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Abstract—The performance of video-based scene analysis algo-
rithms often suffers because of the inability to effectively acquire
features on the targets. In this paper, we propose a distributed
approach for dynamically controlling the pan, tilt, zoom (PTZ)
parameters of a PTZ camera network so as to maximize system
performance, through opportunistic acquisition of high quality
images. The cameras gain utility by achieving the tracking
specification and through high resolution feature acquisition.
High resolution imagery comes at a higher risk of losing the target
in a dynamic environment due to the corresponding decrease
in the field of view (FOV). This optimization will determine
not only how the cameras are controlled, but also when to
obtain high quality images. The target state estimates, upon
which the control algorithm is dependent, are obtained through a
distributed tracking algorithm. Our approach is developed within
a Bayesian framework to appropriately trade-off value (target
tracking accuracy and image quality) versus risk (probability
of losing track of a target). This article presents the theoretical
solution along with simulation and experimental results on a real
camera network.

I. INTRODUCTION

Camera networks are rich information sources for tasks
related to security and surveillance, environmental monitoring,
disaster response, etc. Many applications require distributed
processing over the network as traditional centralized pro-
cessing scales poorly due to network bandwidth constraints.
Distributed vision systems can enhance or enable operations
in places without pre-existing network infrastructure, like
search and rescue operations and environmental monitoring.
This leads to a multi-agent network of cameras, where the
individual cameras need to actively coordinate between them-
selves to sense, learn and reason about the environment. Many
recent papers such as [1], [2] and [3] have been dedicated to
developing distributed versions of computer vision algorithms.

These agents are given some high-level objectives and rules
to perform certain tasks. As an example, the network might
be tasked with tracking all moving objects, obtaining iden-
tity information for each, and understanding their behaviors.
The rules entail certain video analysis tasks that need to
be performed; for example, tracking involves obtaining the
positions of the targets in the 3D world, person recognition
is obtained from frontal facial shots, understanding behaviors
means obtaining high resolution shots of the entire person
or groups of people when they are in close proximity. The
goal of this paper is to combine these video analysis problems
with multi-agent control mechanisms to provide high quality
imagery for analysis.

A. Related Work

The research presented here is related to a classical problem
of computer vision, namely active vision [4]. However, active
vision in a distributed camera network, where the cameras
coordinate among themselves, is still relatively unexplored.
Many modern vision networks consist of a mixture of static
and PTZ cameras. The placement of these cameras is de-
termined at the moment of deployment. Optimal camera
placement strategies were proposed in [5] and solved by
using a camera placement metric that captures occlusion in
3-D environments, and binary integer programming. In [6], a
solution to the problem of optimal camera placement given
some coverage constraints was presented and can be used to
come up with an initial camera configuration.

In many mixed camera networks, the static cameras and
PTZ cameras are assigned different tasks. The path planning
inspired approach proposed by [7] used static cameras to track
all targets in a virtual environment while PTZ cameras were
assigned to obtain high resolution video from the targets.
This approach showed that given the predicted tracks of all
the targets, a set of one-to-one mappings between cameras
and targets can be formed to acquire high resolution videos.
A method for determining good sensor configurations that
would maximize performance measures was introduced in [8].
The configuration framework was based on the presence of
random occluding objects and two techniques were proposed
to analyze the visibility of the objects. These methods address
the camera network reconfiguration problem in a centralized
manner and may not be ideal for applications constrained by
bandwidth and power.

A recent distributable approach in [9] uses the Expectation-
Maximization (EM) algorithm to find the optimal configura-
tion of PTZ cameras given a map of activities. The value of
each discretized ground coordinate is determined using the
map of activities. This approach upon convergence of the EM
algorithm, provides the PTZ settings to optimally cover an area
given the map of activities. The authors in [10], [11] showed
how cameras can coordinate between themselves to perform
area coverage. Preliminary work in target tracking with the
ability to obtain high resolution shots was shown in [12] for
a single timestep simulation.

The distributed optimization approach proposed here can
be mapped to the EM approach used in [9]. The prediction
of the global utility is comparable to the expectation step and
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Fig. 1. Diagram depicting the framework for integrating scene analysis and
PTZ control.
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Fig. 2. Timeline of events between image sample times.

the maximization of the camera utility can be related to the
maximization step in the EM approach. In these methods the
cameras coordinate between themselves to always meet the
objective. However, as the complexity of the system increases
and there are multiple objectives to be satisfied, it is highly
unlikely that each objective can be met at every point of
time. Nor is it necessary as the design of such a system
would be a huge waste of resources. Our method differs by
opportunistically aquiring images that satisfy each objective.
For example, since a single passport quality image of the face
is usually enough for recognition, we design our optimization
function so that we gain utility only when a higher quality
image is able to be obtained.

