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Abstract

Monitoring activities using video data is an important
surveillance problem. A special scenario is to learn the pat-
tern of normal activities and detect abnormal events from
a very low resolution video where the moving objects are
small enough to be modeled as point objects in a 2D plane.
Instead of tracking each point separately, we propose to
model an activity by the polygonal ‘shape’ of the configura-
tion of these point masses at any time t, and its deformation
over time. We learn the mean shape and the dynamics of the
shape change using hand-picked location data (no observa-
tion noise) and define an abnormality detection statistic for
the simple case of a test sequence with negligible observa-
tion noise. For the more practical case where observation
(point locations) noise is large and cannot be ignored, we
use a particle filter to estimate the probability distribution
of the shape given the noisy observations upto the current
time. Abnormality detection in this case is formulated as a
change detection problem. We propose a detection strategy
that can detect both ‘drastic’ and ‘slow’ abnormalities. Our
framework can be directly applied for object location data
obtained using any type of sensors - visible, radar, infra-red
or acoustic.

1 Introduction

Monitoring activities from video data is an important
surveillance problem. A special scenario is to learn the pat-
tern of normal activities and detect abnormal events from
very low resolution video where the moving objects are
small enough to be modeled as point objects in a 2D plane.
In [1], the authors proposed building a tracking and mon-
itoring system using a forest of sensors distributed around
the site of interest. Their approach involved tracking ob-
jects in the site, learning typical motion patterns and co-
occurrence statistics of different objects from extended ob-
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servation periods and using these to detect unusual events.
In [2], the authors used Bayesian networks to represent
multi-agent events. The above approaches use the mo-
tion tracks of individual objects and their interaction with
other objects in the scene. Instead of tracking point objects
separately and then learning their interactions, we propose
a different approach which models ‘group activity’ using
Kendall’s statistical shape theory [3]. A ‘group activity’
is represented by the polygonal ‘shape’ formed by joining
the locations of the point objects (henceforth referred to as
‘points’) or ‘landmarks’ at any time ¢ and its deformation
over time. This provides a compact global framework to
jointly model the motion of all the moving objects perform-
ing an activity (group activity). We are able to identify “spa-
tial” abnormalities, e.g. deviations from the normal path,
as well as “temporal” abnormalities [1], e.g. sudden stop-
ping for prolonged periods of time when the normal activity
should be continuous motion. The advantage of using the
shape of the configuration of objects is that it is invariant
to translation and in-plane rotation of the camera (assuming
orthographic projections).

Shape is defined as all the geometric information that
remains when location, scale and rotational effects are fil-
tered out [4]. Some of the earliest works in shape theory are
Fourier descriptors [5] and extended Gaussian image model
[6] both of which model shape of continuous curves. Also,
there exists a huge body of work in the vision community on
shape tracking, analysis and similarity [7, 8, 9, 10]. Statisti-
cal shape theory [3] for the shape formed by discrete points
or landmarks began in the late 1970s and has evolved into
practical statistical approaches for analyzing objects using
probability distributions of shape. Of late, it has been ap-
plied to some problems in image analysis, object recogni-
tion and image morphing (Chapters 11 and 12 of [4]). All
these examples, however, model the shape of a single ob-
jectin static images. Our work presents an approach for ex-
tending this method for modeling the dynamics of the shape
formed by the locations of a group of objects performing an
activity.
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For a “static shape activity” (explained in section 3), the
mean shape of the object configuration remains constant
with time and this is the case that we deal with in this paper.
Consider as an example of “static shape activity”, the video
sequence of passengers getting out of a plane and moving
towards the terminal (see figure 1 (a)). All passengers are
supposed to follow the same path from the plane to the ter-
minal. If one were to look at the shape formed by connect-
ing the locations of all the passengers at any time instant it
would look similar, except for deformations due to varia-
tions in the path taken by each individual. Suspicious activ-
ity in this example would be any person walking in an unex-
pected direction thus causing the shape of the configuration
of passengers to change (figure 1(b)) or a person stopping
in between which would also cause shape to change when
the person behind the stopped person goes ahead of him.

