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ABSTRACT

We present a novel 3D model-based distributed video coding algo-
rithm. It is based on independent, model-based tracking of multi-
ple sources and distributed coding of the tracked feature points.
The model-based tracking scheme provides correspondence be-
tween the overlapping set of features that are visible in the dif-
ferent views. While the motion estimates obtained from the track-
ing algorithm remove temporal redundancy and the 3D model ac-
counts for removing spatial redundancy, distributed coding is used
to eliminate inter-sensor redundancy. Thus, in contrast to most of
the current video compression standards which only exploit spa-
tial and temporal redundancy within each video sequence, we also
consider the significant redundancybetween the sequences. Re-
sults demonstrate that our algorithm yields a significant saving in
bit rate on the overlapping portion of multiple views.

1. INTRODUCTION

Transmission of video data from multiple sensors over a wire-
less network requires enormous amount of bandwidth, and could
easily overwhelm the system. However, by exploiting the redun-
dancybetween the video data collected by different cameras, in
addition to the inherent temporal and spatial redundancywithin
each video sequence, the required bandwidth can be significantly
reduced. Well-established video compression standards, such as
MPEG1, MPEG2, MPEG4, H261, and H263, all rely on efficient
transform coding of motion-compensated frames, exclusively us-
ing the discrete cosine transform (DCT). However, they can only
be used in a protocol that encodes the data of each sensor indepen-
dently. Such methods would exploit spatial and temporal redun-
dancy within each video sequence, but would completely ignore
the significant redundancy between the sequences.
Contribution of the Paper: In this paper, we develop a novel
multi-terminal, model-based video coding algorithm combining
distributed source coding (DSC) and computer vision techniques.
This lossy compression scheme takes into account the correla-
tion between the video sensor data, and at the same time keeps
the communication between the sensors at a minimum. In broad
terms, our scheme relies on model-based tracking of individual
video sequences captured by cameras (which could be located ar-
bitrarily in space) [15], leading to removal of spatial and temporal
redundancies, followed by distributed coding of the tracked feature
points [9]. The presence of the 3D model provides correspondence
between overlapping feature points in the different views, provided
that the tracking of the individual sequences is accurate. The per-
formance of our algorithm depends, most crucially, on the quality
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of tracking and the coding efficiency of the distributed quantization
scheme. The tracking must result in correspondences between pix-
els that are maximally correlated, and the distributed coding must
optimally exploit this correlation.
Relation to Previous Work: It is worth noting that there has re-
cently been significant effort in application of DSC techniques to
video data. The novelty of this work lies in the use of computer
vision techniques to reduce inter-camera redundancy in a multi-
camera setting. In what is broadly known as distributed video cod-
ing (e.g., [5, 10]), DSC is utilized either for the exploitation of
temporal correlation in a single video stream, or for better error
resilience. A recent method [11] attempts to exploit the redun-
dancy between images available at different sensor nodes by in-
dependently encoding the images in low resolution and decoding
using superresolution techniques. The high correlation between
the low-resolution images, however, is not exploited, and therefore
higher coding gains promised by multi-terminal source coding the-
ory [1, 7, 8] are not reached. Another recent work [3] developed
a distributed image coding technique for a multi-camera setting
with several restrictive constraints: cameras are located along a
horizontal line, the objects are within a certain known range from
the cameras, and the image intensity field is piecewise polyno-
mial. For image-based rendering applications, [13] exhibits a suc-
cessful algorithm for Wyner-Ziv coding of the light field whereby
complexity is shifted from the encoders to the decoder,but geo-
metrical relationships between camera positions is not taken into
account. In [16], we presented an algorithm for multi-terminal
video compression using epipolar geometry to obtain correspon-
dences between macroblocks (MBs) in two video sequences. This
paper shows how that general framework can be extended to the
case of model-based compression. The use of a 3D model reduces
the inter-sensor exchange since all we have to transmit between
cameras is a binary map of the common set of features, and it suf-
fices to transmit this information only when there is an appearance
or disappearance of features. Moreover, we avoid the problem of
overlapping MBs or gaps between MBs.

The rest of the paper is organized as follows. Section 2 presents
the details of the utilized distributed coding scheme. Section 3
outlines the model-based tracking algorithm. Section 4 presents
an overview of our approach to distributed video coding. In Sec-
tion 5, some experimental results are presented. Finally, Section 6
gives the conclusion and the future work.

