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Abstract—Due to their high fault-tolerance and scalability
to large networks, consensus-based distributed algorithms have
recently gained immense popularity in the sensor networks
community. Large scale camera networks are a special case. In a
consensus-based state estimation framework, multiple neighbor-
ing nodes iteratively communicate with each other, exchanging
their own local information about each target’s state with the goal
of converging to a single state estimate over the entire network.
However, the state estimation problem becomes challenging when
some nodes have limited observability of the state. In addition,
the consensus estimate is sub-optimal when the cross-covariances
between the individual state estimates across different nodes are
not incorporated in the distributed estimation framework. The
cross-covariance is usually neglected because the computational
and bandwidth requirements for its computation become unscal-
able for a large network. These limitations can be overcome by
noting that, as the state estimates at different nodes converge,
the information at each node becomes correlated. This fact can
be utilized to compute the optimal estimate by proper weighting
of the prior state and measurement information. Motivated by
this idea, we propose information-weighted consensus algorithms
for distributed maximum a posteriori parameter estimation,
and their extension to the information-weighted consensus filter
(ICF) for state estimation. We compare the performance of
the ICF with existing consensus algorithms analytically, as well
as experimentally by considering the scenario of a distributed
camera network under various operating conditions.

I. INTRODUCTION

Distributed estimation schemes are becoming increasingly
popular in the sensor networks community due to their scal-
ability for large networks and high fault tolerance. Unlike
centralized schemes, distributed schemes usually rely on peer-
to-peer communication between sensor nodes and the task
of information fusion is distributed across multiple nodes.
In a sensor network, each sensor may get multiple or no
measurements related to the state of a target. The objective of
a distributed estimation framework is to maintain an accurate
estimate of the state of all targets using all the measurements
in the network without requiring a centralized node for infor-
mation fusion. In many application domains, e.g., a distributed
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Fig. 1: The figure shows eight sensing nodes, C1, C2, . . . , C8

and four targets T1, T2, T3 and T4. The solid blue lines show the
communication channels between different nodes. This figure also
depicts the presence of “naive” nodes. For example, C1, C8 and their
immediate network neighbors, C2, C7 get direct measurements about
T1. However, the rest of the cameras, i.e., C3, C4, C5 and C6 do not
have direct access to measurements of T1 and thus are naive w.r.t.
T1’s state. The vision graph for a specific target is a graph where
there is an edge between each pair of nodes that are observing that
target. The vision graph for T2 is shown in red dotted lines.

camera network, it is typical for some nodes to not have
observations of some targets whose state is being estimated. In
this paper, we study this issue for consensus-based distributed
estimation schemes.

Let us consider a sensor network such as that illustrated
in Fig. 1, where a collection of N communication nodes
C = {C1, C2, . . . , CN}, are connected with each other using
a network topology G. Each node consists of one or more
heterogeneous sensors. The sensor network is monitoring an
area containing NT moving targets. The vector containing the
concatenated state of all targets at time instant t, is represented
by x(t) ∈ Rp. Each node Ci, through its sensors, gets a
measurement zi(t) ∈ Rmi , linearly related to the state x(t).
The specific targets detected by each Ci determines whether
zi(t) consists of multiple or no measurements and in either
case determines the (local) observability of portions of x(t)
from zi(t). In this paper, we are interested in estimating the
state x(t) in a distributed framework at each time instant t,
using all the measurements available in the network up to time
t. We have particular interest in situations where, even though
the state is observable from all measurement throughout the
system, the full state is not observable to all Ci from the local
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measurements available to each Ci.
A centralized [1] or a spanning-tree based approach [2]

could be used to perform the estimation task where all
the measurements are brought to a centralized processing
node before the data fusion is performed. However, these
approaches become unscalable for large networks due to
communication bandwidth and processing power limitations
and are also less tolerant to node failure. These are some
of the many reasons why distributed signal and information
processing over networks are becoming increasingly popular
and are preferred over centralized and spanning tree based
approaches. An example of a distributed estimation approach
is the average consensus algorithm [3], which will be of
special interest for us throughout this paper. In the average
consensus algorithm, each node in a network shares its in-
formation with its immediate neighbors and corrects its own
state using the information sent by its neighbors. By doing
so iteratively, assuming a connected undirected graph, each
node can asymptotically compute the arithmetic mean of all
the states in the network without requiring a centralized server.

For a dynamic state estimation problem, a predictor-
corrector solution approach is often used. The Kalman Con-
sensus Filter (KCF) [4] is a popular and efficient algorithm to
solve this task in a distributed framework. The KCF algorithm
assumes that all targets are observable by each node. However,
there are situations (e.g. in Fig. 1), where such a condition
cannot be met. The performance of the KCF approach may
deteriorate when applied in such a situation. This topic is
discussed in greater depth in Sec. VI.

Consensus based approaches asymptotically converge to
their estimates through multiple iterations of communication
between neighboring nodes. In practice, due to communication
bandwidth limitation and target dynamics, only a limited num-
ber of consensus iterations K, can be performed at each time
step t. Moreover, a node will have limited observability when
it does not have any measurement of a target available in its
local neighborhood (consisting of the node and its immediate
network neighbors). Due to limited observability and limited
number of iterations, the node becomes naive about the target’s
state. A naive node contains less information about the state.
The convergence rate of naive nodes can be significantly
slower than that of informed nodes for the KCF algorithm.
This issue is exacerbated at subsequent measurement times,
as the KCF assumes equal information weighting for the state
estimate available from each node. The effect of naivety is
larger in a sparse network where the number of communication
links between the nodes is small. The concept of naivety
is depicted in Fig 1. In the presence of naive nodes, the
performance of the KCF algorithm deteriorates.

A. Contributions

The KCF algorithm weights all its neighbors’ prior states
x−j ’s equally which causes high estimation error when naive
nodes are present. An initial approach to resolve this issue
was proposed in [5]. There the Generalized Kalman Consensus
Filter (GKCF) algorithm was proposed where the neighbors’
prior x−j ’s were weighted by their covariance matrices Pj’s.

The GKCF algorithm outperforms the KCF in the presence of
naive nodes. However, the effect of correlation between errors
of the nodes’ prior estimates was not brought into account
in any of the prior methods because it is usually extremely
hard to estimate the cross-covariance across all the nodes
in a distributed framework. Mainly due to this reason, these
distributed estimation schemes are suboptimal.