Given a training sequence from a “static shape activity”,
we use the observed object configurations from a sequence
of frames to learn the mean “activity shape”. We define a
tangent coordinate system at the mean shape as described
in [4]. The tangent hyper-plane is a linear vector space that
approximates the nonlinear shape space in the vicinity of
the mean shape. The shape dynamics in tangent space is
modeled using a Gauss-Markov model as discussed in our
earlier work [11]. For the case of observations with neg-
ligible observation noise, we evaluate tangent coordinates
of the shape of the test sequence and use log likelihood to
detect abnormality.

In this paper, we consider the more practical (and diffi-
cult) case of large observation noise in the observed point
locations. We now have a partially observed and nonlin-
ear dynamical system [12] from which we need to estimate
the shape (actually its posterior distribution) and also detect
abnormality. This problem fits into the framework of par-
ticle filtering. Particle filtering is a sequential Monte Carlo
method that was first introduced in [13] as an approach to
non-linear, non-Gaussian Bayesian state estimation. Parti-
cle filters (PF) have been used in computer vision for shape
based tracking of a single object using various representa-
tions of shape [14, 15]. [16] uses particle filtering to track
multiple moving objects but it uses separate state vectors for
each object and defines data association events to associate
the state and observation vectors. But in our work, we rep-
resent the combined state of all moving objects using shape
(tangent) coordinates. We use a PF only to estimate (filter
out) the ‘shape’ of the configuration of moving objects from
noisy observations of their locations.

Abnormality detection in this case is formulated as a
change detection problem. Most algorithms for change de-
tection are for linear systems. [17] is a reference for change
detection in nonlinear systems using PFs but it assumes
an abrupt change and known parameters after the change.
In many situations an abnormality is a slow change and

its parameters are unknown. We propose in this paper a
change detection strategy that can deal with both ‘drastic’
(or abrupt) and ‘slow’ changes with change parameters un-
known.

The rest of the paper is organized as follows. In section
2, we give a brief review of statistical shape theory and par-
ticle filtering. Section 3 describes the ‘shape activity’ model
that we introduced in [11] and how to detect abnormality in
the fully observed case. In section 4, we describe a particle
filtering approach to estimate the posterior distribution of
the shape from noisy observations of the configuration and
a change detection strategy to detect abnormality. Experi-
mental results are presented in section 5 and conclusions in
section 6.

2 Preliminaries

2.1 Statistical Shape Theory

We briefly review the basic tools for statistical shape
analysis as described by Dryden and Mardia in [4]. We
use Kendall’s representation of a shape configuration in
m dimensional space as the £ x m matrix formed by the
locations of k£ landmark points on each specimen. For
m = 2 dimensional shape a more convenient representation
is a k dimensional complex vector with real and imaginary
parts representing the z and y coordinates of the point. The
mapping from configuration space tangent coordinates for
shape involves the following steps:

Translation Normalization: In order to make the
shape invariant to translation, the complex vector of raw
location data (Y}.4,,) can be centered by subtracting out the
mean of the vector, i.e.

11"
k ’
I}, is a k x k identity matrix and 1y, is a k dimensional vector
of ones.
Scale Normalization: Preshape is the geometric informa-
tion that remains after location and scaling information has
been filtered out. It is obtained by normalizing Y by its
Euclidean norm, s = ||Y]|, i.e.

Y =CY,pw where C = I}, —

ey

©))

Y
Zy = —.
s
Distance between shapes: A concept of distance between
shapes is required to fully define the non-Euclidean shape
metric space. The shape space is non-Euclidean (it is a
spherical manifold) because of the scaling to norm one. The
full Procrustes distance [4] of a centered complex configu-
ration Y; from Y5 is given by the Euclidean distance be-
tween the full Procrustes fit of the preshape of Y1, (2y,),
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onto the preshape of Y5, (2y,). Full Procrustes fit is chosen
to minimize

d(Ys, Y1) = ||2v, — 2v, 87 — (a + jb)14]|.  (3)

Full Procrustes distance, dp(Y>3,Y) is this minimum dis-
tance i.e. dp(Y2,Y1) = infggqpd(Y2,Y7). Since the
preshapes zy, and zy, have already been normalized for
translation and scale, the translation value that minimizes
d(Y1,Y3), @+ jb = 0, and the scale, § = |23, 2y, | is very
close to one. The rotation angle, § = arg(zy, 2v)-

For a population of similar shapes, a full Procrustes mean
shape (f1) is obtained by minimizing (over u) the sum of
squares of full Procrustes distances from each observation
Y; in the population to the unknown mean shape, p, i.e.

