
Stochastic Adaptive Tracking In A Camera Network

Bi Song, Amit K. Roy-Chowdhury∗

Department of Electrical Engineering
University of California, Riverside

{bsong,amitrc }@ee.ucr.edu

Abstract

We present a novel stochastic, adaptive strategy for
tracking multiple people in a large network of video cam-
eras. Similarities between features (appearance and bio-
metrics) observed at different cameras are continuously
adapted and the stochastically optimal path for each person
computed. The following are the major contributions of the
proposed approach. First, we consider situations where the
feature similarities are uncertain and treat them as random
variables. We show how the distributions of these random
variables can be learned and how to compute the tracks
in a stochastically optimal manner. Second, we consider
the possibility of long-term interdependence of the features
over space and time. This allows us to adaptively evolve
the feature correspondences by observing the system per-
formance over a time window, and correct for errors in the
similarity computations. Third, we show that the above two
conditions can be addressed by treating the issue of track-
ing in a camera network as an optimization problem in a
stochastic adaptive system. We show results on data col-
lected by a large camera network. The proposed approach
is particularly suitable for distributed processing over the
entire network.

1. Introduction

As large networks of video cameras are installed, it is
essential to develop automated tools for analyzing the data
collected from these cameras and summarizing them in a
manner that is meaningful to the end user. One of the most
basic tasks in this regard is to be able to track objects across
the network. This introduces certain challenges that are
unique to this particular application scenario, in addition to
the existing challenges in tracking objects like pose and il-
lumination variations, occlusion, clutter and sensor noise.

In this paper, we present a stochastic adaptive framework
for tracking in a video network whereby errors in feature

∗The authors were supported by NSF grants ECS-0622176 and CNS-
0551741, ARO grant W911NF-07-1-0485 and CISCO Inc.

correspondences are modeled statistically and adapted in
time by considering the long-term dependencies between
them. We make threemajor contributions.
• First, we take into account the fact that similarity compu-
tations in video are intrinsically erroneous. Thus we model
the similarity between observations at two camera nodes
as random variables and show how to learn their proba-
bility distributions. Thereafter, we show how to compute
the tracks in the camera network in a stochastically opti-
mal manner. This is achieved using dynamic programming
methods for finding optimal paths in graphs with stochastic
weights [13]. The idea of treating the similarity between
two features as a random variable is based on experience
that computing feature similarities in video in uncontrolled
environments is often a very difficult problem. This model
has similarities with models in econometrics, policy plan-
ning and network queueing theory.
• Second, we consider long-term (possibly non-Markovian)
interdependencies between the features over space and time
and use it to correct wrong correspondences. For example,
some of the cameras might be seeing objects in shadow thus
making feature correspondence difficult; however, by ob-
serving other correspondences either earlier or later in time,
many of the mistakes can be corrected. This is achieved
by considering the variation of a person’s appearance and
biometrics (gait is considered) within a possible path over
a certain period of time. For this purpose, we derive a
path smoothness function (PSF) using discriminant analy-
sis methods.
• The above techniques are integrated within the framework
of a stochastic adaptive system [11]. By this we mean a
stochastic system some of whose parameters are unknown
and need to be learned during the system’s operation. Our
problem of tracking in a camera network by considering
errors in feature correspondence and their dependence in
space and time lends itself to this framework. The observed
features and the similarity between them are represented by
a discrete-time stochastic system. Each similarity score is
a random variable with a distribution that is assumed to be-
long to the family of exponential distributions. The param-

eters of this distribution are adapted based on the values of
the PSF which are a function of the system’s performance.
Thus the overall system works by adapting the similarity
scores and finding the best expected track of each person.
Figure 1 depicts this diagrammatically.

Figure 1. Framework for stochastic adaptive tracking.

We assume that we know a network topology, i.e., con-
nections between cameras and entry/exit points in their
view. We shall refer to each entry/exit point as a node. A
distribution of the travel time between two nodes is also as-
sumed to be known. A number of recent papers have shown
how to obtain them [14, 15, 16, 18] and others [4, 5, 10]
have used them for tracking. The similarity computation
between features will involve observations at all nodes in a
local neighborhood (obtained from the topology). It will be
based on appearance features using normalized color [2],
identity features using the width vector in gait biometrics
[8], and the travel time between two nodes. The stochas-
tic adaptive framework for finding the best tracks will be
implemented at certain instants of time by collecting infor-
mation over a time window up to and including that time
instant. We will show that our method is able to track mul-
tiple objects over long periods of time in a video network
that is spread over a large geographic area.