Naivety relative to the n-th target is likely to be present
in the network when nodes on the vision graph for target
n are sparsely connected in the communication graph. The
vision graph (see [6]) for target Tn is a graph where there
is an edge between each pair of nodes that are observing
Tn (see Fig. 1). The vision graph is usually time varying,
different from the communication graph, and different for
different targets. Distributed algorithms that are derived under
the assumption that each sensor has full state observability
at each time (e.g. KCF), may be adapted to be used in the
presence of naive nodes when communication protocols (e.g.
[7]) for translating a known vision graph into a set of routing
paths that connect nodes in the communication graph are
available. However, scalable distributed vision graph discovery
algorithms do not exist. Moreover, distributed algorithms that
require the knowledge of the vision graphs usually require
special target handoff protocols.

Additionally, computation and communication resource
constraints are important issues in a distributed estimation
framework because in many application scenarios, the nodes
are low powered wireless devices. Therefore, a distributed state
estimation framework that can guarantee convergence to the
optimal centralized estimate while maintaining low computa-
tion and communication resource requirements in the presence
of naive nodes is desirable. In this paper, we propose such a
distributed state estimation framework called the Information-
weighted Consensus Filter (ICF). The ICF is guaranteed to
converge to the optimal centralized performance under certain
reasonable conditions. We also show experimentally that in
other conditions it achieves near-optimal performance.

The issue of naivety is handled in the ICF algorithm by
proper information weighting in the estimation framework.
Optimality is achieved by proper relative weighting between
the prior and the measurement information. ICF also supports
multiple consensus iterations at each time step t to improve
performance. In addition, the experimental results show that
ICF outperforms other distributed estimation algorithms at any
given computation and communication resource limit. The ICF
algorithm does not require handoff protocols or the knowledge
of the vision graph.

B. Related work

Recently, distributed decision and control frameworks have
gained immense popularity. Consensus algorithms [3] are
one of the many types of distributed schemes used for col-
lective decision making. Consensus algorithms are protocols
that are run individually by each agent where each agent
communicates with just its network neighbors and corrects
its own information iteratively using the information sent by
its neighbors. The protocol, over multiple iterations, ensures
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the convergence of all the agents in the network to a single
consensus. The consensus they reach is a predefined function
of all the information available in the network. It is important
to note that this consensus is reached just by peer-to-peer
communication without requiring a central fusion node. For
example, the item being estimated may be the arithmetic mean
(average consensus) [3] or the geometric mean [8] of the initial
values. The simplicity and scalability of consensus algorithms
makes them extremely useful in distributed estimation tasks
in sensor networks.

Consensus algorithms have been extended to perform var-
ious linear algebraic operations such as SVD, least squares,
PCA, GPCA in a network of agents [6]. It also has been
utilized in distributed state estimation framework such as
the Kalman Consensus Filter (KCF) [4] and the Generalized
Kalman Consensus Filter (GKCF) [5]. The KCF algorithm
is a popular distributed estimation framework and has rea-
sonable performance in networks where the entire state is
individually observable by each node. However, its perfor-
mance deteriorates in the presence of naivety [5]. The idea
of information-weighted consensus was introduced in [9];
however, that article did not provide the detailed theoretical
analysis of its properties, comparisons with other approaches,
or the implications for its application in wide-area camera
networks. These items are each provided herein. A survey
on distributed estimation and control applications using linear
consensus algorithms can be found in [10]. Here the authors
show how a weighted average can be computed in a distributed
framework using two parallel average consensus schemes.
Distributed state and parameter estimation frameworks have
been applied in various fields including camera networks for
distributed implementations of 3-D point triangulation, pose
estimation [6], tracking [11], action recognition [11], [12],
collaborative tracking and camera control [13], [14], camera
calibration [15], [16] etc.

C. Average consensus - Review

Average consensus [3] is a popular distributed algorithm
to compute the arithmetic mean of some values {ai}Ni=1.
Suppose, in a network of N nodes, each node i has a state
ai. We are interested in computing the average value of these
states i.e. 1

N

∑N
i=1 ai, in a distributed manner.

In the average consensus algorithm, each node initializes its
consensus state as ai(0) = ai and runs the following protocol
iteratively

ai(k) = ai(k − 1) + ε
∑
j∈Ni

(aj(k − 1)− ai(k − 1)) . (1)

At the beginning of iteration k, a node Ci sends its previous
state ai(k − 1) to its immediate network neighbors Cj ∈ Ni
and also receives the neighbors’ previous states aj(k−1). Then
it updates its state using (1). By iteratively doing so, the values
of the states at all the nodes converge to the average of the
initial values. The average consensus algorithm can be used
to compute the average of vectors and matrices by applying
it to their individual elements separately. Note that average
consensus treats all nodes as having equal and uncorrelated

information about the quantity a. It is straightforward to show
that average consensus preserves the symmetric positive semi-
definite property when used on a matrix. This property is
especially important when average consensus is applied to
covariance matrices.

The rate parameter ε should be chosen between 0 and 1
∆max

,
where ∆max is the maximum degree of the network graph G.
Choosing larger values of ε will result in faster convergence,
but choosing values equal or more than ∆max will render the
algorithm unstable. More information about average consensus
and about the rate parameter ε can be found in [3].

II. PROBLEM FORMULATION

The communication network is represented by the undi-
rected connected graph G = (C, E). The set C = {C1, ..., CN}
contains the vertices of the graph and represents the communi-
cation nodes. The set E contains the edges of the graph, which
represent the available communication channels between dif-
ferent nodes. Also, let Ni be the set of nodes that have a
direct communication channel with node Ci (i.e. shares an
edge with Ci). We call the nodes in Ni, the neighbors of Ci.
The number of neighbors (degree) of Ci is represented by ∆i.
For simplicity, we will drop the time step index t in places
where the time step is not important to explain the issue under
consideration. There are NT targets in the area and the length
of their individual state vectors is q. Thus, for x ∈ Rp, p
would be equal to qNT . The number of targets can be time-
varying, but that will not be a focus of the paper, as it would
distract from the main topic.

A data association protocol is required for a multi-target
estimation framework. However, in this paper, to analyze the
performance of the state estimation approaches independent of
a data association method, we assume that the data association
is given and without errors.

At each time step t, a node Ci may get some measurements
from its sensors. For example, for a target state estimation task
in a camera network, a measurement might be the projection
of the position of some target onto a camera’s pixel coordinate
system. We denote the measurement at Ci as zi ∈ Rmi . As,
the sensors can be heterogenous and the number of sensors
can be different at each communication node, the length of
the measurement vector mi can vary across different nodes.
The measurement zi is modeled as

zi = Hix + νi. (2)

Here Hi ∈ Rmi×p is the observation matrix for node Ci. The
matrix Hi can be time-varying.