(i) = arginf 3~ dp*(Vi, ). )
i=1

For 2D shapes, the full Procrustes mean /i can be found
as the eigenvector corresponding to the largest eigenvalue
of the matrix S = ) 1" | zy,2y. [18]. Obtaining the full
Procrustes mean and aligning all preshapes in the dataset
to it (by finding their full or partial Procrustes fit to the
mean) is known as Generalized Procrustes Analysis. Partial
Procrustes fit is obtained by setting 5 = 1 and solving only
for the rotation angle in (3) to align the preshape to the
mean. (See chapter 3 of [4] for details).

Shape Variability in Tangent Space: To examine
the structure of shape variability from the average shape,
we define a linearized space (tangent space) about the
mean shape and consider variation from the mean in this
linearized space. The preshape formed by k points lies
on a complex hypersphere of unit radius. The aligned
preshapes (after generalized Procrustes analysis) of a
dataset of similar shapes would lie close to each other
and to their Procrustes mean on this hypersphere. The
tangent hyperplane to the hyper-sphere at the mean is an
approximate linear space to represent this dataset and in
this space, standard linear multivariate analysis techniques
can be applied.

The partial Procrustes tangent coordinates [4] of a pre-
shape (z), taking the Procrustes mean, u, as the pole for
the tangent projection, are obtained by projecting the par-
tial Procrustes fit (w.r.t. ©) of a preshape, into the tangent
space at the mean. They are evaluated as [4]

0(z,p) =
v(z,p) =

arg(='n)
(I — pp*e?’ )

where z is the preshape. Note that the tangent coordinates
lie in a 2k — 4 dimensional real hyperplane (two dimensions
reduced due to X and Y translation normalization, one due
to scale and one due to rotation normalization).

The inverse of the above mapping (tangent space to pre-
shape space) is

2(0,0,1) = [(1 —v"0)" 2+ v]e’ 6)

The configuration is given by scaling the preshape by its
scale (s), Z = sz.

2.2 Particle filtering (PF)

Let the state process X = {X;} be an R"=-valued Markov
process with a Feller transition kernel [12] K¢ (¢, doyy1)
(where {z;} is a realization of the random process Xy).
Let the observation process Y = {Y;} be an R"v-valued
stochastic process defined as Y; = h(Xy,t) + w;. The
initial state distribution is denoted by mo(x) and the ob-
servation likelihood at time ¢ given the state by g (y¢|z+).
The particle filter [12] recursively approximates the opti-
mal posterior distribution of the state at any time t given the
past observations, by Monte Carlo sampling. It works for
any non-linear, non-Gaussian dynamical system for which
7o, K¢(w¢,dxy1) is known and can be sampled from and
9t(yt|z¢) is known.

The filter [12] starts with sampling n times from the ini-
tial state distribution 7o () to approximate it by 7 (z) =
Ly 6z(())(m) Now assuming that the distribution of
X;_1 given observations upto time ¢ — 1 has been ap-
proximated as 7y, () = + 20, 0,00 (x), the pre-
diction step samples the new state ;ngz) from the distribu-

tion K;_4 (;1791, .). Thus the emperical distribution of this

new cloud of particles, wZ’lt_l(x) = LIyt 6E£i)(x) is
the probability distribution of X; given observations upto
time ¢ — 1. For each particle, its weight is proportional
to the likelihood of the observation given that particle, i.e.
. _(i) .
wl = gt M) = S o (@
is an estimate of the probability distribution of the state
given observations uptil time ¢t. We resample n times
with replacement from ﬁt”lt(x) to obtain the emperical es-

timate 7, () = - 32i; 8,1 (). Note that both 7}t, and
t
7rt”| . approximate 7;|; but the resampling step increases the

sampling efficiency by eliminating samples with very low
weights.