Our proposed strategy can be implemented in a dis-
tributed processing framework. Video collected at each
camera will be analyzed locally and only a small amount
of information will be transmitted to a central processor,
where it will be integrated to obtain the globally optimal
solution.
Relation to Previous Work: There have been a few pa-
pers in the recent past that deal with networks of video
cameras. Particular interest has been focused on learning
a network topology [14, 15, 18]. Nodes are defined by en-
try/exit points or cameras and the goal is to obtain the in-
terconnections between them and the transition times be-
tween two nodes. With respect to tracking in a network
of cameras, [17] used location and velocity of objects mov-
ing across multiple non-overlapping cameras to estimate the
calibration parameters of the cameras and the target’s tra-
jectory. In [12], the authors used a particle filter to switch

between track prediction between non-overlapping cameras
and tracking within a camera. In [9], the authors presented
a method for tracking in overlapping stationary and pan-
tilt-zoom cameras by maximizing a joint motion and ap-
pearance probability model. A Bayesian formulation of the
problem of reconstructing the path of objects across mul-
tiple non-overlapping cameras was presented in [10] using
color histograms for object appearance. A graph-theoretic
framework for addressing the problem of tracking in a net-
work of cameras was presented in [5]. Adapting the feature
correspondence computations by modeling the long-term
dependencies between them and then obtaining the statis-
tically optimal paths for each person differentiates our ap-
proach from existing ones. It provides a solution that is
robust to errors in feature extraction, correspondence and
environmental conditions.

2. Problem Formulation

Our problem is to trackP people observed over a net-
work of C1, ..., CK cameras. This is abstracted as tracking
over a collection of nodes, where each node is an entry or
exit point (like in [14, 16]). We assume that we know which
camera each node can be viewed from (also refereed to as a
node belonging to a camera). Mathematically, each node is
represented asnc

i , where the subscript is a node index and
the superscript represents the camera it belongs to. For the
purposes of this paper, we assume that we can track people
within the view of each camera. The cameras are synchro-
nized and thus, each observation can be given a unique time
stamp and location information in terms of the node it is
observed from.

A network architecture linking the nodes is known. By
this we mean that given any pair of nodes(nc

i , n
d
j), i 6= j,

we have a link variablelij = {0, 1}, where 0 indicates that
the two nodes are not linked, i.e., it is not possible to travel
between those two nodes without traversing some other
node, and 1 indicates that it is possible to travel between
these two nodes directly. However,l = 1 on a link does
not rule out the possibility that a person could have trav-
elled fromni to nj through some other nodenk, k 6= i, j.
Besides this link variable, we also know a distribution of
the travel time between two nodes, i.e.,Pτ (nc

i , n
d
j), i 6= j,

whereP : <+ → [0, 1]. One of these nodes must be an
entry node and the other an exit node.

Observations at each node are represented as feature vec-
torsFn,t, wheren indicates the node it is observed at and
t the time of observation. The feature vector of choice in
this paper is explained in Section 3.1. Each node (i.e., the
camera the node belongs to) receives information about the
feature vectors from all other nodes that it is linked to. Fea-
ture vectors within a time window are stored at that node.
Making this precise through an example as shown in Figure
2, let nodeni be linked to nodes(nj , nk, nl, nm) (we drop

the superscription since the camera identity is not needed).
At time t, ni has feature vectorsFi,t = {Fn,tj , n =
(j, k, l,m), t − tW < tj ≤ t}, wheretW is the width of
the time window. Note that these observations from neigh-
boring nodes are available only at discrete instants of time,
i.e., tj is a discrete variable. In practice, whenever a person
exits a camera view that information is sent by the camera
to all the other cameras linked to it based on the network
architecture. Thus,(nj , nk, nl, nm) are all exit nodes and
ni is an entry node.

