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ABSTRACT

While wide-area video surveillance is an important applica-

tion, it is often not practical, from a technical and social per-

spective, to have video cameras that completely cover the en-

tire region of interest. For obtaining good surveillance results

in a sparse camera networks requires that they be comple-

mented by additional sensors with different modalities, their

intelligent assignment in a dynamic environment, and scene

understanding using these multimodal inputs. In this paper,

we propose a probabilistic scheme for opportunistically de-

ploying cameras to the most interesting parts of a scene dy-

namically given data from a set of video and audio sensors.

The audio data is continuously processed to identify inter-

esting events, e.g., entry/exit of people, merging or splitting

of groups, and so on. This is used to indicate the time in-

stants to turn on the cameras. Thereafter, analysis of the video

determines how long the cameras stay on and whether their

pan/tilt/zoom parameters change. Events are tracked contin-

uously by combining the audio and video data. Correspon-

dences between the audio and video sensor observations are

obtained through a learned homography between the image

plane and ground plane. The method leads to efficient usage

of the camera resources by focusing on the most important

parts of the scene, saves power, bandwidth and cost, and re-

duces concerns of privacy. We show detailed experimental

results on real data collected in multimodal networks.

Index Terms— audio-video tracking, camera control, ho-

mography estimation, graph matching

1. INTRODUCTION

Analysis of video data collected over a network of cameras

covering a large geographical area has been gaining impor-

tance as a research problem. However, economic, technical

and social concerns inhibit the deployment of large numbers

The first author performed the work while at UC, Riverside.

This work was supported by Aware Building: ONR-N00014-07-C-0311

and the NSF CNS 0551719. Bi Song and Amit Roy-Chowdhury were addi-
tionally supported by NSF-ECCS 0622176 and ARO-W911NF-07-1-0485.

of cameras in many application scenarios. In these situations,

other kinds of sensors, e.g., audio sensors, could be deployed

in addition to cameras. This would require designing efficient

processing and control algorithms so that the multimodal sen-

sors could function collaboratively to extract the maximum

amount of information from the scene. Specifically, given the

physical locations of a set of cameras and audio sensors, we

would want the cameras to focus on the most interesting parts

of the scene dynamically so that the maximum amount of data

could be available for these portions.

In this paper, we focus on developing algorithms for pro-

cessing in and control of such an active network of audio and

video sensors and make the following specific contributions.

• Opportunistic assignment of cameras to the most inter-

esting parts of the scene: We develop a probabilistic

control algorithm based on analysis of the audio and/or

video data collected over the entire network. This algo-

rithm will be able to switch the cameras on and off, as

well as change the camera parameters (pan/tilt/zoom),

so as to focus the video on the most interesting parts of

the scene.

• Tracking multiple targets sensed disjointly in time by

audio and video sensors: We propose a multi-target

tracking algorithm for objects that will usually be sensed

separately by the audio and video sensors over a time

interval. Note that in the proposed framework, track-

ing and control work together. The tracking algorithm

is an inference strategy that fuses the tracks obtained

individually from the audio and video inputs.

• Real-life experimental evaluation: We perform detailed

experimentation on a real-life multimodal network that

shows both the control and processing aspects of our

proposed algorithm. Our framework for this evaluation

is an intelligent building scenario with a large number

of sensors and a few video cameras at critical locations.
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Fig. 1. An example scenario where audio can be used to ef-

ficiently control two video cameras. There are four tracks

that need to be inferred. Directly indicated on tracks are time

instants of interest, i.e., initiation and end of each track, merg-

ings, splittings, and cross-overs. The mergings and cross-

overs are further emphasized by X. Two innermost tracks co-

incide in the entire time interval (t2, t3). The cameras C1 and

C2 need to be panned, zoomed, and tilted as decided based on

their own output and that of the audio sensors a1, . . . , aM .

1.1. Motivation

While video cameras for surveillance applications are now

omnipresent, they consist mostly of passive sensors that are

not controlled based on analysis of the collected data. This

means that large numbers of such cameras need to be installed

to cover the entire geographic area at all instants of time.