3 ‘Shape’ Activity Model

We use Dryden and Mardia’s statistical shape theory ideas
(described above to represent the shape of “an” object) to
model the shape of the configuration of a group of mov-
ing objects and its deformations over time. The notion of
separating the motion of a deforming shape into motion of
an average shape and its deformations described by Soatto
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and Yezzi in [19] can be extended to “shape activities”. We
define a “‘static shape activity” as one in which the average
shape formed by the moving points remains constant with
time and the deformation process is stationary. A “dynamic
shape activity” on the other hand has a time varying average
shape and/or a non-stationary shape deformation process.

Kendall’s shape analysis methods (discussed above) de-
scribe the shape of a fixed number of landmarks and so
when the number of point objects is not fixed with time, we
resample the curve obtained by connecting the object loca-
tions at time ¢ to represent it by a fixed number of points,
k. The order in which the object locations are joined is kept
the same (shape is not invariant to change in ordering of the
points).

The complex vector formed by these k points (z and y
coordinate forming the real and imaginary parts) is then
centered using equation (1) to give the observation vec-
tor sequence, {Y;}. We assume in this section that hand-
picked or accurately measured object location data is avail-
able (negligible observation noise). The observation vector
is normalized for scale (to obtain the preshape) and gen-
eralized Procrustes analysis (equation (4)) is performed on
this sequence of pre-shapes to obtain the Procrustes mean
shape, p. The preshapes are aligned to p and tangent coor-
dinates at u evaluated using equation (5). The complex tan-
gent coordinate vector is rewritten as a real vector of twice
the complex dimension.

3.1 Shape Dynamics in Tangent Space

Let the vector of tangent coordinates be represented by
vy € R?k—*_ The origin of the tangent hyperplane is chosen
to be the tangent coordinate of x and hence the data pro-
jected in tangent space has zero mean by construction. The
time correlation between the tangent coordinates is learnt
by fitting a stationary Gauss Markov model as described in
our earlier work [11], i.e.

E [Ut] = 0

v = Avg1 +ng, (7N
where n; ! is a zero mean i.i.d. Gaussian process and is in-
dependent of v;_;. The details of evaluating the covariance
matrix of vy, ¥,, the autoregression matrix A and covari-
ance of noise Y,, (assuming stationarity and ergodicity) are
discussed in [11]

Based on the stationary Gauss Markov model described
above we have,

fo(vt) ~ N(O,Ev), vt
Folopalve) ~ N(Aw, Z,). (®)

"Note that to simplify notation, we do not distinguish between a ran-
dom process and its realization in the rest of the paper.

Thus any L + 1 length sequence, {v;_p,...vs—1, v}, will
have a joint Gaussian distribution.

3.2 Abnormality Detection: Fully Observed
Case

We have assumed in this section that the noise in the shape
of the observations is negligible compared to the system
noise, n;, and hence we have a fully observed dynamical
model. For such a test observation sequence, we can eval-
uate the tangent coordinates (v;) directly from the observa-
tions (Y;) using equations (2) followed by (5).

The following hypothesis is used to test for abnormality.
A given test sequence is said to be generated by a normal
activity iff the probability of occurrence of its tangent co-
ordinates using the pdf defined by (8) is large (greater than
a certain threshold). Thus the distance to activity statistic
for an ‘L + 1’ length observation sequence ending at time ¢,
dr,+1(t), is the negative log likelihood (without the constant
terms) of the tangent coordinates of the observation i.e.

dpa(t) = vl 37 veg

¢
+ Z (v; — Av,_1) TS (v, — Av, )
T=t—L+1

€))

We test for abnormality at any time ¢ by evaluating d, 41 (t)
for the past L + 1 frames. In the results section, we refer
to this as the ‘log likelihood metric’ (even though it is not
actually a ‘metric’).

