and/or illumination invariant face recognition, many
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of which are based on the fact that the image of an object under varying illumina-
tion lies in a lower-dimensional linear subspace. In [30], the authors proposed a 3D
Spherical Harmonic Basis Morphable Model (SHBMM) to implement a face recog-
nition system given one single image under arbitrary unknown lighting. Another 3D
face morphable model (3DMM) based face recognition algorithm was proposed in
[5], but they used the Phong illumination model, estimation of whose parameters can
be more difficult in the presence of multiple and extended light sources. A novel
method for multilinear independent component analysis was proposed in [23] for
pose and illumination invariant face recognition. All of the above methods deal with
recognition in a single image or across discrete poses and do not consider continuous
video sequences. Video-based face recognition requires integrating the tracking and
recognition modules and exploitation of the spatio-temporal coherence in the data.
The authors in [14] deal with the issue of video-based face recognition, but concen-
trate mostly on pose variations. Similarly [15] used adaptive Hidden Markov Models
for pose-varying video-based face recognition. A probabilistic framework that fuse
the temporal information in a prove video by investigating the propagation of the
posterior distribution of the motion and identity was proposed in [32]. Another work
used adaptive appearance model, adaptive motion model and adaptive particle filter
for simultaneously tracking and recognizing people in video [33]. The authors in
[18] proposed to perform face recognition by computing the Kullback-Leibler diver-
gence between testing image sets and a learned manifold density. Another work in
[1] learn manifolds of face variations for face recognition in video. A method for
video-based face verification using correlation filters was proposed in [26], but the
pose in the gallery and probe have to be similar.

1.2.3 Organization of the chapter

The rest of the chapter is organized as follows. Section 1.3 presents the GAM-
based object representation using the analytically derived illumination and motion
basis and machine learned basis of identity and deformation. Robust and efficient
tracking algorithms using this object representation is presented in Section 1.4. Then,
we propose an integrated tracking and recognition framework for video-based face
recognition in Section 1.5. Experimental results and analysis are presented in Section
1.6. Section 1.7 concludes the chapter and highlights future work.

1.3 METHOD FOR LEARNING GAMS

We will start with the illumination representation of [4] and combine it with motion
and shape using the results in [27] in order to derive an analytical representation of a
low dimensional manifold of object appearance with variations in pose and lighting.
We will then apply N-mode SVD,a multilinear generalization of SVD, to learn the
variation of this manifold due to changes of identity and object deformations. We
will show that the image appearance due to variations of illumination, pose, and
deformation, is quadrilinear and compute the basis functions of this space.
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1.3.1 An Analytically Derived Manifold for Motion and Illumination

Recently, it was shown that for moving objects it is possible to approximate the se-
quence of images by a bilinear subspace of nine illumination coefficients and six
motion variables [27]. Representing by T =

[
Tx Ty Tz

]T
the translation of

the centroid of the object, by Ω =
[

ωx ωy ωz

]T
the rotation about the cen-

troid, and by l ∈ RNl (Nl ≈ 9 for Lambertian objects with attached shadow) the
illumination coefficients in a spherical harmonics basis (see [4] for details), the au-
thors in [27] showed that under small motion, the reflectance image at t2 = t1 + δt
can be expressed as

I(u, t2) =
9∑

i=1

lib
t2
i (u), (1.1)

where bt2
i (u) = bt1

i (u) + A(u,n)T + B(u,n)Ω. (1.2)

In the above equations, u represents the image point projected from the 3D surface
with surface normal n, and {bt1

i (u)} are the original basis images before motion. A
and B contain the structure and camera intrinsic parameters, and are functions of u
and the 3D surface normal n. For each pixel u, both A and B are Nl × 3 matrices.
(The exact forms of A and B are not necessary for understanding this paper, hence
we skip this. The interested reader can see [27].)

It will be useful for us to represent this result using tensor notation as

Ît2 =
(
B + C ×2

(
T
Ω

))
×1 l, (1.3)

where ×n is called the mode-n product [13]. 1 For an image of size M × N , C
is a tensor of size Nl × 6 × M × N . For each pixel (p, q) in the image, Cklpq =
[ A(u,n) B(u,n) ] of size Nl×6, B is a sub-tensor of dimension Nl×1×M×N ,
comprised of the basis images bi, and I is a sub-tensor of dimension 1×1×M×N ,
representing the image.