Figure 2. An example of a camera network, nodeni is linked to
nodes(nj , nk, nl, nm) and a distribution of the travel time be-
tween them is known.

Overview of Solution Strategy: When a nodeni encoun-
ters a new observation at timet, it transforms it into a fea-
ture vectorFn,t. Then, it computes the similarity of this
feature vector with its stored feature vectors,Fi,t, obtained
from neighboring nodes. The exact procedure for similarity
computation is explained in Section 3.1. This is then trans-
formed into a distribution on the similarity between two fea-
tures. The distribution captures the uncertainty in comput-
ing the similarity between two features and is learned dur-
ing a training phase. For example, if two nodes have very
different lighting conditions, the uncertainty in the similar-
ity scores between the features observed at those nodes will
be higher. This similarity computation is asynchronous be-
tween the different nodes, i.e., each node does it whenever
it encounters a new observation.

Using the feature vectors and similarity scores, we create
a feature graphG = (V = {vi}, E = {eij}, S̃ = [s̃(eij)]),
of |V | = V vertices and|E| = E edges. The vertices are
feature vectorsFn,t and the weights on the edges,s̃(eij),
are real-valued random variables with known distribution
ps̃(s), as shown in Figure 3. The tracks of each person can
be found by computing the optimal paths in this graph. We
show how this can be done using stochastic weights in Sec-
tion 4.1.

This optimal path computation is based on the principles
of dynamic programming and gives the maximum a poste-
riori (MAP) estimate of the track for each person. How-
ever, this is true if the similarity computations in the fea-
ture graph are correct. This can be a big assumption due

Figure 3. Illustration of feature graph construction. Note the sub-
scripts ofF indicating the time and entry/exit node where it is
observed.

to the well-known problems of video-based feature corre-
spondence. By considering the distribution of the features
over space and time in each hypothesized path, we can in-
fer about the correctness of that path. This leads us to de-
velop a closed-loop, adaptive system whereby the weights
along each path are adapted by considering the distribution
of features along that path. The optimal path computation
and adaptation continue till a suitable stopping criterion is
reached. This process ensures that we retain the advantages
of dynamic programming while also considering the long-
term dependencies in the feature graph. It is explained in
detail in Sections 4.2 and 4.3.

3. Computing Stochastic Similarity Scores

Consider the above-mentioned feature graphG. The
problem of tracking people across cameras is equivalent
to finding the most preferred links between vertices in this
graph. To differentiate this feature graph from the network
topology, we will use the term node to refer to an entry/exit
point and vertex to refer to an observed feature vector.

3.1. Feature Similarity Scores

The feature vectorFn,t can be represented as

Fn,t =
(FA

FI

)
n,t

(1)

whereFA is the appearance feature (normalized color) and
FI is the identity feature (gait width vector [7, 8]). Be-
sides these, we know the travel time between two nodes.
Since every feature is observed at a node, this can be easily
transformed into the travel time between two feature vec-
tors, i.e., two vertices of the feature graph. Let us denote
this travel time betweenFni,t1 andFnj ,t2 asτ t1,t2

ni,nj
. From

Pτ (nc
i , n

d
j), we can estimate the feature similarity between

Fni,t1 andFnj ,t2 in terms of the travel time asSτ (τ t1,t2
ni,nj

).
It is reasonable to assume thatFA, FI andτ are indepen-
dent random variables. For notational simplicity, we will

drop the explicit dependence onn, t and represent the fea-
tures as vertices on the graph, i.e., useFi, FA,i, FI,i and
τi,j , (see Figure 3).

The weights(eij) is the similarity score betweenFi and
Fj , and is computed as the product of the similarities in
identity features, appearance features, and the travel time
based similarity value explained above, i.e.,

s(eij) = SA(FA,i, FA,j)SI(FI,i, FI,j)Sτ (τi,j). (2)

The similarities can be obtained by computing the distance
between the feature vectors in appropriate feature spaces
as described in [2, 8]. Known geometric and photometric
transformations between two corresponding features should
be taken into account while computing this distance. Ex-
amples include affine warping and brightness transfer func-
tions [6, 7]. These can be learned during the training phase
for the network topology.