II. SOLUTION OVERVIEW

Our solution shown in Fig. 1 can find application in any
visual surveillance system that contains PTZ cameras. PTZ
configurations with large FOVs can monitor a large area of the
enviroment but may not supply reliable images for recognition
tasks. On the other hand, PTZ configurations pointed and
zoomed in on specific areas of interest can gather useful
images for recognition, but have a much smaller view of the
scene. The proposed work is based on the idea that PTZ
cameras can be automatically scheduled to satisfy multiple
objectives based on the state of the scene and the state of
the video surveillance system. Thus, the video streams are
processed in order to detect and track moving objects; these
are then processed to determine the best collection of PTZ
parameters for the following time instant. A timeline of these
events can be seen in Fig. 2. We assume each PTZ camera
in our network is capable of low level video processing. In
a large network, the ability to process video data locally
significantly reduces bandwidth consumption. A distributed
solution where each camera is responsible for incorporating
its local data would eliminate the problems associated with
transmitting many simultaneous video feeds to a central server.
We maintain this view as we build our functions for evaluating

the PTZ settings available to each camera. We show results for
a surveillance system comprised of PTZ cameras tasked with
tracking and recognition of people over a wide area.

III. METHODOLOGY

Our task has many similarities to problems in cooperative
game theory, in which players’ decisions are based on a utility
function and the actions of the other players: in our case each
camera decides on a configuration given its local information
and the choices of the other cameras. One of the more popular
methods to solve such cooperative games is Nash equilibria
[13].

The design cooperative games parallels the theme of dis-
tributed optimization and can be thought of as a concate-
nation between a designed game and a distributed learning
algorithm [14]. We give a short description of cooperative
games followed by how it can be applied to active sensing
in a distributed camera network.

A. Cooperative Games and Camera Reconfiguration

The concept of Nash equilibrium is where each player
makes the best decision, taking into account the best decisions
of every other player. While there are many games where this
analysis may be applied, we describe the special case called
the ordinal potential game. In such a game, the incentive of all
players to change their actions can be expressed in a global
potential function Φ [13]. Also, any positive change in the
local utility results in a positive change in the global potential
function. This allows us to maximize the global potential
function by maximizing the local utility of each player in turn.

This cooperative control approach has recieved significant
attention in recent years, mostly in the design of autonomous
vehicles; an autonomous vehicle-target assignment problem
was solved using this approach in [15]. The question is how
can this analysis be applied to active sensing in a camera
network? The basic idea is that the potential function Φ
represents the performance of the system as a whole, in
relation to the goals of tracking, identifying and interpreting
the interactions of people in the area under surveillance. By
viewing each camera as a player, its local utility UCi can be
defined as equivalent to its contribution to the global system
performance Φ. More formally, if a ∈ S, where S is the
collection of all possible camera PTZ settings in the game G,
and Si is the collection of all possible camera PTZ settings
for camera Ci, then the function Φ(a) : S → < is an ordinal
potential function for the game G, if ∀a ∈ S and ∀ai,bi ∈ Si,

UCi(bi,a−i)− UCi(ai,a−i) > 0

⇒ Φ(bi,a−i)− Φ(ai,a−i) > 0 (1)

where, a−i is the set of camera PTZ settings excluding the
settings for camera Ci and ∆UCi

(a) > 0 makes the game
a maximum game. This allows us to maximize the system
performance through the maximization of the local utility of
each camera according to Algorithm 1.



Algorithm 1 Distributed Optimization Strategy
Input: Camera Ci

Ci calculates parameters needed to maximize UCi
(ai) based on the

proposed settings of the other cameras
if Ci needs to change its parameters to maximize its utility then

Ci changes its parameters
Ci broadcasts its parameters to all cameras in the network

end if

B. Potential and Utility Functions

Now that we have mapped our problem into the domain
of potential games, we need to design a resonable Φ(a) and
corresponding UCi

(a) given the goals of our system. The basis
for many identification or recognition algorithms is a series
of high resolution images of a particular feature or set of
features. Aquiring such images requires the targets to be well
tracked, so that there is little possibility of failing to aquire a
target or feature when zooming in. We begin by describing
the measurement model, followed by the design of utility
functions representative of each goal. Finally, we will show
how the global and local utilities are designed.

