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ABSTRACT

We present a novel distributed video coding algorithm based
on transform coding of distributed sources and exploiting the geo-
metrical relationships between the location of the sensors. The ge-
ometry is used to align the video sequences and distributed quan-
tization of transform coefficients is used to eliminate spatial and
inter-sensor redundancy. In contrast with most of the current video
compression standards which only exploit spatial and temporal re-
dundancy within each video sequence, we also consider the signif-
icant redundancy between the sequences. Results demonstrate that
our algorithm yields a significant saving in bit rate on the overlap-
ping portion of multiple views.

1. INTRODUCTION

Transmission of video data from multiple sensors over a wire-
less network requires enormous amount of bandwidth, and could
easily overwhelm the system. However, by exploiting the redun-
dancy between the video data collected by different cameras, in
addition to the inherent temporal and spatial redundancy within
each video sequence, the required bandwidth can be significantly
reduced. Well-established video compression standards, such as
MPEG1, MPEG2, MPEG4, H261, and H263, all rely on efficient
transform coding of motion-compensated frames, exclusively us-
ing the discrete cosine transform (DCT). However, they can only
be used in a protocol that encodes the data of each sensor indepen-
dently. Such methods would exploit spatial and temporal redun-
dancy within each video sequence, but would completely ignore
the significant redundancy between the sequences.

In this paper, we develop a novel multiterminal video coding
algorithm combining distributed source coding (DSC) and com-
puter vision techniques. This lossy compression scheme takes into
account the correlation between the video sensor data, and at the
same time keeps the communication between the sensors at a min-
imum. In broad terms, our scheme relies on alignment of the 2-
D video sequences using the epipolar geometry [6] relating the
cameras (which could be located arbitrarily in space), followed
by standard elimination of temporal redundancy (e.g., via motion
compensation), by application of a suitable transform, and finally
by quantization of the transform coefficients in a distributed fash-
ion [9]. The epipolar geometry refers to the relationship between
the positions of a stereo camera pair, and can be estimated from
a pair of stereo images obtained from these cameras. The perfor-
mance of our algorithm depends, most crucially, on the quality of
alignment and the coding efficiency of the distributed quantization
scheme. The alignment must result in correspondences between
pixels that are maximally correlated, and the distributed coding
must optimally exploit this correlation.

It is worth noting that there has recently been significant ef-
fort in application of DSC techniques to video data. However,

to the best of our knowledge, work on distributed compression in
a multi-camera setting using epipolar geometry to reduce inter-
camera redundancy has not been studied before in great depth. In
what is broadly known as distributed video coding (e.g., [5, 10]),
DSC is utilized either for the exploitation of temporal correla-
tion in a single video stream, or for better error resilience. A re-
cent method [11] attempts to exploit the redundancy between im-
ages available at different sensor nodes by independently encoding
the images in low resolution and decoding using superresolution
techniques. The high correlation between the low-resolution im-
ages, however, is not exploited, and therefore higher coding gains
promised by multiterminal source coding theory [1, 7, 8] are not
reached. Another recent work [3] developed a distributed image
coding technique for a multi-camera setting with several restrictive
constraints: cameras are located along a horizontal line, the objects
are within a certain known range from the cameras, and the image
intensity field is piecewise polynomial. For image-based render-
ing applications, [13] exhibits a successful algorithm for Wyner-
Ziv coding of the light field whereby complexity is shifted from
the encoders to the decoder, but geometrical relationships between
camera positions is not taken into account.

The rest of the paper is organized as follows. Section 2 presents
an introduction of transform coding of distributed sources. Section
3 presents an overview of our approach to distributed video cod-
ing. In Section 4, some experimental results are presented. Finally,
Section 5 gives the conclusion and the future work.

2. TRANSFORM CODING OF DISTRIBUTED SOURCES

The fundamental ingredient of DSC, both in lossless and lossy
cases, is binning [1, 8], i.e., a many-to-one mapping of the ac-
tual data taken from the sources to a limited number of values.
Through binning, the correlation between the sources can be ex-
ploited without any communication between the sensors.