The noise νi ∈ Rmi in the measurement of Ci is modeled
as a zero mean Gaussian random variable N (0,Ri) where
Ri ∈ Rmi×mi . As we will derive the estimator in the
information form, we will generally refer to the information
matrix, Bi = R−1

i ∈ Rmi×mi which can also be time varying.
If a node Ci does not have a measurement, we will use
Bi = 0 ∈ Rmi×mi and zi = 0 ∈ Rmi . Note that Hi is
typically not full column rank (mi < p). In fact, we are not
assuming that the state x is observable from zi. We do assume
that x is observable from {zi}Ni=1. For example, in Fig. 1, x
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represents the concatenation of the states of targets {Tn}NT
n=1

and is observable from {zi}Ni=1; however given only z7, the
vector x is completely unobservable.

The collection of all measurements from all sensors can be
expressed as,

Z = Hx + ν. (3)

Here, Z = [zT1 , z
T
2 , . . . z

T
N ]T ∈ Rm is the concatenation

of all measurements in the network where m =
∑N
i=1mi

and H = [HT
1 ,H

T
2 , . . .H

T
N ]T ∈ Rm×p is the stack of all

the observation matrices. For the measurement noise vector,
ν = [νT1 ,ν

T
2 , . . .ν

T
N ]T ∈ Rm, we denote its covariance

as R ∈ Rm×m and information matrix as B = R−1 ∈
Rm×m. We assume the measurement noise to be uncorrelated
across nodes. Thus, the measurement covariance matrix is
R = diag(R1,R2, . . .RN ) and the measurement information
matrix is B = diag(B1,B2, . . .BN ).

III. CENTRALIZED MAP ESTIMATION

Before considering the decentralized solution for the estima-
tion of x it is informative to review the centralized solution,
i.e., the centralized maximum a posteriori (MAP) estimator.
The centralized prior state estimate of x is denoted as x−c ∈
Rp where the error in the prior estimate is ηc = x−c −x with
cov(ηc) = Pc ∈ Rp×p, which is assumed to be nonsingular.
The observation model (3) and prior state x−c can be combined
into one equation as[

x−c
Z

]
=

[
Ip
H

]
x +

[
ηc
ν

]
. (4)

Here Ip is the p× p identity matrix.

Letting, Y =

[
x−c
Z

]
, Hc =

[
Ip
H

]
and β =

[
ηc
ν

]
,

we have Y = Hcx + β, where β ∼ N (0,C). We assume
that the error in the prior state estimate is uncorrelated to
the measurement noise. Thus, we have the block diagonal
covariance matrix C = diag(Pc,R). Let us define the prior
information matrix to be J−c = (Pc)

−1 ∈ Rp×p. Thus, defin-
ing J = C−1 we have J = diag(J−c ,B). The centralized
maximum a posteriori (MAP) estimate [17] of the state x is

x+
c = (HT

c JHc)
−1(HT

c JY)

=
(
J−c + HTBH

)−1

(J−c x−c + HTBZ), (5)

J+
c =

(
J−c + HTBH

)
. (6)

where J+
c = (cov(x+

c ))
−1 quantifies the information about x

in x+
c . Eqns. (5-6) are useful in the discussion of the physical

interpretations of the alternative decentralized algorithms.

IV. INFORMATION CONSENSUS BASED DISTRIBUTED
MAP ESTIMATION (IC-MAP)

In a distributed estimation framework, each node Ci pos-
sesses a prior estimate of the state vector that we denote
as x−i (t) ∈ Rp (unlike a single prior state estimate in a
centralized solution). The objective of the network is to use
distributed computations across the network such that the

posterior state estimate x+
i (t) ∈ Rp at each node converges

to the centralized estimate x+
c (t). However, due to resource

constraints, this convergence may not be fully achieved at any
given time. Therefore, if consensus were performed directly
on the priors, then at the k-th consensus iteration, the estimate
of the i-th node can be modeled as having three components

xk−i = x + ηc + δki ,

where x−c = x +ηc with the quantities x and ηc having been
previously defined, and the consensus algorithm ensures that
‖δki ‖ approaches zero as k approaches infinity for all i.

The error covariance in the prior estimate at Ci is Pk
ii =

E[ηki
(
ηki
)T

] ∈ Rp×p, where ηki = ηc + δki . Similarly, the
error cross-covariance between Ci and Cj’s prior estimates
is Pk

ij = E[ηki
(
ηkj
)T

] ∈ Rp×p. As k → ∞, at each node,
consensus forces xk−i → x−c . Therefore, for any {i, j}, xk−i
and xk−j becomes correlated as xk−i → xk−j resulting in Pk

ij 6=
0. In fact, it is straightforward to show that as the number of
consensus iterations k approaches infinity, Pk

ij converges to
Pc for all {i, j}.

We drop the k and denote the collection of all the state priors
from all the nodes as X− = [(x−1 )T , (x−2 )T , . . . , (x−N )T ]T ∈
RNp. The relationship between the state, the priors and the
prior errors can be summarized as,

X− = HIx + η. (7)

Here, x is the true state of the targets, η =
[ηT1 ,η

T
2 , . . .η

T
N ]T ∈ RNp is the error vector, and

HI = [Ip, Ip, . . . , Ip]
T ∈ RNp×p.

Combining the measurements with the result of a finite
number k of steps of consensus on the priors yields[

X−
Z

]
=

[
HI

H

]
x +

[
η
ν

]
. (8)

Letting, Y ′ =

[
X−
Z

]
, H′

c =

[
HI

H

]
and β′ =

[
η
ν

]
, we

have Y ′ = H′
cx +β′, where β′ ∼ N (0,C′). The noise term

β′ is Gaussian because it is accumulated through one or more
consensus iterations (which are linear operations) performed
on Gaussian random variables.

Let us denote the prior information matrix F = P−1 where
these two matrices can be expressed as (p× p) blocks,

P =


P11 P12 . . . P1N

P21 P22

...
...

. . .
PN1 . . . PNN

 , F =


F11 F12 . . . F1N

F21 F22

...
...

. . .
FN1 . . . FNN

 .
(9)

Let us define the information matrix of the prior of node i as

J−i = (Pii)
−1 (10)

Here, J−i ∈ Rp×p and in general, J−i 6= Fii. Assuming that
the error in the prior state estimates are uncorrelated to the
noise in the new measurements, we have the block diagonal
covariance matrix C′ = diag(P ,R). Thus, we get its inverse
as J ′ = diag(F ,B).
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The centralized maximum a posteriori (MAP) estimate of
the state x is

x+
c = (H′T

c J ′H′
c)
−1(H′T

c J ′Y ′)

=
(
HT
I FHI + HTBH

)−1

(HT
I FX−+HTBZ),(11)

J+
c =HT

I FHI + HTBH. (12)

Defining

F−i =

N∑
j=1

Fji, (13)

we have

HT
I FHI =

N∑
i=1

F−i and HT
I FX− =

N∑
i=1

F−i x−i . (14)

Let us define Ui = HT
i BiHi and ui = HT

i Bizi (with
Bi and Hi defined right after (2)). Due to the block diagonal
structure of B, we get

HTBH =

N∑
i=1

HT
i BiHi =

N∑
i=1

Ui, (15)

HTBZ =

N∑
i=1

HT
i Bizi =

N∑
i=1

ui. (16)

Thus, from (11) and (12), we get

x+
c =

(
N∑
i=1

(F−i + Ui)

)−1 N∑
i=1

(F−i x−i + ui), (17)

J+
c =

N∑
i=1

(F−i + Ui). (18)

This is the centralized solution that fully accounts for the
presence of different priors at each agent, and the cross-
correlated errors in the priors between agents, which develop
naturally due to consensus, but which are not known in a
decentralized implementation. In the following, we show how
(17) and (18) can be computed in a distributed manner.