3.2. Assigning Uncertainty to Similarity Scores

In our formulation, the similarity scores is a realization
of a random variablẽs. We now need to compute the dis-
tribution of this random variable. Ifs′ij is the similarity
score between two vertices(i, j) in the feature graph ob-
tained as described above, the distribution ofs̃ on the edge
eij is modeled as a normal distributionN (s′ij , σ

2
ij). Thus

the distribution on each edge is normal with a mean at the
similarity score value obtained from the observations and a
variance that will be learned from training data.
Unsupervised Learning of Variance of Similarity Distri-
bution: The confidence that we can assign to an observed
similarity score will depend upon a number of factors and
is too difficult to be modeled analytically. These include
the actual value of the similarity score, the environmental
conditions like time of day, the geometric and photometric
transformation between the cameras, and so on. Thus we
seek to learn a model of the variance of the similarity score
during a training phase. This training can continue parallely
with the network topology learning phase. Due to the sheer
volume of data in a camera network, we seek to develop an
unsupervised learning mechanism for this purpose.

s(e
ij
)

Cluster 1 Cluster 2 Cluster 3

Figure 4. Histogram of similarity scores be-
tweenvi andvj learned during the training
phase.

During
this learning
phase, a large
number of
similarity
scores be-
tween two
vertices will
be collected.
These will be
clustered and
the variance
of each cluster

computed. During the system operation, the varianceσ2
ij is

determined based on which clusters′ij belongs to. As an
example, we show the learned histogram of the similarity
scores between two vertices in Figure 4. We see that
the data can be partitioned into three clusters and we can
learn the variance of each cluster. This can be done using
K-means algorithm, including automatic estimation of the
number of clusters [1].

4. Stochastic Adaptive Strategy for Optimal
Path Calculation

Our overall framework for tracking across the cameras
consists of the following steps which take place in a loop:
(i) finding optimal paths in the stochastically weighted fea-
ture graph (Fig. 3) based on the distribution of edge similar-
ity scores, (ii) calculating path smoothness function (PSF)
along each hypothesized path, and (iii) adapting the distri-
bution of the edge weights according to the values of the
PSF. We will explain each step in detail below.

4.1. Optimal Path in Stochastic Feature Graphs

Solving the optimal path problem in graphs with weights
as random variables has been studied in communication net-
works and decision theory [13]. The most widely used
method for this problem was originally proposed by von
Neumann and Morgenstern [3], which proposed an utility
function and then computed the optimal expected utility. A
necessary condition for a valid utility function (hence our
weighting function) is that it has to be monotonic, affine
linear or exponential (see [13] for a rigorous proof).

Inspired by this method, we define a weighting function
on the edge similarity scores. We identify the most pre-
ferred set of paths by maximizing the Expected Weighted
Similarity (EWS). Thus the weighting function for similar-
ity, s, is defined as

w(s)
4
= exp(s)− 1. (3)

The weighting function is designed to give higher weights
to correspondences with high similarity scores. Its effect
becomes most prominent when the random variable,s̃, has
a high variance. Thus, in computing the EWS (expected
utility), both the observed similarity and its uncertainty are
taken into account through the weighting function (utility
function)1 .

1To show that the EWS finds the optimal path by considering not only
the similarity scores but also their variance, consider two links with sim-
ilarity scores ofs1 ands2, wheres1 > s2. Now, if p(s) ∼ N (s′, σ),

thenEs[w(s)] = exp(s′ + σ2

2
)− 1, wheres′ is the observed similarity

score. Thus the optimal path under the EWS criterion will not necessar-
ily be s1 (which would be the optimal path in the deterministic case), but
will depend upon the similarity scores as well as the variances in these two
links.

By introducing the weighting function, the solution to
the problem of determining the best set of paths in the fea-
ture graph (hence the camera network) is

{λ̃q} 4= arg max
λq

∑

λq

{
∑

eij∈λq

Es[w(s(eij))]}. (4)

This problem can be formulated as the maximum matching
problem in a weighted bipartite graph, where the weights of
the edges are the EWS scores,Es[w(s(eij))]. As in [5], the
bipartite graph is obtained by splitting each vertexv into v−

andv+, where the edge connected tov− represents the path
coming intov while the edge connected tov+ represents
the path going out ofv.