1) Measurement Model: This section descibes the measure-
ment model for target j by camera i. We assume that an esti-
mate wp̂j of the target position in the world is available, that
wpci is known, and that the rotation from the world to the i-th
camera frame ci

wR is known. The rotation matrix ci
wR(ρi, τi)

is dependent on the pan angle ρi and tilt angle τi selected for
camera i and the focal length Fci is dependent on the zoom
setting ζi. We use the notation cipj =

[
cixj , ciyj , cizj

]>
for

the position of the j-th target in the camera frame.
The j-th target’s position in the camera frame is related to

the position of that target in the global frame by[
cipj

1

]
=

[
ci
wR 0
0> 1

] [
I −wpci
0> 1

] [
wpj

1

]
, (2)

where 0 ∈ <3×1 and I is the identity matrix in <3.
In homogenous coordinates, the i-th camera’s image plane

coordinates for the j-th target, impj = [imxh,
imyh,

imw]>,
are

impj =

 −
Fci

sx
0 0 ox

0 −Fci

sy
0 oy

0 0 1 0

[ cipj
1

]
. (3)

In Eqn. (3), impj are the homogenous coordinates of the
target’s position on the image plane with weight imw. The
symbols ox and oy represent the coordinates of the location
of the image center in pixel coordinates, sx and sy represent
the effective pixel size in the horizontal and vertical direction,
respectively, and Fci is the focal length of the i-th camera.

The pixel coordinates of the target’s position can then be
determined by

imuj = f(impj) =

[
imxh
imw
imyh
imw

]
. (4)

Accounting for noise, the measurement from the i-th camera
is

imũj = imuj + imη (5)

where we assume that imη ∼ N (02×1,Qi).
2) Tracking Utility: The purpose of the tracking utility is

to quantify how well camera Ci believes the system will track
target T j given the proposed settings for all cameras. As we
are interested in a fully distributed system, we assume that
a distributed tracker, capable of providing a fused state wx̄j

and error covariance Pj for each target, is present. For our
experiments we used the Kalman-consensus tracker from [16].

The state of each target is represented in the world frame
and contains both the position and velocity and is represented
as wx̄j = [wpj ,wvj ], where wpj = [x, y] and wvj = [vx, vy].
The error covariance matrix Pj can be represented in block
form as

Pj =

[
Pjpp Pjpv
Pjvp Pjvv

]
, (6)

where Pjpp represents the position error covariance matrix.
Assuming calibration we can compute the linearized transfor-
mation matrix Hj

i [17] between the world and image for each
camera. As Hj

i is a function of the PTZ of the camera and
target we can evaluate the expected error covariance of the
target given the proposed PTZ settings of all cameras as

Pj+ =

(
(Pj−)−1 +

NC∑
i=1

Hj>

i (Qj
i )
−1Hj

i

)−1

, (7)

where NC is the number of cameras viewing target T j .
The corresponding posterior information matrix is denoted as
Jj+ =

(
Pj+

)−1
. We now define the tracking utility as the

average trace of the information of all targets,

UT (a) =
1

NT

NT∑
j=1

trace(Jj+) (8)

3) Imaging Utility: The purpose of the imaging utility is to
determine whether the resolution and/or pose requirements of
target T j or features of target T j are satisfied by the camera
network using settings profile a. Thus, the imaging utility
is comprised of view angle and resolution coefficients. In
many instances, only a few high quality images per target are
sufficient for recognition . Once one such image is acquired for
T j , then the utility contributed by the imaging utility should
have added value only if a better image can be procured at a
new viewing angle θjni that is closer to the optimal view angle
θ̄j , or at a higher resolution, or both.
Imaging at Specified Pose: Let T j maneuver in the area with a
direction vector oT j . Defining a vector oCi

from camera Ci’s
position wpi to T j’s estimated position wp̂j , we can compute
the view angle θji formed by T j at Ci as,

θji = arccos

(
oT j · oCi

‖oT j‖‖oCi‖

)
(9)

where all viewing angles are between 0 and 2π. An illustration
of the view angle factor is shown in Fig. 3. Let us assume that
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Fig. 3. Camera viewing angle and Target pose.

at a previous time, a high resolution image of T j was obtained
at viewing angle θjp . Let θjni be the angle at which camera
Ci can procure a new image of T j . Defining a view angle
coefficient mθ

i that weighs U jI (a) to provide a higher value
for a new viewing angle θjni closer to the desired angle θ̄j

than the previous viewing angle θjp ,

mθ
i =

{ |θjp−|θ̄j−θjni ||
|θ̄j−θjp | if

∣∣∣θjp − |θ̄j − θjni |∣∣∣ > ∣∣θ̄j − θjp ∣∣
0 otherwise

(10)
Assuming that the target is facing in the direction of motion
and θ̄j = 0, Eqn.(10) provides a positive non-zero value of mθ

i ,
only when target T j is moving towards the camera. Thus, the
scalar mθ

i measures alignment of the camera-to-target vector
with the target’s direction vector.