4 Partially Observed ‘Shape’ Activ-
ity Model

In the previous section, we defined an abnormality detection
statistic for the case of negligible observation noise (fully
observed system). But, when noise in the observations (pro-
jected in shape space) is comparable to the system noise,
the above model will fail (See figure 2(c)). This is because
tangent coordinates estimated directly from this very noisy
observation data would be highly erroneous. Observation
noise in the point locations will be large in most practical
applications especially with low resolution video. In this
case, we have to solve the joint problem of filtering out the
actual configuration (Z;) and the corresponding shape from
the noisy observations (Y; = Z;+w;) and also detecting ab-
normality (as a change in shape). Since Z; is now unknown,
so is the corresponding v; and we thus have a partially ob-
served non-linear dynamical system [12] with the following
system (state transition) and observation model.

The system model includes the shape space dynamics
(the Gauss-Markov model on tangent coordinates) and also
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the dynamics of the scale and rotation 2. Even though we
are interested only in shape dynamics, modeling the rota-
tion and scale dynamics as a first order stationary process
helps to filter out sudden changes in scale/rotation caused by
observation noise, which would otherwise get confused as
sudden changes in shape space. Also, this dynamical model
on scale, rotation (or translation) could model random mo-
tion of a camera due to its being inside a UAV (unmanned
air vehicle) or any other unstable platform.

The observation model is a mapping from state space
(tangent coordinates for shape, scale and rotation) back
to configuration space, with noise added in configuration
space.

4.1 System Model

The state vector, X; is composed of X; = [v],60;,5:]"
where v; are the tangent coordinates of the unknown con-
figuration Zy, 0 = arg(Z; 1) is the rotation normalization
angle, and s; = || Z;| is the scale. The transition model for
shape (v;) is discussed in section 3.1. The scale parameter at
time ¢ is assumed to follow a Rayleigh 3 distribution about
its past value. The rotation angle is modeled by a uniform
distribution with the previous angle as the mean. We have

v = Avei+ng, ng ~N(0,5,)
st = riSi—1, 1~ Rayleigh(\/2/m)
9t = et—l + ug, U~ Unif(—a, G,) (10)

with initial state distribution
Vo ~ N (07 ZU)

Rayleigh (5¢)
Unif (8 — ao, B + ao) (11)

So

by ~

The model parameters A, 3,,, Y, are learnt using a single
training sequence of a normal activity and assuming station-
arity for v; as described in 3.1. The parameter a is learnt as
a = maxy |#; — 6;_1|. Note that in this paper we have as-
sumed a stationary system model for v;. But in general, the
framework described here is applicable even if ¥,, 4, %,
are time varying (non-stationary process).

4.2 Observation Model

In our current implementation, we assume that independent
Gaussian noise with variance o2, _ is added to the actual lo-

2In our current implementation, we have not modeled translation dy-
namics (we use a translation normalized observation vector) assuming that
observation noise does not change the centroid location too much.

3Rayleigh distribution chosen to maintain non-negativity of the scale
parameter

cation of the points, i.e. 4

Y; ~ N(Zi,02Is) where
Z h(Xe) = sel(1 = vefoe )2+ v Je™7%(12)

where h(X}) is the function given by equation (6) followed
by scaling by s;.

In general, both 02, and  can be time varying and the
observation noise need not be i.i.d. in all the point object
locations. Also, to take care of outliers, one could allow a
small probability (p,y¢) of any point j occurring anywhere
in the image with equal probability (uniform distribution).

4.3 Particle Filter

We use the state transition kernel given in (10) and the ob-
servation likelihood given by (12) in the particle filtering
framework described in section 2.2. The PF provides at
each time ¢, an n sample emperical estimate of the distribu-
tion of the state at time ¢ given observations upto time ¢ — 1
(prediction) and the distribution of the state given observa-
tions upto time ¢, wg“t(vt, st, 8¢) (update). For abnormality
detection, only the marginal of shape, 7, (v) is used.