1.3.2 Learning Identity and Deformation Manifold

The above bilinear space of 3D motion and illumination is derived by using the
knowledge of the 3D model of the object (tensor C contains the surface normals).
However, the 3D shape is a function of the identity of the object (e.g., the identity
of a face) and possible non-rigid deformations. The challenge now is to general-

1The mode-n product of a tensor A ∈ RI1×I2×...×In×...×IN by a vector v ∈ R1×In , denoted by
A×n v, is the I1 × I2 × . . .× 1× . . .× IN tensor

(A×n v)i1...in−11in+1...iN
=

∑

in

ai1...in−1inin+1...iN
vin .
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ize the above analytical model so that it can be used to represent a wide variety of
appearances within a class of objects.

We achieve this by learning multilinear appearance models [23, 25] directly from
data. Multilinear 3D shape models have been proposed in [24] to learn the shape
variation due to identity and expression. For our case, rather than directly modeling
the appearance images, we will model the bilinear bases of motion and illumination
derived analytically in Section 1.3.1, and then combine all these different variations
to obtain a multilinear model of object appearance.

Using [•]v to denote the vectorization operation, we can vectorize B and C in
(1.3), and concatenate them, as

v =
[

[B]v
[C]v

]
. (1.4)

This v is the vectorized bilinear basis for one shape (i.e., one object) with dimension
Iv×1, where Iv = 7NlMN (NlMN for B and 6NlMN for C). Given the 3D shape
of Ii objects with Ie different deformations, we can compute this vectorized bilinear
basis v for every combination. For faces, using the 3DMM [6] approaches, these
instances can be obtained by choosing different coefficients of the corresponding
linear basis functions. With the application to faces in mind, we will sometimes use
the words deformation and expression interchangably.

We use vi
e to represent the vectorized bilinear basis of identity i with expression

e. Let us rearrange them into a training data tensor D of size Ii × Ie × Iv with
the first dimension for identity, second dimension for expression (deformation) and
the third dimension for the vectorized, analytically derived bilinear basis for each
training sample. Applying the N-Mode SVD algorithm [13], the training data tensor
can be decomposed as

D = Y ×1 Ui ×2 Ue ×3 Uv

= Z ×1 Ui ×2 Ue,

where Z = Y ×3 Uv. (1.5)

Y is known as the core tensor of size Ni×Ne×Nv , and Ni and Ne are the number of
bases we use for the identity and expression. With a slight abuse of terminology, we
will call Z , which is decomposed only along the identity and expression dimension
with size Ni ×Ne × Iv , to be the core tensor. Ui and Ue, with sizes of Ii ×Ni and
Ie ×Ne, are the left matrices of the SVD of

D(1) =




v1
1
T

. . . v1
Ie

T

. . .

vIi
1

T
. . . vIi

Ie

T




and D(2) =




v1
1
T

. . . vIi
1

T

. . .

v1
Ie

T
. . . vIi

Ie

T


 , (1.6)
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where the subscripts of tensor D indicate the tensor unfolding operation2 along the
first and second dimension. According to the N-mode SVD algorithm and equation
(5), the core tensor Z can be expressed as

Z = D ×1 UT
i ×2 UT

e . (1.7)

1.3.3 The GAM of Lighting, Motion, Identity and Deformation

The core tensor Z contains the basis of identity and expression (or deformation) for
v as

ve
i
T = Z ×1 cT

i ×2 cT
e , (1.8)

where ci and ce are the coefficient vectors encoding the identity and expression. As
ve

i are the vectorized, bilinear basis functions of the illumination and 3D motion, the
core tensor Z is quadrilinear in illumination, motion, identity and expression. As
an example, this core tensor Z can describe all the face images of identity ci with
expression ce and motion (T, Ω) under illumination l.

Due to the small motion assumption in the derivation of the analytical model
of motion and illumination in Section 1.3.1, the core tensor Z can only represent
the image of the object whose pose is close to the pose p under which the training
samples of v are computed. To emphasize that Z is a function of pose p, we denote
it as Zp in the following derivation. Since v is obtained by concatenating [B]v and
[C]v , Zp also contains two parts, ZBp with size (Ni×Ne×NlMN) andZCp with size
(Ni×Ne×6NlMN). The first part encodes the variation of the image due to changes
of identity, deformation and illumination at the pose p, and the second part encodes
the variation due to motion around p, i.e., the tangent plane of the manifold along the
motion direction. Rearranging the two sub-tensors according to the illumination and
motion basis into sizes of Nl×1×Ni×Ne×MN and Nl×6×Ni×Ne×MN (this
step is needed to undo the vectorization operation of equation (1.4)), we can represent
the quadrilinear basis of illumination, 3D motion, identity, and deformation along the
first, second, third and forth dimensions respectively. The image with identity ci and
expression ce after motion (T,Ω) around pose p under illumination l can be obtained
by

I = ZBp ×1 l×3 ci ×4 ce + ZCp ×1 l×2

(
T
Ω

)
×3 ci ×4 ce. (1.9)

Note that we did not need examples of the object at different lighting conditions and
motion in order to construct this manifold - these parts of the manifold came from
the analytical expressions in (1.3).