Imaging at Specified Resolution: We then define a resolu-
tion coefficient mr

i as a measure of viewing target T j at
desired resolution r̄.

mr
i =

{
rji−r
r̄−r if r < rji > r̄

0 otherwise
(11)

where r and r̄ are the minimum and maximum height require-
ments of target T j in the camera image plane, and rji is the
resolution at which T j or feature of T j is being viewed at by
Ci.

Thus, we can now define an imaging utility U jI (a) for a
given pose and resolution requirement as:

U jI (a) = max
i

(
mθ
im

r
i

)
(12)

The maximization of U jI (a) across all targets T j would thus
lead to a set of PTZ settings resulting in the best set of images
given the pose and resolution requirements of each target.

4) Global Potential Function: We can now define the
global potential Φ(a) representing the system goals as:

Φ(a) = UT (a) +

NT∑
j=1

g (UT )U jIw
j(a). (13)

In this definition, U jI (a) is a function that rewards high
resolution face images of T j . The function g is a continuously
differentiable monotonically increasing bounded function and
wj is a possibly time varying weight that magnifies the

importance of imagery for certain targets relative to others.
The function g (UT ) is defined as:

g (UT ) =
1

1 + exp
(
κg
(
P̄ − UT

)) , (14)

where P̄ is the tracking accuracy threshold. Such a choice
of g, for large κg , ensures that the maximization of U jI (a)
for any target is only factored in under the condition that
all coordinates of all targets are expected to exceed the
accuracy specified by P̄ . If this condition is not satisfied, the
second term in Eqn.(13) is near zero. High priority is given
to obtaining high quality facial images, once all targets are
tracked to an accuracy better than P̄ .

Assuming quality of image capture to be a function of the
number of pixels on the target being imaged, it is desirable to
have U jI (a) as a monotonically increasing function but only
until an imaging threshold r̄(a) is met. Let the threshold r̄(a)
be a function of the maximum number of pixels permissible
on the target in the image for efficient target recognition.
Subsequently, U jI (a) should monotonically decrease. Various
choices are possible for U jI (a) depending on the desired
behavior, one of which has been defined in Eqn.(12).

5) Bayesian Value V (a): Because the global utility Φ(a)
that is actually received is dependent on the random variables
wpj(k + 1) for j = 1, . . . , NT , through Hj

i and the FOV, the
global utility is a random variable. Therefore, the optimization
will be based on the expected value of the global potential
function Φ(a) over the distribution of the uncertainty in the
estimated position of the target.

Hence, we define a Bayesian value function V (a) as:

V (a) = E
〈
Φ(a;wpj , j = 1, . . . , NT )

〉
(15)

=

∫
Φ(a)pp (ζ) dζ (16)

The dummy variable ζ is used for integration over the ground
plane and pp is the Normal distribution N (wp̂j ,Pj−pp) of
the predicted position of T j in the global frame at the next
imaging instant, where Pj−pp represents the position covariance
matrix.

The integral represents the area spanned by the FOV of
the camera. Inside the integral, the global utility Φ(a) is
multiplied by the probability distribution function pp, where
the maximum value for pp occurs at the estimated target
position wp̂j . Thus, integrating over the FOV makes the
camera Ci select a settings profile ai such that most of the
ellipsoid formed by the position covariance matrix Pj−pp around
the position estimate wp̂j , is in view, thus reducing the risk
of not imaging the target.

6) Local Camera Utility Function: All that remains is
to appropriately design the local camera utilty such that it
satisfies Equation 1. This can be achieved by decoupling V (a)
into the contributions made by camera Ci and all the other C−i
cameras and can be written as,

UCi(ai) = V (a)− V (a−i). (17)



We can then maximize the global potential function by solving
for Nash equilibrium according to Algorithm 1.

C. Applications

The utility functions defined above can be used in a number
of different applications. For face recognition we set the
θ̄j = 0 as facial images are best obtained from the front. For
interactions such as handing over objects, shaking hands and
waving, a high resolution side view of the targets provide more
discernable images. This can be easily handled by our existing
imaging utility defined in Section. III-B3 by setting the pose
requirement θ̄j = π and the target resolution requirements r
and r̄. In cases where only resolution of the feature matters,
we could set mθ

i = 1. This would make the imaging utility a
function of only resolution.