A. Distributed Implementation

To implement eqns. (17-18) in a distributed fashion, define,
V0
i = F−i + Ui and v0

i = F−i x−i + ui, so that

x+
c =

(
N∑
i=1

V0
i

)−1 N∑
i=1

v0
i , (19)

J+
c =

N∑
i=1

V0
i . (20)

Under the assumption that a node Ci has information about
F−i (methods for computing F−i will be discussed later), Ci
could compute V0

i = F−i + Ui and v0
i = F−i x−i + ui from

F−i , its own state prior x−i , measurement zi, measurement
information matrix Bi and measurement model parameter Hi.
Then, each node transmits to its neighbors its own information
matrix Vk

i ∈ Rp×p and information vector vki ∈ Rp, receives
it neighbors information, and uses the average consensus

algorithm as described in Sec. I-C to converge toward the
global averages of these two quantities. Therefore, from (19)
and (20) we get

x+
c = lim

k→∞

(
NVk

i

)−1 (
Nvki

)
= lim
k→∞

(
Vk
i

)−1
vki (21)

J+
c = lim

k→∞
NVk

i (22)

From the discussion above, given F−i , it is clear that the
centralized MAP estimate in (19-20) is achieved using a
distributed scheme as k → ∞. We call this distributed
approach of computing the MAP estimate, the Information
Consensus based MAP (IC-MAP) estimation framework.

B. Computation of F−i
To compute the distributed MAP estimate, node Ci needs

to have knowledge of F−i . In general, computation of F−i
requires the knowledge of the entire covariance matrix P
defined in eqn. (9) (i.e. the prior covariances (Pii’s) of each
node and the prior cross-covariances (Pij’s) between each pair
of nodes). However, computing P at every time step at each
node in a distributed framework is unrealistic as it would
require too much information exchange among the nodes.
However, in the following, we show that for two special cases
(which are of great practical importance), F−i can be computed
at each node using only a node’s own prior covariance matrix
Pii (or J−i in the information form). The first case is for
converged priors which is an important scenario because in
a consensus-based framework, with high-enough number of
consensus iterations, the prior state information at all the
nodes ultimately converge to the same value. The second
case is when the prior state estimates across the nodes are
uncorrelated to each other. This is generally true at the early
steps of consensus when the nodes had no prior information
about the target and initialized their prior information with
random quantities.

The proposed distributed state estimation framework in Sec.
V is based on these two special cases. The practical signifi-
cance of these two cases can be seen from the experimental
results in Sec. VI which implies that the proposed algorithm
(derived from these two special cases) is robust even when the
assumptions of neither of these two cases are met.

1) Case 1: Converged Priors:
Here we will discuss the case where the estimate of the state
vector at each node has converged to the centralized estimate
at the previous time step t − 1. Thus at time t, the prior
information at each node is the same and equal to the prior
information of a centralized framework (i.e., k sufficiently
large such that ‖δki (t)‖ = 0 for all i). This case will be of
great significance when we will incorporate target dynamics
and additional measurement steps to our framework. From (6)
and (18) we have

J+
c = J−c + HTBH =

N∑
i=1

(F−i + Ui). (23)

From (15), HTBH =
∑N
i=1 Ui. Thus, from (23),

N∑
i=1

F−i = J−c =

N∑
i=1

J−c
N
. (24)
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Now, for converged priors, for all i we have J−c = J−i . Using
this in (24), we have

N∑
i=1

F−i =

N∑
i=1

J−i
N
. (25)

Using this in (17) and (18) and using the fact that x−i = x−c
for converged priors, we have

x+
c =

(
N∑
i=1

(
J−i
N

+ Ui

))−1N∑
i=1

(
J−i
N

x−i + ui

)
, (26)

J+
c =

N∑
i=1

(
J−i
N

+ Ui

)
. (27)

This can be computed in a distributed manner by initializing
V0
i = 1

N J−i + Ui and v0
i = 1

N J−i x−i + ui. This is equivalent
to using 1

N J−i instead of F−i in (17-18).
The intuition behind this is as follows. After convergence,

given the prior at one node, the other priors do not contain
any new information. Upon convergence in the previous time
step, the prior information matrix at each node J−i is equal to
J−c : Each agent has an identical copy (x−i = x−c ) and amount
of information (J−i = J−c ). Thus at the current time step, the
prior information matrix J−i should be divided by N as shown
in the formulation of eqns. (26-27), so that the effective total
weight of all the priors in the estimation scheme remains as
J−c .

2) Case 2: Uncorrelated Prior Errors:
Now, we consider the case where the errors in the priors are
uncorrelated with each other across different nodes. This case
can be used at the initial time step if it is known that the prior
errors are uncorrelated across different nodes.

When the prior state errors are uncorrelated, the covariance
matrix P will be block diagonal. So, its inverse F will
also be block diagonal as, F = diag(F11,F22, . . .FNN )
= diag(P−1

11 ,P
−1
22 , . . .P

−1
NN ). In this special case, with J−i

defined in (10), we have

Fii = P−1
ii = J−i . (28)

As the off-diagonal block elements of F are zero, from the
definition of F−i in (13), we have

F−i =

N∑
j=1

Fji = Fii = J−i . (29)

Thus, when the prior errors are uncorrelated across the differ-
ent nodes, using F−i = J−i (in (17-18)) and average consensus,
we can compute the centralized MAP estimate in a distributed
framework.

V. INFORMATION-WEIGHTED CONSENSUS FILTER

In the previous section, we derived the Information Consen-
sus based MAP (IC-MAP) estimation framework and proved
its optimality for two important scenarios. In this section,
we will consider a dynamic model in state space form and
extend the IC-MAP framework in Sec. IV for distributed state
estimation. We call this distributed state estimation framework,
the Information-Weighted Consensus Filter (ICF). We prove

theoretically that as the number of consensus iteration k →∞,
the ICF estimates converge to the estimates of the centralized
Kalman filter.