2Assume an Nth-order tensor A ∈ CI1×I2×...×IN . The matrix unfolding A(n) ∈
CIn×(In+1In+2...IN I1I2...In−1) contains the element ai1i2...iN

at the position with row num-
ber in and column number equal to (in+1 − 1)In+2In+3 . . . IN I1I2 . . . In−1 + (in+2 −
1)In+3In+4 . . . IN I1I2 . . . In−1+· · ·+(iN−1)I1I2 . . . In−1+(i1−1)I2I3 . . . In−1+· · ·+in−1.
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To represent the manifold at all the possible poses, we do not need such a tensor
at every pose. Effects of 3D translation can be removed by centering and scale nor-
malization, while in-plane rotation to a pre-defined pose can mitigate the effects
of rotation about the z-axis. Thus, the image of object under arbitrary pose, p,
can always be described by the multilinear object representation at a pre-defined
(Tpd

x ,Tpd
y ,Tpd

z ,Ωpd
z ), with only Ωx and Ωy depending upon the particular pose.

Thus, the image manifold under any pose can be approximated by the collection of
a few tangent planes on distinct Ωj

x and Ωj
y , denoted as pj .

1.4 ROBUST AND EFFICIENT TRACKING ON GAMS

We now show how the GAMs of object appearance can be applied for estimation of
3D motion and lighting, which we broadly refer to as tracking. These estimates of
motion and lighting can be used for novel view synthesis which will then be used for
video-based face recognition in Section 1.5.

A simple method for estimating motion and illumination is by minimizing a cost
function directly derived from (1.3) as

(̂lt, m̂t) = arg min
l,m

‖It −
(Bp̂t−1 + Cp̂t−1 ×2 m

)×1 l‖2 + α||m||2, (1.10)

where x̂ denotes an estimate of x. Since the motion between consecutive frames is
small, but illumination can change suddenly, we add a regularization term α||m||2
to the above cost function. The estimates of motion and lighting can be obtained by
alternate minimization along these two directions (this is a valid local minimization
due to the bilinearity of the two terms) as

l̂ = (Bp̂t−1(1)BT
p̂t−1(1)

)−1Bp̂t−1(1)IT
t(1), (1.11)

and

m̂ =
(
(Cp̂t−1 ×1 l)(2)(Cp̂t−1 ×1 l)T

(2) + αI
)−1

(Cp̂t−1 ×1 l)(2)(It − Bp̂t−1 ×1 l)T
(2), (1.12)

where I is an identity matrix of dimension 6× 6.
This is essentially a model-based estimation approach that requires a texture-

mapped 3D model of the object to be tracked. This is expected as the method works
only with the analytically derived model which cannot represent variations of identity
within a single class of objects. It was the approach presented by the authors of [28].
By using our GAMs, this restriction can be overcome. Moreover, we can achieve this
in a computationally efficient manner by using the inverse compositional algorithm.
As mentioned earlier, our tracking method is faster than 3DMM-based approaches
[6], while sacrificing little in accuracy.
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1.4.1 Inverse Compositional (IC) Estimation on GAMs

The iteration involving alternate minimization over motion and illumination in the
above approach is essentially a gradient descent method. In each iteration, as pose
is updated, the gradients, i.e. the tensors B and C, need to be recomputed, which
is computationally expensive. The inverse compositional algorithm [3] works by
moving these computational steps out of the iterative updating process. In addition,
the constraint of knowing the 3D model of the object can be relaxed by reconstructing
B and C from the core tensors ZB and ZC .

From equation (1.9), the the cost function for estimation of 3D motion and light-
ing in (1.10) can be rewritten as

(̂lt, m̂t) = arg min
l,m,ci,ce

∣∣∣
∣∣∣It −

(
ZBp̂t−1

+ ZCp̂t−1
×2 m

)
×1 l×3 ci ×4 ce

∣∣∣
∣∣∣
2

+ α||m||2.
(1.13)

This cost function is quadrilinear in illumination, motion, identity and deformation
variables. The optimization of (1.13) can be done by alternatively optimizing over
each parameter of l,m, ci, and ce, while keeping the others fixed. This takes ad-
vantage of the fact that we know that the space is multilinear. Starting from an
initial pose estimate (where the manifold is approximated by a tangent), we will first
optimize over illumination, identity and expression dimensions, and then apply the
inverse compositional algorithm for optimization over motion. In Figure 1.2, we
show a pictorial scheme of this optimization process.