4.4 Abnormality Detection

We test for abnormality based on the following hypothesis.
A test sequence of observations, {Y;} is said to be gener-
ated by a normal activity iff
(a) It is “correctly tracked” by the particle filter trained on
the dynamical model learnt for a normal activity. We test
this by thresholding the distance between the observation
and its prediction based on past observations i.e. for nor-
malcy,

(Y: = E[Yi|Yo:-1])* = (Vi = Er,, [M(X0)])? <~ (13)
and
(b) The expectation under 7y¢(v;) of the negative log-
likelihood of normalcy of the tangent coordinates (expecta-
tion under 7; of dy (t) from equation (9)) is below a certain
normalcy threshold, n, i.e.

E £ By, [~logf°(v)] <7 (14)

The PF estimate w{“ ¢ Will approximate |, correctly only if
the observations are “correctly tracked” by the PF and hence
only in the “correctly tracked” case, E can be estimated
using the PF distribution. Also, note that E is actually the
Kullback Leibler distance between the pdf corresponding to
;¢ and the normal activity pdf of tangent coordinates, f 0,

4v¢e € CF~2 is the complex version of v; € R2*—% (inverse of

operation described in the paragraph just before section 3.1)
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plus the entropy of v;|Yy.:. Hence this statistic is referred to
as the K-L metric 3 in the results section.
The expression for E is approximated by E,, as follows

A 1 - i T _ i
B, £ Exy [logf*(v)] = ~ S o s w0 a5)

i=1

(where C = log /(27)26=4 |3, ]).

Now, a ‘drastic’ abnormality will cause the PF to lose
track and hence will get detected using (a). If the abnor-
mality is a ‘slow’ one (say a person slowly moving away in
a wrong direction), the PF will not lose track. But a sys-
tematically increasing bias is introduced in the tangent co-
ordinates (they no longer remain zero mean) and hence the
expected negative log likelihood of normalcy will be large
in this case causing (b) to be violated. Since the PF does
not lose track in this case, the PF distribution estimates 7y;
correctly and hence E can be estimated using a PF in this
case.

S Experimental Results

A video sequence of passengers getting out of a plane and
walking towards the terminal (figure 1) was used as an
example of “static shape activity” to test our algorithm.
Since the number of passengers vary over time, the polygon
formed by joining their locations (in the same order always)
is resampled to obtain a fixed number of landmarks. We
have tested the performance of the algorithm on simulated
‘spatial’ and ‘temporal’ abnormalities [1], since we do not
have real sequences with abnormal behavior. ‘Spatial’ ab-
normality (shown in figure 1(b)) is simulated by making one
person deviate from his original path. This simulates the
case of a person deciding to not walk towards the terminal.
‘Temporal’ abnormality is simulated by fixing the location
of one person thus simulating a stopped person (which can
be a suspicious activity too). When the person behind the
stopped person goes ahead of him, the loop formed causes
the shape to change. Note that since we are using the shape
of discrete points, ordering matters and it is for this reason
that a stopped person gets detected as an abnormal shape.
We first show results for the case of low (negligible) ob-
servation noise, using the log likelihood metric defined in
section 3.2. Given a test sequence, at every time instant
t we apply the log likelihood metric to the past L frames
with L = 20 i.e. d20 (t) = —lngO(Utflg, Vt—18, ...’Ut).
Reducing L will detect abnormality faster but will reduce
reliability. In figure 2(a), the cyan dashed line plot is for the
case of zero observation noise (hand-picked points). The
blue circles (‘0’) plot shows the metric for a normal activity

with 6%, = 4 (0 = 2 pixel) Gaussian noise added to the

Seven though it is not actually a ‘metric’

hand-picked points, while the green stars (‘*’) plot is for a
spatial abnormality (also with the same amount of observa-
tion noise) introduced at ¢t = 5 for 40 frames. 2(b) shows
the same plots for a temporal abnormality (plotted with red
triangles). The spatial abnormality gets detected (visually)
around ¢t = 20 while the temporal one takes a little longer.
Some of the lag in both cases is because of L = 20. In 2(c)
we show the same plots but with Ugbs = 81. The metric
now confuses normal and abnormal behavior, as discussed
in section 4.