However, there are a number of problems in putting up

too many cameras in many application scenarios. The prob-

lems stem from the cost of buying, installing and maintaining

large numbers of cameras, the communication and process-

ing burdens imposed due to transmission, storage and analy-

sis of the video, and the social concerns associated with hav-

ing too many cameras around. As a result, many applications

work with only a few cameras that do not produce videos of

the desired quality. A good example is a convenience store

where the captured videos are usually from a specific angle

and of a low resolution. Another example is surveillance

videos in office buildings that are usually captured from a few

pre-determined views and often have large “blind” areas.

Many of the above concerns can be addressed if we could

work with only a few cameras (placed conveniently based on

the application), but were able to control them efficiently so

that attention could be paid to the most interesting parts of the

scene. A multimodal network, where audio sensors direct the

cameras to focus on the most interesting parts of the scene,

is one such strategy. It involves network-centric processing

of the audio data to determine where and when to focus the

cameras. This would be followed by analysis of the video

which would determine the camera parameters, i.e., whether

to pan/tilt/zoom. Finally, integration of the audio and video

will be needed so that we have a complete understanding of

all the events in the region. Fig. 1 shows an example scenario

on an L-shaped corridor where neither of the two cameras

can view the entire area, and hence can infer all four tracks.

However, audio data can be utilized to assign the cameras to

tracks, to control their pan/tilt/zoom parameters, and most im-

portantly, to turn them on and off intelligently. In fact, our

experimental analysis is based on this very scenario, as dis-

cussed in Section 6.

1.2. Relation to Previous Work

We want to make some important distinctions between our

work and some existing methods.

First, our proposed strategy is not a fusion of simultane-

ous audio and video data for better tracking, unlike [1, 2]. The

audio and video inputs that we analyze contribute to tracking,

for the most part, over disjoint time intervals. The video is

switched on during interesting events where there is a possi-

bility of addition or deletion of tracks (e.g., cross-overs, meet-

ings, merging, splitting).

Second, our proposed scheme is also very different from

problems like source localization and scene geometry infer-

ence using a collection of audio and video sensors [3, 4, 5, 6].

Our goal is to opportunistically assign cameras to interesting

parts of the scene and free them up (to be used possibly in

other tasks) when they are not needed. For example, in Fig. 1,

shortly after tracks are initiated and high-resolution pictures

of the subject(s) are obtained, the cameras are released until

either a cross-over or merging occurs, at which point video-

based tracking is needed for a short while. In the remaining

times, the subject(s) can be tracked based on the audio sen-

sors. If the cameras were to continuously follow the subjects

based on the audio input, they would not have been able to

view new objects that may have appeared in a different part

of the scene. For example, if camera C1 followed the track

initiated at time t4 continuously after it crossed over with an-

other track at t5, it would miss the initiation of another track

at t7. Camera reuse becomes even more necessary as the area

being observed and the density of tracks increases.

A third area that this work touches upon is processing in

networks of vision sensors [7, 8, 9, 10, 11, 12]. However, all

these methods assume that it is feasible to deploy large num-

bers of cameras to monitor the scene and do not deal with the

issue of actively controlling the cameras based on feedback

from the sensed data. Our application scenario is an environ-

ment where lots of cameras cannot be deployed, and, thus,

control of the few cameras available is a must. It is differ-

ent from the problem of initial camera deployment [13] since

the entire area is never covered by the cameras. Also, camera

control is effected, unlike [14]. It is different from tracking in

a dense camera network like [12].

Finally, the problem in this paper is also related to two



classical problems in robotics and computer vision - sensor

planning and active vision [15, 16, 17, 18]. Our work falls

within the broad definition of active vision, but the novelty

lies in the fact that control is achieved by analyzing audio and

video data from dynamic scenes in a network-centric manner.