Fig. 1.2 Pictorial representation of the inverse compositional tracking scheme on GAMs.

IC Warping Function: Consider an input frame It(u) at time instance t with image
coordinate u. We introduce a warp operator W : R2 → R2 such that, if the pose
of It(u) is p, the pose of It(Wp̂t−1(u,m)) is p + m. Basically, W represents the
displacement in the image plane due to a pose transformation of the 3D model. De-

note the pose transformed image It(Wp̂t−1(u,m)) in tensor notation ĨWp̂t−1
(m)

t .
Using this warp operator and ignoring the regularization term, we can restate the cost
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Fig. 1.3 Illustration of the warping function W. A point v in image plane is projected onto
the surface of the 3D object model. After the pose transformation with 4p, the point on the
surface is back projected onto the image plane at a new point u. The warping function maps
from v ∈ R2 to u ∈ R2. The red ellipses show the common part in both frames that the
warping function W is defined upon.

function (1.13) in the inverse compositional framework as

(l̂t, m̂t) = arg min
l,m,ci,ce

‖ĨWp̂t−1
(−m)

t −ZBp̂t−1
×1 l×3 ci ×4 ce‖2 + α||m||2.

(1.14)

Given the other parameters of the quadrilinear manifold, the cost function can be
minimized over m by iteratively solving for increments 4m in

‖ĨWp̂t−1
(−m)

t −
(
ZBp̂t−1

+ ZCp̂t−1
×2 4m

)
×1 l×3 ci ×4 ce‖2 + α||m +4m||2.(1.15)

In each iteration, m is updated such that Wp̂t−1(u,−m) ← Wp̂t−1(u,−m) ◦
Wp̂t−1(u,4m)−1. 3 Using the additivity of pose transformation for small 4m,
Wp̂t−1(Wp̂t−1(u,4m)−1,−m) = Wp̂t−1(Wp̂t−1(u,−4m),−m) = Wp̂t−1(u,−4m−
m). Thus, the above update is essentially m ← m +4m.

In [3], the authors proved that, for the inverse compositional algorithm to be prov-
ably equivalent to the Lucas-Kanade algorithm to the first order approximation of
4m, the set of warps {W} must form a group, i.e. every warp W must be invert-
ible. If the change of pose is small enough, the visibility for most of the pixels will
remain the same - thus W can be considered approximately invertible. However, if
the pose change becomes too big, some portion of the object will become invisible
after the pose transformation, and W will no longer be invertible.

3The compositional operator ◦ means the second warp is composed into the first warp, i.e.
Wp̂t−1 (u,−m) ≡ Wp̂t−1 (Wp̂t−1 (u,4m)−1,−m).
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Since the GAM along the motion direction is composed of a set of tangent planes
at a few discrete poses (see Figure 1.1), the computations for 4m need to happen
only at these poses (called cardinal poses). Thus all frames that are close to a particu-
lar pose pj will use the B and C at that pose, and the warp W should be performed to
normalize the pose to pj . While most of the existing inverse compositional methods
move the expensive update steps out of the iterations for two-frame matching, we go
even further and perform these expensive computations only once every few frames.
This is by virtue of the fact that we estimate 3D motion.

1.4.1.1 The IC Algorithm on GAMs Consider a sequence of image frames It,
t = 0, ..., N − 1.
Assume that we know the pose and illumination estimates for frame t− 1, i.e., p̂t−1

and l̂t−1.
• Step 1. For the new input frame It, find the closest pj to the pose estimates at t−1,
i.e. p̂t−1. Assume motion m to be zero, and illumination condition l̂t = l̂t−1. Apply
the pose transformation operator W to get the pose normalized version of the frame
ĨWp̂t−1

(pj−p̂t−1−m), i.e., It(Wp̂t−1(u,pj − p̂t−1 −m)). This is shown in Figure
1.2, where the input frame It on the manifold is first warped to Ĩ which is within a
nearby region of pose pj.
• Step 2. Use (18) to alternately estimate l̂, ĉi and ĉe of the pose normalized image

IWp̂t−1 (u,pj−p̂
t−1−m)

t as follows.
Using (1.8), Bpj

can be written as

Bpj
=

[
ZBpj

×3 ci ×4 ce

]−1

v
. (1.16)

Denoting the basis for the identity and expression as E and F , we can similarly
compute them as

Epj
=

[
ZBpj

×1 l× ce

]−1

v
,

Fpj
=

[
ZCpj

×1 l×3 ci

]−1

v
. (1.17)