4.2. Analyzing Features Along A Path

If the similarity scores (edge weights) of the feature
graphG were known exactly and assumed to be indepen-
dent, the tracking problem could be solved optimally in
polynomial time by the method described above. This was
shown in [5] with the exception that they did not model
the uncertainty in the similarity scores. However, it is not
uncommon for some of the similarities to be calculated
wrongly due to poor lighting conditions or ambiguity of the
transition patterns. Even the learned uncertainty model may
not be enough to capture the variation. As we show in Fig-
ure 5, if the similarity computation is incorrect for one pair
of nodes, the overall inferred path may be wrong even if
all the other nodes are connected correctly. The exact con-
ditions where such mistakes happen will depend upon the
distribution of the similarity scores in the feature graph.

This concern can be addressed if we relax the inde-
pendence assumption on the correspondences, i.e., we will
consider the interdependence of the features and similarity
scores over space and time. Intuitively, what we aim to do
by this process is to infer incorrect path segments in the
tracks obtained from the graph theoretic approach of Sec.
4.1 by considering the variation of the features of the per-
son along these tracks. Based on this inference process we
will adapt the similarity scores and recompute the optimal
path. This naturally leads to the development of the stochas-
tic adaptive tracking framework.

For this purpose, we define a Path Smoothness Function
(PSF). Given an estimated path for theqth person,λq, PSF
is defined on each edgeeij ∈ λq. The feature vertices be-
fore (in time)eij on λq and those aftereij are treated as
two clusters. Let{X} be the set of all N feature vertices
(i.e., appearance and identity vectors) along the path and
let them be clustered into{X(1)} and{X(2)} with respect
to each edgeeij ∈ λq. Let the meanm of the features in
{X} bem = 1

N

∑
x∈{X} x. Letmi be the mean ofNi data

points of class{X(i)}, i = 1, 2, such that

mi =
1
Ni

∑

x∈{X(i)}
x. (5)

Let
ST =

∑

x∈{X}
|x−m|2 (6)

and

SW =
2∑

i=1

Si =
2∑

i=1

∑

x∈{X(i)}
|x−mi|2. (7)

The PSF foreij is defined as

PSF (eij) =
|ST − SW |
|SW | =

|SB |
|SW | . (8)

50 100 150 200 250 300
10

15

20

25

30

35

40

time (second)

en
tr

y/
ex

it
 n

o
d

e

Link L
2

Link L
1

(a)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

link

P
S

F

Link L
1

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

link

P
S

F

(b) (c)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
x 10

−4

P
S

F

link

Link L
2

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6
x 10

−4

P
S

F

link

(d) (e)
Figure 5. (a): Paths of two people (in blue and red) obtained from
the camera network: solid lines are the ground truth and dotted
lines are the tracking results using EWS scores only (no adapta-
tion). (b)-(c): PSF values along the incorrect (estimated) and cor-
rect (ground truth) path of person 1 respectively. (d)-(e): PSF val-
ues along the incorrect and correct path of person 2 respectively.
It is clear that PSF has a peak at the wrong link; thus the variance
of PSF along wrong path is higher than the variance along correct
path.

To make the PSF more accurate, we may consider nor-
malizing all the elements of{X} with respect to the geo-
metric and photometric effects between the feature vertices.
For example, ifBi,j is the BTF [6] betweenvi andvj and
Gi,j is an affine warp (these can be learned during the train-
ing phase), we should consider(Gi,j ◦ Bi,j)(Fi) andFj for
this pair of nodes.

Thus the PSF is defined from Fisher’s linear discriminant
function [1] and measures the ratio of the distance between
different clusters,SB , over the distances between the mem-
bers within each clusterSW . If all the feature nodes along
a path belong to the same person, the value of PSF at each
edge should be low, and thus the variance of PSF over all
the edges along the path should also be low. If the feature
nodes belonging to different people are connected wrongly,
we will get a higher value of PSF at the wrong link, and
the variance of PSF along the path will be higher. Thus,
the distribution of PSF along a path can be used to detect
if there is a wrong connection along that path. An example
is shown in Fig. 5, where the PSF is plotted for all edges
along one correct and one incorrect path obtained from our
camera network.