For two maximally correlated pair of blocks from each view,
we use the discrete cosine transform followed by distributed scalar
quantization of transform coefficient pairs. Coefficient pairs cor-
responding to each fixed spatial frequency are encoded indepen-
dently. Our scalar coding method is provably competitive (in the
sense of approaching the rate-distortion bounds) in high bit rates,
which is a promising result for the intended (lower bit-rate) ap-
plications. Let the shaded region shown in Figure 1 indicate the
support of a pair of transform coefficients X̃ and Ỹ we need to
quantize. It will suffice to design a coding mechanism which en-
codes the scalars that are inside the support with a small enough
distortion, and simply ignore any pair of values falling outside.
The encoding must be performed separately, and therefore the cells
used for the covering must consist of Cartesian products of individ-
ual intervals. The particular assignment in Figure 1 indeed ensures
indispensable unique decodability, as each pair of codewords pin-
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Fig. 1. Proposed coding scheme with W = 3, NX = 2, and
NY = 2. As can be seen, 3 cells indicated in bold, suffice to cover
the support of the source, indicated as the shaded area, everywhere.

point to a single cell that is used in the covering of the support.
The example codeword pair shown in the figure, {0,3}, actually
corresponds to 4 different cells, but only one of those has a high
probability of occurring, and therefore is used for the covering of
the support, i.e., as the decoded output. The same statement can
be made for all codeword pairs in {0,. . . ,5}×{0,. . . ,5}.

As in [9], we consider a family of codes parameterized by
three integers, W , NX and NY . The dynamic ranges of both X̃
and Ỹ are divided into W ×NX ×NY intervals, thereby defining
a grid on the two dimensional plane. The achieved fixed-length
coding rates for the X̃- and Ỹ -encoders are �log2 WNX� and
�log2 WNY �, respectively. For jointly Gaussian source pairs, we
were able to analyze the performance of our scheme rigorously [9],
which proved its competitiveness in two aspects: (i) under the uni-
form high-resolution quantization regime, by separate encoding of
X̃ and Ỹ , one can achieve the same total distortion one would
achieve even if both X̃ and Ỹ were available at a single sensor
node [4, Section 8.3], and (ii) under high-resolution assumption,
this simple binning technique can attain total rates as close as 3.05
bits to the asymptotical rate-distortion bound characterized in [7].

3. MULTI-TERMINAL VIDEO CODING

Though the issues discussed in the previous sections regarding
efficient transform and coding of the data can be applied to any
sensor network where nodes observe correlated sequences and are
required to transmit their findings to a central receiver, our main
focus will be on multi-terminal video compression. The poten-
tial gain in multi-terminal is significant due to the inherently high
bandwidth of video. Video compression deals with encoding a
video sequence after removing the spatial redundancy in each video
frame and the temporal redundancy between the frames. Standards
such as MPEG1, MPEG2, MPEG4, H261, and H263, outline pro-
cedures for achieving this purpose. If we have multiple video se-
quences from different cameras where there is a significant overlap
between the sequences, the above coding standards are inefficient
since they do not consider the redundancy in the data at the dif-
ferent sensors. Under this situation, it is necessary to develop dis-
tributed video compression schemes that can take advantage of the
fact that the data from different sources are correlated. Moreover,
this should be done without too much communication between the
sensors. Otherwise the savings in bandwidth obtained by consid-
ering correlated sources would be offset by the inter-sensor com-

munication.
The theory outlined in the previous section provides an excel-

lent framework to design a distributed lossy video compression
scheme. The sensors may be viewing the scene from different
viewpoints, but they may have a significant portion of the scene
where their field of views (FOVs) overlap. On this overlapping
portion, we intend to achieve a very high compression rate using
the distributed source coding principles discussed so far. The por-
tion in the frames where there is no correspondence between them
will be intra-coded. The geometry between the locations of the
sensors will be exploited to understand the correlation between
the data at different sensor nodes. We provide below a detailed
strategy for developing a distributed video compression strategy
for pairs of sensors. Extending it to K sensor nodes will be an
issue of future research.