Thus the illumination coefficients can be estimated using least squares (since the
illumination bases after motion (1.2) are not orthogonal), while the identity and ex-
pression coefficients can be estimated by projection of the image onto the corre-
sponding basis as

l̂ = (BpjBT
pj

)−1BT
pj
I(1),

ĉi = ET
pj

I(1), ĉe = FT
pj

I(1). (1.18)

Iteratively solving for l̂, ĉi and ĉe, the cost function(1.14) is minimized over illu-
mination, identity and expression directions. In Figure 1.2, the curve Bpj

shows the
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manifold of the image at pose pj with motion as zero, but varying illumination, iden-
tity or deformation. By iteratively minimizing along the illumination, identity, and
deformation directions, we are finding the point

Í = ZBpj
×1 l̂×3 ĉi ×4 ĉe (1.19)

on the curve Bpj
which has the minimum distance to the pose normalized point Ĩ.

• Step 3. With the estimated l̂, ĉi and ĉe from Step 2, use (1.21) to estimate the
motion increment 4m. Update m with m ← m + 4m. This can be done as
follows.
Rewrite the cost function in (1.15) at the cardinal pose pj as

∣∣∣
∣∣∣ĨWp̂t−1 (pj−p̂t−1−m)

t −
(
Í + GT

pj
4m

)∣∣∣
∣∣∣
2

+ α||m +4m||2,

where Gpj
=

[
ZCpj

×1 l̂× ĉi × ĉe

]−1

v
. (1.20)

Gpj
is the motion basis at pose pj with fixed l̂, ĉi and ĉe. Recall that ZCpj

is a tensor
of size Nl×6×Ni×Ne×MN - thus Gpj

degenerates to a matrix of size 6×MN .
In Figure 1.2, we compute the tangent along the motion direction, shown as the black
line Gpj

, from the core tensor shown as the pink surface Z .
Taking the derivative of (1.20) with respect to 4m, and setting it to be zero, we

have

4m =
[
Gpj

GT
pj

+ αI
]−1

(Gpj
(ĨWp̂t−1 (pj−p̂t−1−m)

t − Í)− αm), (1.21)

and the motion estimates m should be updated with the increments m ← m+4m.
The overall computational cost is reduced significantly by making the gradient Gpj

independent of the updating variable m. In Figure 1.2, 4m is shown to be the dis-
tance from point Í to Î, the projection of Ĩ, onto the motion tangent.
• Step 4. Use the updated m from Step 3 to update the pose normalized image as

ĨWp̂t−1
(pj−p̂

t−1
−m)

t , i.e. I(Wp̂t−1(u,pj − p̂t−1 −m), t).
• Step 5. Repeat Steps 2, 3 and 4 for that input frame till the difference error ε

between the pose normalized image ĨWp̂t−1 (pj−p̂
t−1−m)

t and the rendered image Í
can be reduced below an acceptable threshold.
• Step 6. Set t = t + 1. Repeat Steps 1, 2, 3, 4 and 5. Continue till t = N - 1.

1.4.2 Probabilistic IC (PIC) Estimation

To ensure that the tracking is robust to estimation errors, we embed the IC approach
within a probabilistic framework. For ease of explanation, let us denote the current
cardinal pose to be pj , and the nearby cardinal poses as pj−1 and pj+1. Denote
the nearest-neighbor partition region on the multilinear manifold for cardinal pose
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pj to be Θpj
. Given the estimated pose at the previous time instance p̂t−1, the

average velocity m̄ and variation σ2
m of it within a recent history, we can model the

distribution of the current pose pt ∼ N (p̂t−1 + m̄, σ2
m), where N is the normal

distribution. Assume the likelihood distribution of ε at pose pj (difference between
pose normalized image and rendered image) in step (5) of the inverse compositional
algorithm is p(ε|pt ∈ Θpj

) ∼ N (0, σ). Using Bayes rule, we get

P (pt ∈ Θpj
|ε) =

p(ε|pt ∈ Θpj
)
∫
Θpj

p(pt)dpt

Pε
. (1.22)

Similarly, we can compute P (pt ∈ Θpj−1 |ε) and P (pt ∈ Θpj+1 |ε). Denoting the
estimate of motion, illumination, identity, and expression with the tangent at pj as
x̂pj

t , the final estimate can be obtained as

x̂t = E(xt|ε) =

∑j+1
i=j−1 x̂pi

t P (pt ∈ Θpi |ε)∑j+1
i=j−1 P (pt ∈ Θpi |ε)

. (1.23)

1.5 FACE RECOGNITION FROM VIDEO

We now explain the video-based face recognition algorithm using GAMs. The use
of GAMs is motivated by the fact that in video we will encounter changes of pose,
lighting and appearance.