4.3. Closed-Loop Adaptation of Edge Similarities

Whenever there is a peak in the PSF function for some
edge along a path, the validity of the connections between
the features along that path is under doubt. We will adjust
the weight on this link where the peak occurs by reducing
the mean of the distribution of the weights and adjusting the
variance based on the learned values for each range of sim-
ilarity scores (see Section 3.2). For each iteration, the mean
can be adjusted asµ(n)(s(eij)) = aµ(n−1)(s(eij)), a ∈
(0, 1). Then we will recalculate the optimal paths as de-
scribed in 4.1 using the new weights. The two steps of each
iteration are as follows:

s(n+1)(eij) = fadap

(
s(n)(eij),

∑

λq

V ar(PSF (eij ∈ λ(n)
q))

)
,

λ(n+1)
q = arg max

λq

∑

λq

{
∑

eij∈λq

Es[w(s(n+1)(eij))]}, (9)

wherefadap(.) is the weight adaptation function which ad-
justs the distribution of edge weights according to the values
of PSF. This process of weight adaptation and optimal path
computation will continue in a closed-loop till we reach a
local minimum of

∑
λq

V ar(PSF (eij ∈ λq)). This pro-
cess is repeated for each possible path,λq.

4.4. Stochastic Adaptive Tracking Algorithm

We are now ready to outline the main steps of the
stochastic adaptive tracking algorithm. From practical ap-
plication considerations, we use a time windowTj ≤ t ≤

Tj+1 in which the algorithm runs. Consider the feature
vectors{Fn,t} which are observed in this time interval
[Tj , Tj+1].

1. Construct a stochastic weighted graphG = (V, E, S),
where the vertices are the feature vectors and distribu-
tion of edge weights are set as described in Section 3.

2. Compute the optimal paths,λq as mentioned in Section
4.1.

3. Compute the PSF for eacheij ∈ λq and adapt the dis-
tribution of edge weights according tofadap.

4. Repeat Steps 2 and 3 until a local minimum of∑
λq

V ar(PSF (eij ∈ λq)) is reached. The final set

of optimal paths is given by
(
s∗(eij), λ∗q

)
as

s∗(eij) = arg min
s

∑

λq

V ar(PSF (eij ∈ λq(s))), (10)

λ∗q = arg max
λq

∑

λq

{
∑

eij∈λq

Es[w(s∗(eij))]}. (11)

5. Experimental Results

To evaluate the performance of our system, we will show
results on data collected over a large camera network. The
network consists of 20 cameras and 50 entry/exist nodes.
We consider 10 people moving across the network. Exam-
ples of some of the images of the people are shown in Fig-
ure 6. Compare this plot with the abstract representation of
Figure 3.

Figure 6. Example of some of the images of the people in the net-
work. The horizontal axis is the time when these features were
observed, while the vertical axis is the index of the entry/exit node
where the features were observed. The gaps in the plot are because
the features are observed asynchronously.

Figure 7 shows the tracking result using optimal path
searching using EWS scores only (open-loop framework).
The vertices in this graph are the feature vectors observed
at different time instances. The paths of different people
are shown using different colors, solid lines representing
the ground truth and dotted line showing tracking results.
Thus, for correct results the colors should match across all
the paths. There are three wrong links (circled in Figure 7
– two in the bigger circle, and one in the smaller circle) due
to mistakes in feature similarity computation. Details of the
wrong link shown in the bigger circle are given in Figure
5. The paths that are estimated wrongly due to these wrong
links are highlighted. In Figure 8, we show the correct re-
sult by adapting the graph edge weights using the proposed
stochastic adaptive strategy. By comparing the colors along
the paths highlighted in Figure 7, we can see that these
mistakes have been corrected. Both these figures are best
viewed on a computer monitor.

We now show some details on the weight adaptation
along a wrong link. We show the plot for variation of PSF
versus iteration number in Figure 9. When the PSF reaches
a local minimum, the estimated paths are correct. It can be
seen that for some iterations, the adaptation of some of the
path similarity scores (edge weights of the feature graphs)
may not change the output of optimal path estimate. The
iterations will stop when the variation of PSF starts to in-
crease indicating that it has reached a local minimum.