2. PRECISE PROBLEM FORMULATION

The general problem of tracking using audio and video sen-

sors can be described as follows: the region of interest is a

subset of the two dimensional plane R. For example,R may

represent the corridors in the floor plan of a building. Au-

dio sensors are widely distributed across R. Also present,

but far fewer in number, are active video cameras that pos-

sess the ability to pan, tilt or zoom. Using these sensors, we

wish to track the flow of multiple people walking through

R. More precisely, there is a set of M audio sensors A =
{a1, . . . , aM} distributed across R. The audio sensors are

always on and each transmits the average sound energy ob-

served every Ta seconds to the base station (see Section 5).

Note that, due to communication constraints, the sensors may

only send an aggregate quantity like the energy and not the

entire audio waveform. We assume that the audio sensors are

synchronized. The region R is also observable from a set

of controllable cameras C = {C1, . . . , CL}. Although every

point in R is visible from at least one camera with appropri-

ate pan/tilt/zoom (P/T/Z) parameters, there need not exist a

configuration of cameras that covers every point in R. The

cameras when turned on transmit a frame every Tv seconds

and are also synchronized.

The system consisting of audio sensors and cameras is

used to track the motion of people in R. While audio sen-

sors enable efficient use of the cameras, audio data is impre-

cise. For example, audio data cannot reliably convey whether

a single person forms a track or if there are more people walk-

ing together as a group. The tracks inferred from audio data,

which we shall refer to as a-tracks designate paths followed

by clusters composed of one or more people. Another short-

coming of audio data is that when tracks intersect, informa-

tion about the identity of persons forming the a-tracks is lost.

The goal of our tracking system is to track individuals, i.e., the

system output is the set of paths in time and space used by

people passing throughR (see Section 4), which we term p-

tracks. Each p-track corresponds to a unique person. The key

elements of the tracking system that are dedicated to avoiding

p-track ambiguity and resolving the ambiguities that do occur

are:

1. Camera Control: After each audio or video observa-

tion, the camera control mechanism decides which cam-

eras should be turned on or off. For cameras that are on

or will be turned on, the camera control mechanism fur-

ther decides what the P/T/Z parameters should be. The

objective of camera control is to deploy cameras where

they are needed the most, i.e., where relying on audio

data would result in ambiguities such as when a-tracks

split or intersect or when new a-tracks emerge. Camera

control is discussed in Section 3.

2. Person matching: Each time we switch from audio to

video tracking, the person matching algorithm finds cor-

respondences between persons in the current view and

existing p-tracks or declares the presence of someone

new. The decision is based on both a-tracks and p-

tracks as discussed in Section 4.

2.1. System Overview

At every instant, the multimodal sensor network control sys-

tem (see Fig. 2) that we use could receive either a set of au-

dio sensor observations and/or a set of frames of video data.

When the input is audio, the observations are clustered to give

estimates of the number of distinct a-tracks and their current

positions in R (as described in Section 5.1). Following this,

each cluster center is matched with an existing a-track. Each

a-track is represented using a Kalman filter [19]. The state

of the Kalman filter is the position and velocity of an a-track

and the observation is the corresponding cluster center. More

precisely, we use the following linear dynamic model for the

a-track k:

Sk(n + 1) = FSk(n) + Uk(n) (1)

Ok
a(n) = HSk(n) + W k(n) , (2)

where the state Sk(n) ,
[

Xk(n) V k(n)
]

with Xk(n) and

V k(n) denoting the position and velocity of cluster k. F =
[

1 Ta

0 1

]

, H =
[

1 0
]

, Uk(n) and W k(n) are sequences of

independent Gaussian random variables. Each Kalman fil-

ter is used to estimate the distribution of the position of the

cluster at the next audio sampling instant, denoted P k
n|n−1(x).

These estimates are used to predict a-track intersections and

for subsequent camera control. Since different a-tracks span

different time intervals, at any instant t, we denote the sample

instant for a-track k by nk(t).
If there are unassigned clusters or a-tracks after the match-

ing, we recognize the potential for something interesting to be

happening, and the camera control mechanism requests video

data from the appropriate cameras to resolve the discrepan-

cies by either initializing new (a- and/or p-) tracks, terminat-

ing existing tracks or by discarding some cluster centers as

erroneous. This is done by using a person detection algo-

rithm on the received frame [20] and comparing the features

(e.g., color histograms) of any detected humans with those of

people in known p-tracks. If no matching p-tracks are found,

tracks are initiated for each new person. A new a-track is as-

signed to the cluster formed by these persons. Person match-

ing is also done when we switch from audio to video tracking



in order to resolve ambiguities in the p-tracks. Person match-

ing is necessary to ensure that we assign the correct a-tracks

to p-tracks and also to detect any changes that might have oc-

curred when video data was not available.