Let us consider the following linear dynamical model

x(t+ 1) = Φx(t) + γ(t). (30)

Here Φ ∈ Rp×p is the state transition matrix and the process
noise is γ(t) ∼ N (0,Q).

For this model, for the centralized case, we have the
following state prediction step [17],

J−c (t+ 1) =
(
ΦJ+

c (t)−1ΦT + Q
)−1

, (31)
x−c (t+ 1) = Φx+

c (t). (32)

Combining this with the IC-MAP estimation framework pro-
posed in Sec. IV, we get the Information-Weighted Consensus
Filter (ICF) in Algorithm 1.

Algorithm 1 ICF at node Ci at time step t

Input: prior state estimate x−i (t), prior information matrix J−i (t), obser-
vation matrix Hi, consensus speed factor ε and total number of consensus
iterations K.
1) Get measurement zi and measurement information matrix Bi

2) Compute consensus proposals,

V0
i =

1

N
J−i (t) + HT

i BiHi (33)

v0
i =

1

N
J−i (t)x−i (t) + HT

i Bizi (34)

3) Perform average consensus on V0
i and v0

i independently
for k = 1 to K do

a) Send Vk−1
i and vk−1

i to all neighbors j ∈ Ni

b) Receive Vk−1
j and vk−1

j from all neighbors j ∈ Ni

c) Update:

Vk
i = Vk−1

i + ε
∑
j∈Ni

(
Vk−1

j −Vk−1
i

)
(35)

vk
i = vk−1

i + ε
∑
j∈Ni

(
vk−1
j − vk−1

i

)
(36)

end for
4) Compute a posteriori state estimate and information matrix for time t

x+
i (t) = (VK

i )−1vK
i (37)

J+
i (t) = NVK

i (38)

5) Predict for next time step (t+ 1)

J−i (t+ 1) =
(
Φ(J+

i (t))−1ΦT + Q
)−1

(39)

x−i (t+ 1) = Φx+
i (t) (40)

Output: KF estimate x+
i (t) and information matrix J+

i (t).

Note that in (33) and (34), we have used the results for the
converged prior case (Sec. IV-B1), i.e., using 1

N J−i instead of
F−i . Theoretically, at each time step, if k →∞, the IC-MAP
estimator guarantees that the priors for the next time step at
each node will be equal to the optimal centralized one. This
convergence further guarantees that the optimal centralized
estimate will be reached at the next time steps if F−i = 1

N J−i
is used. This guarantees the optimality of Algorithm 1 with
k →∞ at each time step.

In practice, due to the fact that the total number of iterations,
k, is finite, convergence will not be achieved fully. Therefore,
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the distributed implementation will not perform quite as well
as the centralized solution. The simulation results in Sec. VI
will demonstrate that the ICF has near-optimal performance
as either k increases or t increases for a fixed k.

While (21) shows that inclusion of N is inconsequential in
the computation of x in the CKF, the role of N is critical
in the distributed implementation. At (33) and (34), due to
prior consensus steps, all nodes have the same estimate with
the same information J−i . If the 1

N is neglected, then the
measurement information receives too little relative weighting
by a factor of N .

A. Initialization and Special Situations

In a practical implementation scenario, at system startup or
for the first few iterations in a naive node, VK

i in (37) can be
0, if there is no prior or measurement information available
in the local neighborhood. In this situation, a node will not
perform step 4 and 5 in Algorithm 1 until it receives non-
zero information from its neighbors (through step 3) or gets a
measurement itself (through step 1) yielding VK

i to be non-
zero. In the target tracking application, this situation occurs
when a new target is detected by one or more, but not all of
the sensors.

In some situations prior information may be present at
system startup. If the priors are known to be equal, then using
the standard ICF algorithm as in Algorithm 1, should give
optimal results. However, if the priors across the nodes are
known to be uncorrelated at the initial time step (t = 1), the
results for the uncorrelated case (Sec.IV-B2) should be used
instead in the first time step. To do this, only at t = 1, instead
of (33) and (34) in Algorithm 1, the following initializations
should be used,

V0
i = J−i + HT

i BiHi (41)
v0
i = J−i x−i + HT

i Bizi. (42)

Thus, at t = 1, with k →∞, the states would converge to the
optimal centralized estimate. Then for t > 1, using Algorithm
1 would guarantee convergence to the optimal centralized
estimate for the following time steps (i.e. for t > 1).

An example of the estimation results of different methods
is shown in Fig. 2. The example includes N = 15 nodes and
a single target. The target state contains the two dimensional
position and velocity. Each line represents the state estimate at
one node after each iteration. For clarity, in each experiment
only the first component of the state vector for the first 3
node’s is shown. State estimation is performed for 3 time steps.
At each time step, 30 consensus iterations were performed.
The priors were initially uncorrelated and different at each
node. For ICF, at t = 1, the uncorrelated initializations (41-42)
were used. This example shows that the ICF converges to the
centralized estimate at each time step after several iterations.
The reason that ICF performs better than KCF is because
KCF’s performance deteriorates in the presence of naivety
and the cross-covariances between the priors are implicitly
considered in ICF.
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Fig. 2: An example showing the convergence of different algorithms
with multiple consensus iterations at different time steps.

B. ICF, GKCF and KCF Comparison

The KCF algorithm in [4] was originally presented using
a single consensus step. This section presents the state es-
timation step of the ICF, GKCF and KCF algorithm in an
equivalent form for a single consensus step (i.e., k = 1) and
compares the differences between the algorithms theoretically.
The derivation of the following results are presented in the
supplementary materials. Let us define the single step average
consensus operation A on a variable ai at node Ci as,

A(ai) = ai + ε
∑
j∈Ni

(aj − ai) (43)

Also let,

Si =
∑

j∈Ni∪{i}

Ui (44)

yi =
∑

j∈Ni∪{i}

ui (45)

To facilitate comparison, the estimation steps of the ICF,
GKCF and KCF algorithms are presented as follows:
ICF (Asymptotically optimal with equal initial priors) (see
Proposition A.1 in Appendix)

x+
i = x−i +

(
A
(

J−i
N

)
+A(Ui)

)−1

A(ui)−A(Ui)x
−
i + ε

∑
j∈Ni

J−j
N

(
x−j − x−i

)(46)

J+
i = N

(
A
(

J−i
N

)
+A(Ui)

)
(47)

GKCF (Suboptimal) (see Proposition A.2 in Appendix)

x+
i = x−i +

(
A(J−i ) + Si

)−1yi − Six
−
i + ε

∑
j∈Ni

J−j
(
x−j − x−i

) (48)