0 1 2 3 4 5 6 7
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
x 10

−4

Iteration number

V
ar

ia
n

ce
 o

f
P

S
F

Figure 9. Variation of PSF versus iteration number.

6. Conclusions

In this paper, we proposed a novel stochastic, adaptive
framework for tracking multiple people in a large network
of video cameras. We considered the uncertainty for feature
similarity computation and treated them as random vari-
ables. We considered the long-term interdependence of the
features over space and time. We derived a path smooth-
ness function (PSF) to correct wrong correspondences. We
showed that the above two conditions can be addressed by

treating the issue of tracking in a camera network as as an
optimization problem in a stochastic adaptive system. We
demonstrated the effectiveness of our system by showing
results on a real life camera network.

References

[1] R. Duda, P. Hart, and D. Stork.Pattern Classification. Wiley-
Interscience, 2001.

[2] G. D. Finlayson, B. Schiele, and J. L. Crowley. Comprehen-
sive colour image normalization. InECCV, 1998.

[3] P. Fishburn. Utility theory.Management Science, 14:335–
377, 1968.

[4] T. Huang and S. Russel. Object identification in a bayesian
context. InProceeding of IJCAI, 1997.

[5] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. Tracking
across multiple cameras with disjoint views. InIEEE ICCV,
2003.

[6] O. Javed, K. Shafique, and M. Shah. Appearance modeling
for tracking in multiple non-overlapping cameras. InIEEE
CVPR, 2005.

[7] A. Kale, A.Roy-Chowdhury, and R. Chellappa. Towards a
View Invariant Gait Recognition Algorithm. InIEEE AVSS,
2003.

[8] A. Kale, A. Rajagopalan, A. Sundaresan, N. Cuntoor,
A. Roy-Chowdhury, A. Krueger, and R. Chellappa. Iden-
tification of Humans Using Gait.IEEE Trans. on Image Pro-
cessing, pages 1163–1173, September 2004.

[9] J. Kang, I. Cohen, and G. Medioni. Continuous tracking
within and across camera streams. InIEEE CVPR, 2004.

[10] V. Kettnaker and R. Zabih. Bayesian multi-camera surveil-
lance. InIEEE CVPR, 1999.

[11] P. Kumar. A survey of some results in stochastic adap-
tive control. SIAM Journal on Control and Optimization,
23(3):329–380, 1985.

[12] W. Leoputra, T. Tan, and F. L. Lim. Non-overlapping dis-
tributed tracking using particle filter. InICPR, 2006.

[13] R. P. Loui. Optimal paths in graphs with stochastic or
multidimensional weights. Communications of the ACM,
26(9):670–676, 1983.

[14] D. Makris, T. Ellis, and J. Black. The gaps between cameras.
In IEEE CVPR, 2004.

[15] D. Marinakis, G. Dudek, and D. Fleet. Learning sensor net-
work topology through monte carlo expectation maximiza-
tion. In IEEE ICRA, 2005.

[16] C. Niu and E. Grimson. Recovering non-overlapping net-
work topology using far-field vehicle tracking. InICPR,
2006.

[17] A. Rahimi and T. Darrell. Simultaneous calibration and
tracking with a network of non-overlapping sensors. InIEEE
CVPR, 2004.

[18] K. Tieu, G. Dalley, and E. Grimson. Inference of non-
overlapping camera network topology by measuring statis-
tical dependence. InIEEE ICCV, 2005.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

time

no
de

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10

Figure 7. Tracking result using EWS scores only (open-loop framework) in feature graph. Horizontal axis is time, while vertical axis is
the entry/exit node where a feature is observed. The paths of different people are shown using different colors, solid lines representing the
ground truth and tracking results are showed by dotted lines. The wrong links are circles, while the wrong paths due to these links are
highlighted. Details of the wrong link shown in the bigger circle are given in Figure 5. (The figure is best viewed on a color monitor.)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

time

no
de

p1
p2
p3
p4
p5
p6
p7
p8
p9
p10

Figure 8. Tracking result using our stochastic adaptive algorithm using the same representation as Figure 7. Compare the color of the paths
along the highlighted portions of Figure 7. The colors of the dotted and solid lines match indicating correct path estimation. (The figure is
best viewed on a color monitor.)