In video tracking, when a frame is received, it is fed to a

particle filter based tracker which operates in the image plane

(see Section 5.2). Since inference from video is more ac-

curate, the tracking directly updates p-tracks. Each p-track

that is visible in the frame has a corresponding particle filter

whose output is the position of the person in the image plane.

These image tracks are transformed to coordinates inR using

a transformation from image plane to ground image plane as

explained in Section 5.3.

3. CAMERA CONTROL STRATEGY

Video data is useful in understanding events like emergence or

disappearance of tracks and intersection of tracks. We focus

on developing control algorithms under the assumption that

whenever an interesting event occurs, a camera is free to ana-

lyze it. More general settings, which would require schedul-

ing strategies for multiple controllable cameras, are left for

future work.

3.1. Setting Pan/Tilt/Zoom

The camera control algorithm described later specifies a point

x that needs to be viewed. We use a heuristic algorithm to

choose a camera and its P/T/Z parameters based on this point.

We divide the ground plane into overlapping regions of rough-

ly the same area. The regions Ri, indexed by i are chosen

such that for some values of pan P l
i , tilt T l

i and zoom Z l
i ,

the region is just covered by camera Cl with (P l
i , T

l
i , Z

l
i) as

parameters. If multiple cameras can view the same region, we

arbitrarily choose a camera that is not already tracking some

other event.

The choice of point x while switching from audio to video

is described in Section 3.2 and Section 3.3. When video data

is used to confirm track initiation or deletion, since only short

segments of video are sufficient, the parameters of the chosen

camera remain constant. When a camera Cl is tracking for

longer periods, the camera parameters might need to be con-

tinuously modified. The point x at any instant is chosen to be

the centroid of the p-tracks being observed by Cl. Suppose Cl

views region Ri and the point of interest x is also in Ri, but

is moving. As x approaches the perimeter of this region, the

camera control modifies the parameters as follows. Among

all the regions other thanRi that contain the point, it chooses

the one in which the track is expected to be in for the longest

time. This interval is estimated on the basis of the velocity of

the track. To view the new region it might also be necessary

to switch cameras. By using a finite set of P/T/Z parameters

for each camera, we can compute and store the image plane

to ground plane mapping for each view as explained in Sec-

tion 5.3.

3.2. Track Initiation and Deletion

For every audio sampling instant t, define Bt as the set of

clusters (see Sect. 5.1 on how clusters are formed), and Kt−

as the set of confirmed a-tracks estimated based on obser-

vations before time t. We start by defining a complete bi-

partite graph with Bt and Kt− as the two vertex sets. The

weight of an edge (b, k) is log P k
nk(t)|nk(t)−1(b). Edges in this

graph are pruned based on thresholding the weight. We first

solve the maximum weight bipartite graph matching prob-

lem [21]. The choice of weight is motivated by the follow-

ing observation: for any perfect matching 1 f : Kt− → Bt is

log
∏

k∈K
t−

p(Xk
nk(t) = f(k)|Bk

1:nk(t)−1). Therefore, if, as

we assume, the tracks are independent, the optimal matching

maximizes the likelihood of clusters given the tracks. For a

matched cluster-track pair (b, k), the cluster center of c forms

the input to the Kalman filter corresponding to k. Due to the

pruning, there might be both unassigned cluster centers and

unassigned a-tracks.