J+
i = A(J−i ) + Si (49)
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KCF (Suboptimal)

x+
i = x−i +

(
J−i + Si

)−1 (
yi − Six

−
i

)
+

ε

1 + ||(J−i )−1|| (J
−
i )−1

∑
j∈Ni

(
x−j − x−i

)
(50)

J+
i = J−i + Si (51)

The following points of comparison are important:
1) In GKCF and KCF, the terms Si and yi are the summation
of the measurement information and the weighted measure-
ments in the local neighborhood. This fusion mechanism,
unlike average consensus, does not guarantee a proper global
convergence. However, in ICF, A(Ui) and A(ui) are used
which guarantee convergence to the global average values.
2) In GKCF and KCF, J−i is used instead of J−

i

N as in ICF.
If the priors are uncorrelated, using J−i is appropriate for a
single time step. But, as the nodes converge, which is the
goal of consensus, the information becomes redundant at each
node and thus dividing the prior information matrices by N
is required to match the centralized solution.
3) In the information matrix update equation of the ICF, there
is a multiplication factor of N . The total information in an
estimate is the sum of the information matrices of the priors
and the measurements. However, as the average consensus
scheme gives us the average information in the priors and
measurements, this should be multiplied by N to get the exact
measure of the total information.
4) In the third term of (50), KCF gives equal weight to all the
neighbors’ priors. In the presence naivety, this has detrimental
effect as the information at different nodes are different and
need to be weighted by their information matrices.
5) In (46), ICF uses

(
1
NA(J−i ) +A(Ui)

)−1
to normalize both

the innovation from the measurements and the innovation from
the state priors. Whereas, in (50), the normalizing terms are
not balanced because KCF uses

(
J−i + Si

)−1
to normalize

the measurement innovation and (J−i )−1 to normalize the
innovation from the priors.
6) In (50), the normalizing term 1 + ||(J−i )−1|| is a design
choice [4] to maintain stability of the algorithm. However, it
does not guarantee optimality of KCF.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the proposed
ICF algorithm in a simulated environment and compare it
with other methods: the Centralized Kalman Filter (CKF),
the Kalman Consensus Filter (KCF) [4] and the Generalized
Kalman Consensus Filter (GKCF) [5]. Comparison in a simu-
lated environment allows an in-depth analysis of the proposed
algorithms as parameters are varied to measure performance
under different conditions.

We simulate a camera network containing NT targets ran-
domly moving (with a fixed model) within a 500 × 500
space. Each target’s initial state vector is random. A set
of N camera sensors monitor the space (we consider that
each communication node consists of one camera). In each
experiment, the cameras are randomly distributed in the space
with random orientations resulting in overlapping field-of-
views (FOVs).

Target State Parameters

Each target was initialized at the center of the simulation
grid. The target’s state vector was a 4D vector, with the 2D
position and 2D velocity components. The initial speed was
set to 2 units per time step and with a random direction
uniformly chosen from 0 to 2π. The targets evolved for 40
time steps using the target dynamical model of (30). Only
the targets which remained in the simulation grid for the 40
time steps were considered. The process covariance Q is set
to diag(10, 10, 1, 1).

For the target state-estimation model, the dynamical model
of (30) was also used with the same Φ and Q defined above.
The initial prior state x−i (1) and prior covariance P−i (1) is set
equal at each node. A diagonal matrix is used for P−i (1) with
the main diagonal elements as {100, 100, 10, 10}. The initial
prior state x−i (1) is generated by adding zero-mean Gaussian
noise of covariance P−i (1) to the ground truth state.

Sensor Parameters

A total of N = 15 nodes were generated at uniformly cho-
sen random locations on the simulation area. The measurement
vector length for each sensor is mi = 2. The FOV was chosen
to be equilateral triangles. We define the sensing range, SR,
for each sensor to be the height of this equilateral triangle. SR
was chosen to be 300 units for all the sensors. A sensor can
have an observation of a target only if the ground truth position
of the target is within the sensor’s FOV and in that case, a
measurement zi was generated using the linear observation
model (2) with noise covariance Ri = 100I2. The observation
matrix Hi and state transition matrix Φ is given below.

Hi=

[
1 0 0 0
0 1 0 0

]
, Φ=


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

.

Network Topology Parameters

A circulant graph was chosen as the communication topol-
ogy for the sensor network to highlight the different issues
associated with the sparsity of the communication network.
The circulant graph is ∆-regular where the degree of each
node is the same, say ∆. The adjacency matrix of a circulant
graph is a circulant matrix. So, we denote ∆ to be the degree
of the communication graph G. In the experiments, ∆ = 2
was used, unless stated otherwise. Note that, in this scenario,
the maximum degree ∆max = ∆ because the degree of all
the nodes are same.

Consensus Parameters

At step 3 of Algorithm 1, each sensor communicates its
measurement information to its neighbors iteratively. The
maximum number of consensus iterations K was set to 5
unless stated otherwise. The consensus speed parameter was
chosen to be ε = 0.65/∆max = 0.65/∆.
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Fig. 3: In this image of an example simulation environment,
the red arrows indicate the locations and orientations of the
cameras. The camera FOVs are shown in blue triangles. There
are 7 cameras in this example. The green dotted lines represent
the network connectivity. Each black arrows depict the actual
trajectory of a target moving on the grid.

Experimental Description

The parameters that were varied in the experiments are, the
maximum number of consensus iterations K, communication
bandwidth µ, computation unit τ , degree of the communication
network ∆, sensing range SR and the number of cameras N .
For each experiment, only one parameter was varied while
the others were kept constant. As a measure of performance,
we computed the estimation error, e, defined as the Euclidean
distance between the ground truth position and the estimated
posterior position. An example of the simulation framework
is shown in Fig. 3.

For each experiment, 20 different simulation environments
differing in camera poses were randomly generated using the
method discussed above. For each environment, 20 differ-
ent randomly generated target tracks were used. Thus, for
each experiment, the estimation errors e, were averaged over
20 × 20 = 400 random scenarios, 40 time steps and over
all sensors N . The mean and standard deviation of the errors
for different methods are shown in the following graphs as
the results of different experiments. In the graphs, each line
(of a unique color) corresponds to the mean error ē for one
estimation method. The variation of the estimation errors over
multiple simulation runs are represented by the ē± 0.2σ lines
drawn in dotted lines of the same color for each method.

The KCF algorithm as originally proposed in [4] uses a
single consensus step per measurement update. To compare
it with ICF, which supports multiple iterations, we extend
KCF for multiple iterations. For this, at each time step, the
measurement innovation component is set to zero for k > 1
and we consider only the new information provided by the
neighboring nodes’ estimates.

A. Experiment 1: Varying K

The objective of this experiment is to compare the per-
formance of different estimation algorithms for different K.
Here, K was varied from 1 to 20 at increments of 1. The
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Fig. 4: Equal Priors

other parameters were kept constant at their default values.
The priors were chosen to be equal.