In our method, the gallery is represented by a textured 3D model of the face. The
model can be built from a single image [6], a video sequence [22] or obtained directly
from 3D sensors [7]. In our experiments, the face model will be estimated from the
gallery video sequence for each individual. Face texture is obtained by normalizing
the illumination of the first frame in the gallery sequence to an ambient condition,
and mapping it onto the 3D model. Given a probe sequence, we will estimate the
motion and illumination conditions using the algorithms described in Section 1.4.
Note that the tracking does not require a person-specific 3D model - a generic face
model is usually sufficient. Given the motion and illumination estimates, we will
then render images from the 3D models in the gallery. The rendered images can
then be compared with the images in the probe sequence. For this purpose, we
will design robust measurements for comparing these two sequences. A feature of
these measurements will be their ability to integrate the identity over all the frames,
ignoring some frames that may have the wrong identity.

Let Ii, i = 0, ..., N − 1 be the ith frame from the probe sequence. Let Si,j , i =
0, ..., N − 1 be the frames of the synthesized sequence for individual j, where
j = 1, ..., M and M is the total number of individuals in the gallery. Note that
the number of frames in the two sequences to be compared will always be the same
in our method. By design, each corresponding frame in the two sequences will be
under the same pose and illumination conditions, dictated by the accuracy of the
estimates of these parameters from the probes sequences. Let dij be the Euclidean
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distance between the ith frames Ii and Si,j . Then we obtain the identity of the probe
as

ID = arg min
j

min
i

dij . (1.24)

The measurement in (1.24) computes the distance between the frames in the probe
sequence and each synthesized sequence that are the most similar and chooses the
identity as the individual with the smallest distance.

As the images in the synthesized sequences are pose and illumination normalized
to the ones in the probe sequence, dij can be computed directly using the Euclidean
distance. Other distance measurements, like [11, 17], can be considered in situations
where the pose and illumination estimates may not be reliable or in the presence of
occlusion and clutter. We will look into such issues in our future work.

1.5.1 Video-Based Face Recognition Algorithm:

Using the above notation, let Ii, i = 0, ..., N − 1 be N frames from the probe se-
quence. Let G1, ..., GM be the 3D models with texture for each of M galleries.
• Step 1. Register a 3D generic face model to the first frame of the probe sequence.
This is achieved using the method in [29]4. Estimate the illumination and motion
model parameters for each frame of the probe sequence using the method described
in Section 1.4.1.1.
• Step 2. Using the estimated illumination and motion parameters, synthesize, for
each gallery, a video sequence using the generative model of (1.1). Denote these as
Si,j , i = 1, ..., N and j = 1, ..., M .
• Step 3. Compute dij as above.
• Step 4. Obtain the identity using a suitable distance measure as in (1.24).

1.6 EXPERIMENT RESULTS

As discussed above, the advantages of using the GAMs are (i) ease of construction
due to the need for significantly less number of training images, (ii) ability to rep-
resent objects at all poses and lighting conditions from only a few examples during
training, and (iii) accuracy and efficiency of tracking and recognition. We will now
show results to justify these claims.

4We use a semi-automatic registration algorithm to initialize the IC tracking. It requires first manually
choosing seven landmark points, followed by automatically registering the 3D face model onto the image
to estimate the initial pose.
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1.6.1 Constructing GAM of faces:

In the case of faces, we will need at least one image for every person. We then fit
the 3DMM to estimate the face model and compute the vectorized tensor v at a pre-
defined collection of poses pj . For each expression, we will need at least one image
per person. Thus for Ni people with Ne expressions, we need NiNe images. In our
experiments, Ni = 100 and Ne = 7 thus requiring 700 images for all the people and
every expression. In contrast, [14] requires 300 frames per person for training pur-
poses while modeling only pose variation. Similarly, in [23], 225 frames of 15 poses
and 15 under different illumination patterns are used for each identity (expression
variation is not considered). Moreover, the GAM can model the appearance space
not only at these discrete poses, but also the manifold in a local region around each
pose. In our experiments, the pose collection pj is chosen to be every 15◦ along the
vertical rotational axis, and every 20◦ along the horizontal rotational axis. In Figure
1.4, we show some basis images of the face GAM along illumination, 3D motion,
identity and expression dimensions. As we can show only 3 dimensions, identity is
fixed to one particular person.