While the global potential function defined above is for two
goals, it can also be easily modified to add an additional sys-
tem goals. For example, if we wanted to recognize interactions
between targets in addition to tracking and identification, we
could add another imaging utility to Φ(a).

IV. EXPERIMENTAL RESULTS

Conducting experiments on real distributed camera net-
works can be very challenging; controlling these cameras
autonomously further complicates things as every component
needs to work, and in real-time. We used roof mounted AXIS
PTZ 215 cameras connected though a Wireless-G network. As
we did not have the developmental resources to develop a fully
distributed embedded system, the video data was streamed to
a PC where each camera operated within its own software
thread. Thus, the experimental framework is still limited by
the bandwidth and processing constraints of traditional sys-
tems.The performance is also reliant on the performance and
capability of the algorithms chosen for detecton and tracking.
In this experiment we used a simple background subtraction
based detector in conjunction with the distributed Kalman-
consensus tracker mentioned earlier. Fig.(4) shows the typical
images aquired when optimizing the tracking performance
only (i.e, imaging utility is not considered). We can see that as
tracked targets move through the area higher resolution images
may be aquired to improve the tracking accuracy. However
these high resolution full body images may have insufficient
resolution and pose for identification based on facial images.

We now show how cameras in a distributed network collab-
orate to decide how and when to obtain high quality images
of features. The orientation of the target is determined by its
estimated velocity vector if the magnitude is above 10 cm/s.
Otherwise it is assumed to be unknown and the U jI (a) for
that target will be 0. The face was assumed to be located
in the topmost 40 cm of the target’s height and the expected
resolution is the height of this region in pixels. We setup a
sensor network of three calibrated PTZ cameras and NT = 4
targets, located in and around the area. As Hj

i is dependent
on the camera parameters, we calibrated each camera at a
particular setting and the rest of the homography matrices were
determined by modifying the values in Eqn. (2) and (3). The

(a)

(b)

Fig. 4. The images in (a) and (b) are captured by our real life system
with NC = 4 cameras. These images are the typical results we get
when the tracking performance for targets is being optimized. What
is important here is that while higher resolution images of different
targets may be acquired to improve tracking, the faces are very hard
to make out and are not very good for identification purposes.

results are shown for a period of T = 50 seconds. All cameras
were set to resolution of 320× 240 pixels.

The plots of the utility functions along with the tracking
error covariance and the resolution of the faces are shown in
Fig.(5). By using only NC = 3 cameras to maintain coverage,
many situations where the tracking threshold P̄ is not met
can be clearly seen in the g(UT ) plot in Fig.(5). At time-
step t11 the pose and resolution requirement for a target is
satisfied and thus a high value for UI(a) is seen. This results
in capture of a high quality face image at time-step t12 of T 1

at 48.0◦ from the desired angle. It also leads to reduction in
tracking performance due to having one less camera generating
measurements, which can be seen as a reduction in UT (a).
Another high-resolution image is obtained at t28 for target T 1,



Fig. 5. Plots of utilities, tracking covariance, image resolution, and the function g(UT ), for NC = 3 cameras, to track and image NT = 4
targets. The global potential Φ(a) represents the summation of tracking and imaging utilities. The tracking utility UT (a) is a measure of
the tracking performance of the least accurately tracked target. When UT (a) satisfies tracking threshold P̄ , a non-zero value for the function
g(UT ) is obtained. If pose and resolution requirements for imaging the target are satisfied, then a spike for the imaging utility UI(a) can
be seen.

at angular distance of 7.6◦. The second high-resolution image
for the same target is obtained, due to an improvement over
the previous viewing angle. This leads also to degradation in
tracking. But, in spite of degradation in UT (a), it stays above
P̄ , thus enabling g(UT ) to have a non-zero value. We can see
that the face images acquired are of much better quality than
those shown earlier in Fig.(4).

V. CONCLUSION

In this article, we proposed a method to prioritize tasks for
a distributed camera network to co-operatively track all targets
and procure high resolution images, when the opportunity
arises, subject to target pose and other criteria. We designed
utility functions to evaluate the PTZ settings of the cameras for
both tracking and feature imaging. These were used within our
Bayesian distributed optimization framework to select optimal
PTZ settings for the camera network at every time instant.
We also showed in our results how our designed utilities
reduced the resources required to enable high quality feature
acquisition.
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