If some cluster center is unassigned, it means that there

is possibly a new a-track. We turn on a camera l that is free

with parameters (P l
i , T

l
i , Z

l
i) from the allowed set such that

the estimated cluster center lies in Ri. By person detection

methods [20], we can confirm the existence of an a-track and

further obtain features (e.g. color histogram) for each person

forming the a-track’s cluster. The camera is turned off once

the features are obtained. By comparing the features of the

new cluster with the features of existing p-tracks, the con-

troller can also deduce if the new cluster was formed by the

splitting of an existing cluster. If no humans are detected in

the view of the camera, the cluster is discarded as spurious.

If there is an unassigned a-track, we turn a camera to-

ward the estimated track position. Given that the estimates

up to the current time have been accurate, either the track has

moved outside ofR or the person or persons forming the track

have stopped or the audio data is faulty. The camera can de-

cide among these possibilities, again by using person detec-

tion. The set of a-tracks and p-tracks are updated by removing

tracks that have ended.

If the expected location of any unassigned track is being

observed by a camera that is already on, the video data can be

used to resolve the mismatch. If there are other unassigned

tracks or clusters that is neither being currently observed by

any camera nor can be observed from any free camera how-

ever, we would need to define a queue of tracks and clusters

that need a camera and prioritize future camera assignment.

Handling such situations by coordinating between the cam-

eras is a challenging problem for future work.

Track initiation during video tracking is done by periodi-

cally performing person detection on the observed frames.

1A matching is perfect if there are no unassigned clusters or a-tracks.
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t .

3.3. Intersecting Tracks

Intersection of p-tracks that are tracked using cameras is han-

dled by the particle filters described in Section 5.2 which can

handle occlusions. When tracking using audio, we need to

consider the output of the Kalman filter for analyzing a-tracks

that possibly intersect. The control decisions at observation

time t are based on the quantity P
k,k′

t defined for every pair

of tracks k, k′. P
k,k′

t is defined as the probability that the a-

tracks k and k′ will be within a distance threshold D(k, k′)
at time t + Ta given the observations of the a-tracks up to

time t. This quantity can be estimated using the distribu-

tions P k
nk(t)+1|nk(t)(x) and P k′

nk′ (t)+1|nk′(t)
(x). The distance

D(k, k′) depends on the extent of clusters k and k′ along the

shortest line in R joining the cluster centers. Wide clusters

require a larger inter-cluster distance than narrow clusters for

the clustering algorithm to resolve the audio observations into

separate clusters. The controller computes P
k,k′

t for every

pair (k, k′) that is not being tracked using video data. Track-

ing is switched to video for pairs (k, k′) such that P
k,k′

t has

been increasing for na→v instants and P
k,k′

t > Pa→v. To

track this pair, a free camera is pointed toward the midpoint

of the line joining the points where the two tracks are expected

to be the closest. These points are estimated using the states

of the Kalman filters.

We assume that the above algorithm has detected all tracks

that will intersect and has turned the camera on before the ac-

tual intersection of a-tracks has occurred. Once the camera

is turned on, the first task is to decide the mapping between

a-tracks and p-tracks as described in Section 4. The cam-

era control system can track the intersection by updating the

P/T/Z parameters of the cameras that are turned on. Since we

need to minimize usage of the cameras, we need a mecha-

nism to revert to audio tracking at a suitable time. To decide

whether to switch from video to audio data, we cluster the

positions of the viewed p-tracks. A switch occurs in the fol-

lowing situations

1. Separating clusters: A camera is released if for nsep

video sample instants a) the p-tracks in its view induce

the same clustering, b) the intercluster distance is above

a threshold Dsep, and c) the intercluster distance is in-

creasing. An a-track is initialized for each cluster of

p-tracks.

2. Merging clusters: Tracks are merged if a) distance be-

tween every pair of p-tracks corresponding to a camera

is less than Dmerge for nmerge instants, and b) if the ve-

locity of these p-tracks in the ground plane is approx-

imately the same. The camera is then released and a

single a-track is initialized for all the p-tracks.