Fig. 1.4 The basis images of the face GAM on illumination, expression, and the 3D motion
around the frontal cardinal pose for a specific person.
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1.6.2 Accuracy of the motion and illumination estimates on GAM

We will now show some results on the accuracy of tracking on the GAM with known
ground truth. We use the 3DMM [6] to randomly generate a face. The generated
face model is rotated along the vertical axis at some specific angular velocity, and
the illumination is changing both in direction (from right-bottom corner to the left-
top corner) and in brightness (from dark to bright to dark). In Figure 1.5, the images
show the back projection of some feature points on the 3D model onto the input
frames using the estimated motion under three different illumination conditions. In
Figure 1.6, (a) shows the comparison between the estimated motion (in blue) and the
ground truth (in red). The maximum error in pose estimates is 3.57◦ and the average
error is 1.22◦. Figure 1.6 (b) shows the norm of the error between the ground truth
illumination coefficients and the estimated ones from the GAM, normalized with the
ground truth. The maximum error is 5.5% and the average is 2.2%. The peaks in the
error plot are due to the change of the cardinal pose pj (the tangent planes along the
pose dimension).

Fig. 1.5 The back projection of the feature points on the generated 3D face model using the
estimated 3D motion onto some input frames.
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Fig. 1.6 (a): 3D estimates (blue) and ground truth (red) of pose against frames. (b): The
normalized error of the illumination estimates vs. frame numbers.

1.6.3 PIC Tracking on GAM using Real Data

Figure 1.7 shows results of face tracking under large changes of pose, lighting, ex-
pression and background using the PIC approach. The images in the first row show
tracking under illumination variations with global and local changes. The images
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Fig. 1.7 Examples of face tracking using GAMs under changes of pose, lighting and expres-
sions.

in the second row show tracking on the GAM with some expressions under vary-
ing illumination conditions. We did not require a texture-mapped 3D model as in
[28]. Compared to 3DMM, we achieve almost the same accuracy while requiring
one-tenth the computational time per frame.

1.6.4 Face Database and Experimental Setup

Our database consists of videos of 57 people. Each person was asked to move his/her
head as they wished (mostly rotate their head from left to right, and then from down
to up), and the illumination was changed randomly. The illumination consisted of
ceiling lights, lights from the back of the head and sunlight from a window on the
left side of the face. Random combinations of these were turned on and off and the
window was controlled using dark blinds. There was no control over how the subject
moves his/her head or on facial expression. An example of some of the images in the
video database is shown in Figure 1.8. The images are scale normalized and centered.
Some of the subjects had expression changes also, e.g., the last row of the Figure 1.8.
The average size of the face was about 70 x 70, with the minimum size being 50 x
50. Videos are captured with uniform background. We recorded 2 to 3 sessions of
video sequences for each individual. All the video sessions are recorded within one
week. The first session is used as the gallery for constructing the 3D textured model
of the head, while the remaining are used for testing. We used a simplified version of
the method in [22] for this purpose. We would like to emphasize that any other 3D
modeling algorithm would also have worked. Texture is obtained by normalizing the
illumination of the first frame in each gallery sequence to an ambient illumination
condition, and mapping onto the 3D model.

As can be seen from Figure 1.8, the pose and illumination varies randomly in the
video. For each subject, we designed three experiments by choosing different probe
sequences:
Expt. A: A video was used as the probe sequence with the average pose of the face
in the video being about 15◦ from frontal;
Expt. B: A video was used as the probe sequence with the average pose of the face
in the video being about 30◦ from frontal;
Expt. C: A video was used as the probe sequence with the average pose of the face
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Fig. 1.8 Sample frames from the video sequence collected for our database (best viewed on
a monitor).

in the video being about 45◦ from frontal.

Each probe sequence has about 20 frames around the average pose. The variation
of pose in each sequence was less than 15◦, so as to keep pose in the experiments
disjoint. To show the benefit of video-based methods over image-based approaches,
we designed three new Expts. D, E and F by taking random single images from A,
B and C respectively. We restricted our face recognition experiments to the pose and
illumination variations only (which can be expressed analytically), with the bilinear
representation of [27].

1.6.5 Recognition Results

We plot the Cumulative Match Characteristic (CMC) [31, 19] for experiments A,
B, and C with measurement (1.24) in Figure 1.9. Our proposed algorithm gives
relatively high performance. In Expt. A, where pose is 15◦ away from frontal, all
the videos with large and arbitrary variations of illumination are recognized correctly.
In Expt. B, we achieve about 95% recognition rate, while for Expt. C it is 93% using
the distance measure (1.24). Irrespective of the illumination changes, the recognition
rate decreases consistently with large difference in pose from frontal (which is the
gallery), a trend that has been reported by other authors [5, 30]. Note that the pose
and illumination conditions in the probe and gallery sets can be completely disjoint.
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Fig. 1.9 CMC curve for video-based face recognition experiments A to C with distance
measure in (1.24).