The results of this experiment are shown in Fig. 4. The
graph shows that for K = 1, ICF performs much better than
KCF and GKCF performs close to ICF. As, the number of
iterations K is increased, the mean error for ICF decreases and
approaches the performance of the centralized method at about
K = 10. The main reason for this difference in performance
is that KCF and GKCF do not account for the redundancy
in the prior information across different nodes, but ICF does.
In this simulation all the initial priors were equal, thus the
information in the priors were completely redundant. KCF
and GKCF by not taking into account redundancy in priors,
gives more weight to prior information and less weight to the
measurement information than the optimal weights.

ICF is guaranteed to converge to the optimal centralized
estimated if the initial priors are equal. However, to show
the robustness of the ICF approach, we conducted the same
experiment with unequal and uncorrelated priors (Fig. 5)
and with unequal and correlated (with ρ = 0.5 correlation-
coefficient between the priors across nodes) (Fig. 6) using
Algorithm 1. The results show that ICF achieves near-optimal
performance even when the optimality constraints are not
met. This is because ICF is a consensus based approach and
irrespective of the initial condition, after several time steps or
consensus iterations, the priors converge. ICF was proved to
be optimal with converged priors. Thus, after a few time steps
it achieves near-optimal performance as the system approaches
the optimality conditions.

B. Experiment 2: Varying µ and τ

The objective of this experiment is to compare the perfor-
mance of different algorithms at different amounts of commu-
nication bandwidth and computational resources. We define
the bandwidth, µ, of each method to be the total number
of scalars sent at each consensus iteration from a node to
each neighbor. As, covariance/information matrices are sym-
metric, only sending the upper/lower triangular portion of the
matrix suffices. Using standard convention, the approximate
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Fig. 6: Correlated Priors (ρ = .5)
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Fig. 7: Bandwidth µ vs. number of consensus iterations K for
different approaches.
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Fig. 8: Computation unit τ vs. number of consensus iterations
K for different approaches.
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Fig. 9: Performance comparison between different approaches
as a function of the bandwidth µ, showing that the ICF performs
better than other distributed approaches for each µ.
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Fig. 10: Performance comparison between different approaches
as a function of the computational unit τ , showing that the ICF
performs better than other distributed approaches at each τ .
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communication data requirement µ and computation cycle
requirement τ was computed for p = 4 and m = 2.

Figs. 7 and 8 show the bandwidth and computational
requirements for different algorithms for different numbers
of consensus iterations k. For any given k, ICF always
requires half the bandwidth of GKCF. The KCF has lower
communication and computational requirements.

Figs. 9 and 10 show the performance achieved by each
method for different amounts of bandwidth and computational
requirements. At any given bandwidth µ or computation unit τ ,
the ICF performs better than the other distributed methods and
the performance approaches that of the CKF with increased
resources.

C. Experiment 3: Varying ∆

The objective of this experiment is to compare the per-
formance of different approaches for different values of the
degree ∆ (i.e., vary the sparsity of the network from sparse
connectivity to dense connectivity). For N = 15, the maxi-
mum possible degree can be ∆ = 14 at full mesh connectivity.
In this experiment, ∆ was varied from 2 to 14 at increments
of 2.

The results are shown in Figs 11, where the total number
of consensus iterations K was set to 5. It can be seen that
the ICF performs better than the other distributed algorithms
at all ∆ and almost approaches the centralized performance
at ∆ = 4. For full connectivity, i.e. ∆ = 14, where G is a
complete graph, all the distributed methods achieve centralized
performance.

D. Experiment 4: Varying SR

The objective of this experiment is to compare the perfor-
mance of different approaches as a function of the sensor range
SR (i.e., varying the area of coverage of each sensor.)

Fig. 12 shows the performance of each approach as SR is
varied and the total number of iterations K was set to 5. It can
be seen that ICF performed better than the other distributed
algorithms at each sensor range.

E. Experiment 5: Varying N

The objective of this experiment is to compare the per-
formance of different approaches as a function of the total
number of sensors, N , as it was varied from 5 to 31 at
increments of 2. Values less than 5 were not used because
at such low number of sensors, even the centralized algorithm
cannot perform well due to the high number of time instants at
which the number of measurements is insufficient for the state
vector to be observable, due to the low percentage coverage
of the environment.

Fig. 13 shows results for variable N and fixed K = 20.
As the number of sensors is increased, the observability of
the targets by the network increases, but the number of naive
nodes also increases. Due to the amount of information about
the targets increasing, the performance of all the approaches
(including centralized) improves. For a small N , all the
distributed methods performed close to the centralized method,

because the number of naive nodes is small and the network
distance from a naive node to an informed node is small.
As the number of nodes increases, the number of consensus
iterations required to reach consensus also increases. Thus
we can see that the performance of ICF deviates from the
centralized performance for high number of sensors. For all
N , ICF outperformed the alternative distributed methods.

F. Experiment 6: Arbitrary Communication Graph

In the previous experiments, for the ease of varying differ-
ent parameters, we assumed the communication graph to be
balanced. To show that ICF is applicable for any connected
graph, we conduct experiments on random connected graphs
for N = 15. Edges were added between five random pairs of
nodes on the balanced graph which was used on the previous
examples. The result of this experiment is shown in Fig. 14.
It depicts the fact that as K →∞, for any random connected
graph, ICF converges to the centralized solution.

G. Experiment 7: Full Observability

Limited local observability (i.e., naive nodes) was one of the
motivations for the derivation of the ICF algorithm. To show
that ICF is generally applicable even in scenarios with without
locally unobservable states, in this experiment, we assume that
each node can observe all the targets at all times. From the
results in Fig. 15 it can be seen that still ICF outperforms
the other methods for most cases and achieves the optimal
performance as K →∞.

H. Experiment 8: Stability Analysis

In this experiment, we experimentally verify the stability of
the ICF approach. In Sec. I-C, we have mentioned that the
average consensus algorithm is stable if the consensus rate
parameter ε is chosen between 0 and 1

∆max
. The stability of the

ICF algorithm is directly related to the stability of the average
consensus algorithm. We set ε = α

∆max
and vary α to perform

the stability analysis. From the results in Fig. 16, it can be
seen that ICF is stable for 0 < α < 1 (i.e., 0 < ε < 1

∆max
),

which is the same stability conditions for average consensus
algorithm.