Algorithm 1 Audio Tracking Algorithm

1: procedure AUDIOTRACK

2: Read audio inputs periodically and cluster . Section 5.1

3: Match clusters with existing a-tracks and extend matched a-tracks . Section 3.2

4: for all Unassigned clusters do

5: VIDEOTRACK( Cluster center, INITIATE)

6: end for

7: for all Unassigned a-tracks do

8: VIDEOTRACK( Expected a-track position, DELETE)

9: end for

10: for all Pairs of a-tracks expected to intersect do

11: VIDEOTRACK( Expected point of intersection, INTERSECT)

12: end for

13: end procedure

4. COMPUTING FINAL TRACKS OF ALL TARGETS

Whenever a camera is turned on, we need to map persons de-

tected in the first frame to existing p-tracks or initiate new

tracks. This is again done by graph matching. For each p-

track we store the most recent position of that p-track for

which we have image feature data. We create a bipartite graph

[22] where there is an edge between a p-track and a person

detected in the current frame if the distance between the cor-

responding features is less than a threshold and if there exists

an a-track connecting the last position of the p-track and the

position of the person deduced from the current frame using

the image plane to ground plane mapping. The weight of an

edge is the distance between the features. If after the (mini-

mum weight) graph matching, a person in the current frame

has no correspondence with any p-track, we initiate a new p-

track. Also, for previous p-tracks not associated to people in

the current frame, we assume that these persons have stopped

somewhere along the a-track. Some ambiguity remains as to

the exact position where the p-tracks stopped.

In this paper, we restrict ourselves to matching persons

detected in the current frame with p-tracks assuming that the

most recent observation of the p-track was correct. A more

accurate procedure would attempt to match features and a-

tracks along entire p-tracks and correct wrong assignments

from the past. This is a task left for future work.

The system output combines the results of audio and video

tracking using person matching. When a person is tracked us-

ing video, the p-tracks are directly updated. The segments

where the person is tracked by using audio, i.e., the a-tracks

are stitched with the p-tracks on the basis of person matching.

5. AUDIO AND VIDEO PROCESSING

5.1. Clustering of Audio Observations

The goal of the audio processing is to generate rough esti-

mates of the current position of each trajectory. At every in-

stant, we first compute the set S, of audio samples whose am-

plitude is above a threshold Aaudio. A cluster C is formed by

grouping together the positions of samples from S such that

x ∈ C ⇔ (d(x, C \ x) < Dintra) and d(x, S \ C) ≥ Dinter

( d(·, ·) is the squared error distortion measure extended to a

point-set distance in the usual way). This process is repeated

till all elements in S fall in some cluster. Clusters with a single

element are deleted. The center of every cluster is the location

of the sensor in the cluster with the highest amplitude.

5.2. Video Tracking in the Image Plane

Tracking in video is done using particle filters, the details are

given below.

5.2.1. Dynamical Model

Similar to [23], we represent the target regions by ellipses.

The state vector is given as Φn = [XI
n, ẊI

n, HI
n, ḢI

n], where

XI
n, ẊI

n denote the center and velocity of the ellipse in the

image plane, HI
n and ḢI

n denote the lengths of the half axes

and the corresponding scale changes. Then the dynamics are

modeled by a stationary Gauss-Markov process, i.e., ,

Φn = AΦn−1 + Zn, Zn ∼ N (0, ΣZ). (3)

5.2.2. Observation Model for Tracking

The observation process is defined by the posterior distribu-

tion, p(In|Φn), where In is the image observation. Our obser-

vation models were generated based on the color appearance.

To build a color appearance model, we sample the normal-

ized color information [24] (reduces illumination problems)

from the input image In over the region covered by the pre-

dicted ellipse En(XI
n, HI

n) to get the color histogram ch. The

observation likelihood is defined as

p(In|Φn) = γa exp{−||B(ch, CH)||2}, (4)

where B(.) is the Bhattacharya distance between two color

histograms, CH is the color histogram associated with the



Algorithm 2 Algorithm for Video Tracking and Track Fusion

1: procedure VIDEOTRACK(Position, Type)

2: Start camera that can view Position . Section 3.1

3: Get frame and perform person detection

4: Match detected persons with existing p-tracks . Section 4

5: if Type=INITIATE or DELETE then . Section 3.2

6: Use unmatched persons and p-tracks to initiate or delete p-tracks and a-tracks