1.6.6 Comparison with other Approaches

The area of video-based face recognition is less standardized than image-based ap-
proaches. There is no standard dataset on which both image and video-based meth-
ods have been tried, thus we do the comparison on our own dataset. This dataset can
be used for such comparison by other researchers in the future.

1.6.7 Comparison with 3DMM based approaches

3DMM has achieved a significant impact in the biometrics area, and obtained im-
pressive results in pose and illumination varying face recognition. It is similar to
our proposed approach in the sense that both methods are 3D approaches, estimate
the pose, illumination, and do synthesis for recognition. However, 3DMM method
uses the Phong illumination model, thus it cannot model extended light sources (like
the sky) accurately. To overcome this, Samaras etc. [30] proposed the SHBMM
(3D Shperical Harmonics Basis Morphable Model) that integrates the spherical har-
monics illumination representation into the 3DMM. Although it is possible to re-
peatedly apply 3DMM or SHBMM approach to each frame in the video sequence,
it is inefficient. Registration of the 3D model to each frame will be needed, which
requires a lot of computation and manual work. None of the existing 3DMM ap-
proaches integrate tracking and recognition. Also, 3DMM-based methods cannot
achieve real-time pose/illumination estimation, which can be achieved with the in-
verse compositional version of our tracking method. Our proposed method, which
integrates 3D motion into SHBMM, is a unified approach for modeling lighting and
motion in a video sequence.

We now compare our proposed approach against the SHBMM method of [30],
which were shown give better results than 3DMM in [5]. We will also compare our
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Fig. 1.10 Comparison between the CMC curves for the video-based face experiments A to
C with distance measurement (1.24) against SHBMM method of [30].

results with the published results of SHBMM method [30] in the later part of this
section.

Recall that we designed three new Expts. D, E and F by taking random single
images from A, b and C respectively. In Figure 1.10, we plot the CMC curve with
measurement 1 in equation (1.24) (which has the best performance for Expt. A, B
and C) for the Expts. D, E, F and compare them with the ones of the Expt. A, B,
and C. For this comparison, we randomly chose images from the probe sequences
of Expts. A, B, C and computed the recognition performance over multiple such
random sets. Thus the Expts. D, E and F average the image-based performance
over different conditions. By analyzing the plots in Figure 1.10, we see that the
recognition performance with the video-based approach is consistently higher than
the image-based one, both in Rank 1 performance as well as the area under the CMC
curve. This trend is magnified as the average facial pose becomes more non-frontal.
Also, we expect that registration errors, in general, will affect image-based methods
more than video-based methods (since robust tracking maybe able to overcome some
of the registration errors, as shown in section 4.4).
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Fig. 1.11 Comparison between the CMC curves for the video-based face experiments A to
C with distance measurement in (1.24) against KPCA+LDA based 2D approaches [2].

It is interesting to compare these results against the results in [30], for image-
based recognition. The size of the databases in both cases is close (though ours is
slightly smaller). Our recognition rate with a video sequence at average 15 degrees
facial pose (with a range of 15 degrees about the average) is 100%, while the average
recognition rate for approximately 20 degrees (called side view) in [30] is 92.4%. For
the Exp. B and C, [30] does not have comparable cases and goes directly to profile
pose (90 degrees), which we don’t have. Our recognition rate at 45◦ average pose is
93%. In [30], the quoted rates at 20◦ is 92% and at 90◦ is 55%. Thus the trend of our
video-based recognition results are significantly higher than image-based approaches
that deal with both pose and illumination variations.

1.7 CONCLUSION

In this chapter, we showed how to combine geometrical and statistical models for
video-based face recognition. We showed that it is possible to estimate low-dimensional
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manifolds that describe object appearance with a small number of training samples
using a combination of analytically derived geometrical models and statistical data
analysis. We derived a quadrilinear space of object appearance that is able to rep-
resent the effects of illumination, motion, identity and deformation, and termed it
as the Geometry-Integrated Appearance Manifold. Based upon the GAM, we have
proposed a method for video-based face recognition. We also collected a face video
database consisting of 57 people with large and arbitrary variation in pose and illumi-
nation, and demonstrated the effectiveness of the method on this new database. We
showed specific examples on how to construct this manifold, analyzed the accuracy
of the pose and lighting estimates, and presented the the video-based face recogni-
tion results upon our own dataset. Detailed analysis of recognition performance are
also carried out. Future work will focus on extending GAMs to objects with large de-
formations and its application in video-based face recognition with large expression
variations.
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