Our scheme relies on obtaining correspondence between the
macroblocks (MBs) of the two sensor data at any time instant. Re-
liable tracking will result in maximally correlated MBs, which, in
turn, will lead us to develop an efficient distributed coding scheme.
The task of tracking the correspondence of MBs will be achieved
by using the motion vectors (MVs) together with the geometrical
constraints between the sensors [6]. The MVs can be computed by
any scheme, e.g., as in MPEG. The geometrical relationships are
expressed through the epipolar constraint. The epipolar constraint
states that given a point in one view (say the left image), its cor-
responding point in the other view lies on the epipolar line. This
reduces the search for correspondences to a 1D problem, provided
we can compute the epipolar line. This, in turn, requires infor-
mation about the camera calibration parameters, i.e. the intrinsic
parameters of the camera (we will assume that the focal length is
the only intrinsic parameter of interest), as well as the extrinsic pa-
rameters (i.e., the position and orientation of the camera reference
frame with respect to a fixed reference frame in the world). For
this paper, we assume stationary cameras, which means that the
calibration parameters can be estimated from the images obtained
from two or more sensors. Though the present scheme is described
for a pair of cameras, it can be generalized to larger sets using the
multi-camera constraints [6] or dealing with the cameras pairwise.

3.1. Distributed Motion Estimation (DME) Algorithm
Let us assume that we have two video sensors A and B. Below we
provide an overview of our approach for tracking the correspon-
dence between MBs in the two sequences obtained from cameras
A and B. We assume, for the purposes of this explanation, that we
have calibrated cameras and Camera B knows its position relative
to Camera A. We also assume that the two cameras were initially
synchronized at time t = t1 . The synchronization needs to be
done only once at the very start of the transmission and will be
available automatically in a recursive manner, by virtue of our al-
gorithm. The main steps of the algorithm, a visual description of
which is provided in Figure 2, are listed below.

1. Problem Definition andAssumptions : The correspondence
between the macroblocks of IA1 and IB1 is known. The
problem is to compute the correspondence between IA2

and IB2. The MVs of both pairs of frames {IA1 , IA2}
and {IB1 , IB2} are computed separately using an MPEG
encoding scheme. That is, both frames IA2 and IB2 are di-
vided into a uniform grid of macroblocks(MBs) and MVs
are computed per macroblock. Let us denote the set of MVs
from IA2 to IA1 by {MV (IA2)} , similarly those from IB2

to IB1 by {MV (IB2)}. The algorithm, described below, is
repeated for each macroblock.
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Fig. 2. Pictorial description of the proposed correspondence track-
ing algorithm. The numbers in circles indicate the steps of the
algorithm.

2. Inter-sensor Communication: Sensor A transmits
{MV (IA2)} to Sensor B. This constitutes the only com-
munication between the two sensors.

3. For each macroblock MB(IA2), motion vector MV (IA2)
leads to four possible MBs in IA1, denoted by {MB4(IA1)}.
The centers of these four macroblocks are transmitted to
Sensor B (as indicated in Step 2), which obtains the cor-
responding four MBs, {MB4(IB1)}, using the correspon-
dence between IA1 and IB1.

4. Using the epipolar constraint, sensor B computes the epipo-
lar line for each pixel in MB(IA2). In practice, we can
consider the center pixel of the MB and its corresponding
epipolar line. Denote this line by EP (IB2).

5. Sampling the epipolar line (possibly non-uniformly), sen-
sor B creates a sequence of MBs, denoted by {MBC(IB2)},
the center of each being a sample point on the line. Using
{MV (IB2)}, it then interpolates to obtain the MVs of this
sequence of MBs, denoted by {MVC (IB2)}.

6. Using {MVC (IB2)}, sensor B obtains the corresponding
sequence of MBs in IB1, denoted by {MBC(IB1)}.

7. Among the sequence of MBs {MBC(IB1)}, sensor B
chooses the one with the highest amount of intersection
with {MB4(IB1)}. This MB is then traced back to the
frame IB2, and the resultant MB, denoted by MB(IB2), is
declared to correspond to MB(IA2).

8. The process is repeated for every MB in IA2. This estab-
lishes a correspondence between macroblocks of IA2 and
IB2. We can now increment the time counter and go back
to Step 3.

We will refer to this algorithm as the Distributed Motion Estima-
tion (DME) algorithm.

3.2. Coding Algorithm

After finding corresponding macroblocks MB(IA2) and MB(IB2),
our scheme will proceed as follows. It will (i) compute the motion
compensated frames MC(IA2) and MC(IB2) at the two sen-
sors separately, (ii) compute the residual frames by subtracting
MC(IA2) from IA2 and MC(IB2) from IB2 , and (iii) apply the
DCT separately to each corresponding MB pair MB(IA2) and
MB(IB2). The distributed coding scheme of Section 2 will then
be used on the transform coefficients of MB(IA2) and MB(IB2).