7: else if Type=INTERSECT then . Section 3.3

8: Fuse a-tracks with p-tracks . Section 4

9: VideoTrack← 1
10: while VideoTrack=1 do

11: Get frame

12: Update p-tracks using particle filters . Section 5.2

13: Cluster p-tracks

14: if Clusters constant, sufficiently distant and with separating velocities for past nsep frames then

15: Initiate a-track for each cluster

16: VideoTrack← 0
17: end if

18: if All pairwise inter p-track distances small and all p-track velocities similar for past nmerge frames then

19: Initiate single a-track for all p-tracks

20: VideoTrack← 0
21: end if

22: Update camera parameters based on centroid of p-tracks

23: Periodically perform person detection to confirm and modify existing p-tracks

24: end while

25: end if

26: Stop camera

27: end procedure

ellipse E0 (the initialization generated from object of interest

in the first frame) and γa is normalizing factor.

5.2.3. Tracking using Auxiliary Particle Filters

In this paper, we use an auxiliary particle filter (APF) for

tracking. The APF with sampling/importance resampling was

introduced by Pitt and Shephard [25] as a variant of the stan-

dard particle filter to improve sample efficiency. In a standard

particle filter a collection of particles with weights is used as

a discrete approximation to the posterior p(Φn|I1:n). In an

APF, additionally, the branch index B, which defines a cor-

respondence between particles at time n and those at time

n − 1, is introduced as an auxiliary variable [26]. The tar-

get joint density function is p(Φn, B|I1:n). The sampling

can thus be performed in two steps. For each particle j, draw

B(j) from the distribution p(B|I1:n). Then draw Φj
n from

p(Φn|ΦB(j)

n−1), the prior density based on B(j). The joint sam-

ple set is {Φj
n, B(j)} and the corresponding weights are up-

dated by wj
n ∝ wB(j)

n−1
p(In|Φj

n)p(Φj
n|ΦB(j)

n−1 )

p(Φj
n,B(j)|In)

. These are then

used to form an estimate of the posterior distribution,

p(Φn, B|I1:n). We use an APF because the observation model

is nonlinear and the posterior can temporarily become multi-

modal due to background clutter and occlusion.

5.3. Mapping from image plane to world plane

We adopted the method in [27] to map the image plane to the

world plane. There exists a matrix H , called the projective

transformation matrix, such that if ~x and ~x′ are the homoge-

neous coordinate vectors denoting, respectively, a point in the

world plane and its corresponding point in the image plane,

then ~x = H~x′. The matrix H has a decomposition of the

form H = SAP , where

P =





1 0 0
0 1 0
l1 l2 l3



 (5)

is a pure projective transformation and ~l∞ =
[

l1 l2 l3
]T

specifies the vanishing line of the plane.

A =





1
β
−α

β
0

0 1 0
0 0 1



 (6)

is an affine transformation. The parameters α and β specify

the image of the circular points [28]. The final matrix in the

decomposition is a similarity transformation

S =

[

sR ~t
~0T 1

]

(7)

where R is a rotation matrix, ~t a translation vector, and s an

isotropic scaling.



The parameters defining H can be estimated by automatic

detection of vanishing points and orthogonal directions [27].

6. EXPERIMENTAL RESULTS

The camera control system was tested in the scenario depicted

in Fig. 1. The region R was an L-shape corridor of length

40 m. Twenty microphone sensors (MICAZ wireless motes

with MTS310 sensor boards) were placed along the corridor

at intervals of 2 meters. Two P/T/Z wireless cameras were

also placed as shown in Fig. 1. The cameras were mounted

at an elevation for better coverage. A scenario with four sub-

jects walking in R was used to demonstrate camera control

performance during initialization, split, merge and deletion

of tracks. The region R can be approximately equated to a

line, by which both position and velocity become one dimen-

sional quantities, thus allowing easy graphical representation,

but not simplifying the essence of our approach. The experi-

ment lasted 80s during which the tracking switched between

audio and video as shown in Fig. 3 (a).