In figure 3, we show results for 9 pixel observation noise
(02,, = 81) but with the observation noise now incorpo-
rated into the dynamic model (partially observed dynamic
model as discussed in section 4). We show plots for the
more difficult case of ‘slow abnormality’ where the track-
ing errors are small even for the abnormal activity. Hence
the K-L metric (expected log likelihood) is needed to distin-
guish between normal and abnormal behavior. Figure 3(a)
shows the plot for a spatial abnormality (green stars, ‘*’)
introduced at ¢ = 5 which gets detected around ¢ = 7 while
as shown in 3(b), the temporal abnormality (red triangles)
takes a little longer to get detected. The K-L metric plots
for two instances of normal activity with the same amount
of noise added are shown in both (a) and (b) with blue cir-
cles (‘0’) and magenta crosses (‘x’).

Figure 4 shows the Receiver Operating Characteristic
(ROC) plots [20] for spatial abnormality (hypothesis H;)
versus normal activity (Hy). ROC plots the probability of
abnormality detection (Pp) against the probability of a false
alarm (Pr) [20]. The plots were generated by varying the
normalcy threshold (1) and counting the number of times
the abnormality gets detected in a normal (for Pr) and an
abnormal sequence (for Pp) , for a given threshold. The
three plots in the figure are for allowing different amounts
of delay A, for detection of the abnormality. As can be seen
from the plots, if one were to allow only A; = 5, the maxi-
mum detection probability for Pr < 0.2 will be 0.85 while
allowing a delay of A; = 10, increases this probability to
1. Actually for change detection problems, the ROC is a
plot of the mean detection delay (assuming that the change
will eventually get detected always) against the mean time
between false alarms.

6 Conclusion

In this paper, we have looked at the problem of represent-
ing activities in low resolution video data where the moving
objects are small enough to be modeled as point masses.
Instead of representing the activity by the motion tracks of
each individual object, we have proposed a compact global
framework to model the activity using Kendall’s shape the-
ory. The activity is represented by the shape of by the
configuration of the interacting objects, and its deforma-
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Frame 7835 Frame 7E&5

() (b)

Figure 1: (a): A ‘normal activity’ frame with shape contour superimposed, (b): Contour distorted by spatial abnormality. Note that
the normal shape here appears to be almost a straight line, but that is just coincidence; our framework can deal with any kind of polygon
formed by the point objects (landmarks). Also, the shape of landmarks does not distinguish open and closed polygons.

Small Observation Case (2, = 4): Log Likelihood Metric Plot Small Observation Case (o7, = 4): Log Likelihood Metric Plot Large Observation Case (o2, = 81): Log Likelihood Metric Plot, Algorithm fails

Normal activity, no observation noise Normal activity, no observation noise
~&- Normal activity with observation noise -&- Normal activity with observation noise
—£- Temporal Abnormality (started at t=5) with observation noise —£— Temporal Abnormality (started at t=40) with observation noise
Spatial Abnormality (started at t=5) with observation noise

Normal activity, no observation noise
&~ Normal activity with observation noise
Spatial Abnormality (started at 1=5) with observation noise

250 250

N
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Figure 2: Plots of the log likelihood metric (d20(t)) for normal and abnormal activities : (a) & (b) compare normal activity with spatial
and temporal abnormality, respectively, for the case of small observation noise (0%, = 4). (c) shows the failure of the algorithm for large

observation noise (¢2,; = 81). Note that the abnormality was introduced at t = 5.

tion over time. For test observation sequences with non- possibly moving sensors.
negligible observation noise, we have proposed to use a par-

ticle filter to estimate the posterior distribution of the shape

given the observations. ‘Drastic’ abnormalities get detected Acknow]edgement
because they cause the PF to lose track while for detecting

‘slow” abnormalities for which the PF does not lose track, The authors would like to acknowledge Fumin Zhang of the
we have proposed to use the expected log likelihood of nor- ECE dept. at the University of Maryland, College Park for
malcy as the change detection statistic. Since our shape interesting discussions with him on the problem.

based algorithm models objects as point masses, the obser-
vations could as well be obtained using any kind of sensors
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Figure 4: ROC plot using the K-L metric
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