Here, steps (ii) and (iii) eliminate the temporal and spatial re-
dundancies, respectively, as usual. However, the novelty in our
scheme is the elimination of the redundancy between MB(IA2)
and MB(IB2) by using the distributed scalar quantization method
proposed in Section 2.

4. EXPERIMENTAL RESULTS

In our experiments we apply the DME algorithm on real imagery,
and the results are shown in Figure 3.

IA1 IB1

(a) (b)
IA2 IB2

(c) (d)
IA1 IB1

(e) (f)
IA2 IB2

(g) (h)

Fig. 3. (a)-(d): Results for one MB. The four images correspond
spatially to the images {IA1, IB1, IA2, IB2} in Figure 2. (e)-(h):
Results for a set of MBs. (e) and (f) represent the initial corre-
spondence between the MBs at Sensors A and B, respectively. (g)
and (h) represent the correspondence computed using the DME
strategy.

Based on the corresponding macroblocks computed using the
DME algorithm, we present in Figure 4 results of our distributed
coding algorithm. At this point, we executed our source cod-
ing scheme on the actual MBs rather than the residual ones (ob-
tained as the difference between actual and the motion compen-
sated MBs). Further, the run-length coding method that usually
follows DCT coefficient quantization in standard coding algorithms
is not yet utilized. Instead, we compared fixed-length coding of

II ­ 51



DCT coefficients using the conventional and the proposed quanti-
zation methods. We used NY = 1 for all transform coefficients
in the proposed quantization method, thereby enjoying no band-
width saving for frame IB2 . However, for IA2 , which is depicted
in Figure 4, we observe either a 2dB PSNR improvement with the
same bit rate or 0.125 bits per pixel improvement on the bit rate
with about the same PSNR. Note that for standard MPEG-1 video
(352 × 240 and 30 fps), saving 0.125 bpp translates to about 317
Kbps reduction in the overall bandwidth. Compared to 1.2 Mbits,
the standard MPEG-1 video rate, this is a significant saving. It is
also considerably larger than the cost of transmitting MV’s from
sensor A to sensor B, which generally does not exceed 100 Kbps.

Original Conventional coding 1.125bpp

Distributed coding 1bpp Distributed coding 1.125bpp

Fig. 4. Point-to-point coding versus distributed transform coding
of frame IA2.

We also show in Figure 5 comparison of a particular pair of
original MBs with their reconstructed versions. It can be observed
that there is some robustness in our distributed coding scheme to
small errors in the DME algorithm. Specifically, even though the
two MBs are not exactly alike, their significant DCT coefficients
more or less are, thanks to the orientation of the edges in the MBs.

Original block in IA2 Original block in IB2

Reconstructed block in IA2 Reconstructed block in IB2

Fig. 5. Comparison of original and reconstructed data for a chosen
pair of corresponding MBs according to the DME algorithm.

5. CONCLUSION AND FUTURE WORK

We have designed a novel distributed lossy compression scheme
that takes into account the correlation between the video sensor
data, and at the same time keeps the communication between the
sensors at a minimum. Using epipolar geometry relating the video
sensors, the correspondence between the macroblocks of multiple

views can be tracked at any time instant, with minimal commu-
nication between the sensors. After finding corresponding mac-
roblocks, a suitable transform, and a quantization of the transform
coefficients in a distributed fashion are applied to eliminate spa-
tial and inter-sensor redundancy. Using the distributed coding we
achieve a better compression rate on the overlapping portion of
multiple views.

In general, it is a subject of future work to consider how this
scheme can give better performance. First, the coding efficiency
can be further increased by using variable-length coding schemes
based on non-uniform quantization, as discussed in [2]. We will
design such codes, and also investigate the feasibility of schemes
such as run-length coding for a block of transform coefficients (as
is performed in JPEG coding) for increased coding efficiency in
distributed video coding. The accuracy of the video processing al-
gorithms would also be studied so as to reduce errors due to loss of
synchronization, misalignment of macroblocks and segmentaion
of the common region between two views. We will also consider
extension to moving cameras, which will require recalibration of
the sensors. Extension to K > 2 sensors will be another problem
of the future research.
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