At time t = 0, by processing audio data, we observe

that there are two new clusters, 20m apart. Camera C1 con-

firms the presence of person P1 and also obtains features for

this person. Camera C2 does the same for person P2. The

cameras are turned off once the features are captured. In

Fig. 3, there is a unique color associated with each person

and their p-tracks. At all transitions from audio to video, the

colored squares show the results of feature matching, where

two squares are the same color if they were chosen by the bi-

partite graph matching. Comparing Fig. 1 and Fig. 3 (a), we

can see that the matching correctly associates features with

p-tracks. Since the identity of persons is lost during tracking

by audio, a-tracks are shown in black.

As the two a-tracks get closer, the probability that they

will intersect crosses a threshold at around 7s (shown in Fig. 3

(b)) triggering the video tracking with C1 covering the re-

quired area. However, for the interval between 7 and 13 s,

neither person is in the chosen view of C1 and there are no

distinct audio clusters either. So, the a-tracks and p-tracks

cannot be updated in this interval. Once the persons appear,

graph matching is used to associate the persons detected in

the frame with P1 and P2. Since P1 and P2 begin to walk to-

gether, at around time t = 17s, the persons near the boundary

of the current view, which causes a change in the camera pa-

rameters. Bipartite graph matching is again performed after

the change in camera parameters. At time t = 22s, based on

the proximity of P1 and P2 and their relative velocities, the

system concludes that the two persons will form a cluster and

turns off C1 and initializes an a-track for the cluster formed

by P1 and P2.

This a-track is continued using audio data till t = 29 when

two audio clusters are detected. C2 detects a person and the

person matching algorithm declares that it is neither P1 nor

P2, but a new person P3. Audio tracking of the P1-P2 a-track

and the new a-track with P3 continues till they are sufficiently

close. Processing switches to video obtained from C1 with

an appropriate P/T/Z setting. Two persons are detected and

they are matched to P2 and P3. We can therefore infer that P1

stopped (or went outside R) sometime between t = 22 and

t = 30.

The intersection of tracks of P2 and P3 is observed us-

ing C2 with a new P/T/Z setting and tracked using particle

filters. Once the video processing module declares that the

distance between P2 and P3 has consistently remained above

3m for 5s and that their velocities are in opposite directions,

the camera is turned off and processing is passed to the audio

module. The two clusters observed by audio processing are

associated with a-tracks initiated by P2 and P3. Soon after,

P2 is observed leavingR and its p-track is stopped.

At t = 49s, a new audio cluster is observed and now C1

is used to infer the presence of a new person P4. Once the

corresponding features are stored, C1 is turned off and the

two a-tracks are updated using audio data as it arrives. Since

the two persons are walking towards each other, the audio

processing indicates at time t = 55 that the two a-tracks will

soon intersect. The camera C1 is turned on with new P/T/Z

parameters to focus on the expected point of intersection. C1

is used to track P3 and P4 until P3 crosses the boundary of

R at around t = 60. The camera is turned off and the audio

is used to track P4 till the end of the experiment. During this

interval, there is a single a-track which is also the p-track for

P4. The complete set of inferred p-tracks is shown in Fig. 4.

7. CONCLUSION

In this paper, we propose a probabilistic scheme for oppor-

tunistically deploying cameras to the most interesting parts of

a scene sensed by a multimodal network. This allows us to

analyze the events in the scene using a much smaller num-

ber of cameras leading to significant savings of power, band-

width, storage and money and reduction of privacy concerns.

The audio data is continuously processed to identify inter-

esting events, e.g., entry/exit of people, merging or splitting

of groups, and so on. This is used to indicate the time in-

stants to turn on the cameras. Thereafter, analysis of the video

determines how long the cameras stay on and whether their

pan/tilt/zoom parameters change. Events are tracked contin-

uously by combining the audio and video data. Correspon-

dences between the audio and video sensor observations are

obtained through a learned homography between the image

plane and ground plane. We show detailed experimental re-

sults on real data collected in multimodal networks.
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