I. Experiment 9: Robustness to inaccurate knowledge of N

Unlike CKF, KCF and GKCF; ICF requires the knowledge
of the total number of nodes N . Total number of nodes N ,
can be computed in a distributed framework [10]. In case of
node failure or inclusion of new nodes to the system, each
agent might have a wrong estimate of N , say N + ∆N . In
this experiment, to test the sensitivity of ICF to the error in the
value of N , ∆N is varied from −N+1 to N . The actual value
of N for this experiment is 31. Total number of iterations, K
was set to 100. The results are shown in Fig. 17. It shows that
ICF is highly tolerant to discrepancies between the actual N
and the estimated N and performs better than other methods
for most cases.
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Fig. 11: Performance comparison of different approaches as a
function of the degree of communication graph, ∆. Increase in
network connectivity increases the performance of all methods.
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Fig. 12: Performance comparison of different approaches by
varying sensor range, SR. As the sensor range increases, the
network gets more measurement information and has fewer
naive nodes increasing overall performance of all methods
(including centralized).
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Fig. 13: Performance comparison of different approaches by
varying total number of sensors, N .
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Fig. 14: Performance comparison for imbalanced communica-
tion graph.
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ē
an

d
S
.D

.
±0

.2
σ

 

 
CKF
KCF
GKCF
ICF

Fig. 15: Performance comparison under unlimited observability.
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Fig. 16: Stability analysis.
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Fig. 17: Robustness to inaccurate knowledge of N .
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Fig. 18: Robustness to model assumption error.

J. Experiment 10: Robustness to non-linear state propagation

Finally, it is natural to ask whether the performance demon-
strated in the previous experiments was highly dependent on
the fact that the estimator incorporated the correct model.

In this final experiment, the ground truth tracks were gen-
erated for t = 1 to 40 using the following non-linear model
of (52).

x(t) = 200e−λ(t−1)


cos(ωt)
sin(ωt)

−λ cos(ωt)− ω cos(ωt)
−λ cos(ωt) + ω cos(ωt)

+


250
250
0
0

 (52)

A total of 20 tracks were generated by varying ω = π
80

to 4π
80 with increments of π

80 and λ = 0.02 to 0.1 with
increments of 0.02. The rest of the simulation settings were
kept unchanged (similar to that of Experiment 1). Thus, in
the estimation step, the linear dynamical model of (30) was
used. Fig. 18 shows the performance of different algorithms
for this simulation. Comparing with Fig. 4 it can be seen that
the performance of all the algorithms deteriorated (including
CKF) as one would expect. However, the relative performance
of the different algorithms are similar. This shows that the ICF
and the performance comparison results are quite robust, even
when the assumed dynamical model does not match the true
state propagation.

VII. CONCLUSION

In this paper we have presented a novel distributed state
estimation framework called the Information-weighted Con-
sensus Filter (ICF) which is generally applicable to almost
any connected sensor network, converges to the optimal
centralized estimate under reasonable conditions, does not
require target hand-off protocols, and requires computation
and communication resource similar to or less than alternative
algorithms. The development of this algorithm was motivated
by applications in camera networks wherein the observability
properties of the state by the nodes is distinct across the
nodes. We compared ICF with the state-of-the-art distributed
estimation methods such as KCF and GKCF, both theoretically
and through simulations. Our simulation results show that ICF
outperforms these methods. The results also indicate that ICF

is robust to situations where optimality conditions are not met.
Future directions of this work might involve the incorporation
of data association strategies to ICF to handle multiple targets.
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APPENDIX

Proposition A.1. The state estimate of ICF using a single step
of consensus iteration can be expressed as

x+
i = x−i +

(
A
(

J−i
N

)
+A(Ui)

)−1

A(ui)−A(Ui)x
−
i + ε

∑
j∈Ni

J−j
N

(
x−j − x−i

)(53)

J+
i = N

(
A
(

J−i
N

)
+A(Ui)

)
(54)

Proof: Using the shorthand notation A() for a single step
of consensus in (26), for a single step we can write,

x+
i =

(
A
(

J−i
N

)
+A(Ui)

)−1

(
A
(

J−i
N

x−i

)
+A(ui)

)
(55)

By adding and subtracting x−i in RHS of (55), we get,

x+
i = x−i +

(
A
(
J−i
N

)
+A (Ui)

)−1

(
A
(
J−i
N

x−i

)
+A(ui)−

(
A
(
J−i
N

)
+A(Ui)

)
x−i

)
= x−i +

(
A
(
J−i
N

)
+A(Ui)

)−1

(
A(ui)−A(Ui)x

−
i +A

(
J−i
N

x−i

)
−A

(
J−i
N

)
x−i

)
(56)

Now, A
(

J−i
N

x−i

)
−A

(
J−i
N

)
x−i

=
J−i
N

x−i + ε
∑
j∈Ni

(
J−j
N

x−j −
J−i
N

x−i

)
− J−i
N

x−i

−ε
∑
j∈Ni

(
J−j
N

x−i −
J−i
N

x−i

)
(57)

= ε
∑
j∈Ni

J−j
N

(
x−j − x−i

)
(58)

Using this result in (56), we get,

x+
i = x−i +

(
A
(

J−i
N

)
+A(Ui)

)−1

A(ui)−A(Ui)x
−
i + ε

∑
j∈Ni

J−j
N

(
x−j − x−i

)(59)

Similarly, J+
i can be written as

J+
i = N

(
A
(

J−i
N

)
+A(Ui)

)
(60)

Proposition A.2. The state estimate of GKCF using a single
step of consensus iteration can be expressed as

x+
i = x−i +

(
A(J−i ) + Si

)−1yi − Six
−
i + ε

∑
j∈Ni

J−j
(
x−j − x−i

) (61)

J+
i = A(J−i ) + Si (62)

Proof: In the GKCF algorithm, after incorporating neigh-
bors priors with a single step consensus we get,

xi(k + 1) =
(
A(J−i )

)−1A(J−i x−i ) (63)

After incorporating measurement information and adding and
subtracting x−i (Si and yi are defined in (44-45)):

x+
i = x−i − x−i + xi(k + 1) +

(
A(J−i ) + Si

)−1

(yi − Sixi(k + 1)) (64)

= x−i +
(
A(J−i ) + Si

)−1(
yi +A(J−i )xi(k + 1)−A(J−i )x−i − Six

−
i

)
= x−i +

(
A(J−i ) + Si

)−1(
yi − Six

−
i +A(J−i x−i )−A(J−i )x−i

)
(65)

= x−i +
(
A(J−i ) + Si

)−1yi − Six
−
i + ε

∑
j∈Ni

J−j
(
x−j − x−i

) (66)

To get (65), the relation in (63) was used. To get (66), the
relation

A(J−i x−i )−A(J−i )x−i = ε
∑
j∈Ni

J−j
(
x−j − x−i

)
. (67)

was used which can be derived in a similar way (58) was
derived. Similarly, J+

i can be written as

J+
i = A(J−i ) + Si. (68)
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