2. DISTRIBUTED SOURCE CODING

The fundamental ingredient of DSC, both in lossless and lossy
cases, isbinning [1, 8], i.e., a many-to-one mapping of the ac-
tual data taken from the sources to a limited number of values.
Through binning, the correlation between the sources can be ex-



ploited without any communication between the sensors.
For two maximally correlated pair of feature pixels from each

view, we use distributed scalar quantization of the pixel values.
Our scalar coding method is provably competitive (in the sense of
approaching the rate-distortion bounds) in high bit rates, which is a
promising result for the intended (lower bit-rate) applications. Let
the shaded region shown in Figure 1 indicate thesupport of a pair
of pixel valuesX andY we need to quantize. We devise a coding
mechanism which encodes the scalars that are inside the support
with a small enough distortion, and simply ignore any pair of val-
ues falling outside. The encoding must be performed separately,
and therefore the cells used for the covering must consist of Carte-
sian products of individual intervals. The particular assignment in
Figure1 indeed ensuresunique decodability, as each pair of code-
words pinpoint to asingle cell that is used in the covering of the
support. The example codeword pair shown in the figure,{0,3},
actually corresponds to 4 different cells, but only one of those has
a high probability of occurring, and therefore is used for the cover-
ing of the support, i.e., as the decoded output. The same statement
can be made for all codeword pairs in{0,. . . ,5}×{0,. . . ,5}.

As in [9], we consider a family of codes parameterized by
three integers,W , NX andNY . The dynamic ranges of bothX
andY are divided intoW ×NX ×NY intervals, thereby defining
a grid on the two dimensional plane. The achieved fixed-length
coding rates for theX- and Y -encoders aredlog2 WNXe and
dlog2 WNY e, respectively. For jointly Gaussian source pairs, we
were able to analyze the performance of our scheme rigorously [9],
which proved its competitiveness in two aspects: (i) under the uni-
form high-resolution quantization regime, by separate encoding of
X andY , one can achieve the same total distortion one would
achieve even if bothX andY were available at a single sensor
node [4, Section 8.3], and (ii) under high-resolution assumption,
this simple binning technique can attain total rates as close as3.05
bits to the asymptotical rate-distortion bound characterized in [7].
When used together with non-uniform quantization and variable-
length coding, the gap between the rates achieved by this technique
and the rate-distortion bound reduces to less than 2 bits [2].

3. MODEL BASED TRACKING

The concept of 3D model-based tracking is well-developed [15].
A texture-mapped model of an object is registered to an image of
the object in the first frame. Thereafter, the object is tracked in
subsequent images by estimating the 3D translation (T ∈ <3) and
rotation (R ∈ SO(3)) of the model. This estimation is done by
minimizing the reprojection error between the input image and the
projection of the 3D model. This is continued for each new incom-
ing frame. Since the current pose is obtained from the prediction
of the pose in the previous frame, the problem of drift needs to
be taken care of, possibly by re-registering the model to an im-
age. For the purposes of this paper, we used the tracking algo-
rithm described in [14], whose main novelty is handling illumina-
tion changes. For the sake of space, we do not go into the details
of this algorithm. Any other 3D model-based tracking algorithm
would also have served our purpose.

Model-based compression schemes rely on the tracking algo-
rithm to compute the residuals between the input image and the
projection of the 3D model using the estimated motion. The 3D
model is available at both the encoder and decoder. The encoder
transmits the motion estimates and residuals in each frame, while
the decoder reconstructs the image at timet by rendering an image
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Fig. 1. Proposed coding scheme withW = 3, NX = 2, and
NY = 2. As can be seen, 3 cells indicated in bold, suffice to cover
the support of the source, indicated as the shaded area, everywhere.

using the 3D model and motion estimates and adding the residuals
for that frame.

4. DISTRIBUTED MODEL-BASED COMPRESSION
ALGORITHM

At the time of registering the 3D object model to the first image in
each of the different views, the correspondence of feature points
between different views is obtained. This correspondence, which
is obtained through the 3D model, remains the same, as the ob-
ject moves and the features are tracked. The first frame is coded
using the distributed scheme described in Section 2 (intra-frame).
After that, the estimated motion and residuals are quantized and
transmitted, as in any standard 3D model-based compression al-
gorithm [17] (predictive frames). However, due to drift errors, we
will need to intra-code after a few predictive frames (as in stan-
dard MPEG coders). If re-registration is required, we can use a
slight modification of the tracking algorithm, where it starts with
the predicted pose and obtains the precise registration [18]. Thus,
our scheme relies on distributed coding for intra-frames (I-frames)
and separate coding for the predictive frames (P-frames). Since
I-frames need the maximum number of bits, the overall savings in
transmission rate is substantial. The following is an overview of
the algorithm.
Intra-Frame Coding: Register the 3D model to the input im-
age frame in each of the views. Thereafter, the distributed cod-
ing scheme of Section 2 is used on the intensity values of each
corresponding feature point pair. The correspondence is obtained
through the 3D model.
Inter-Frame Coding: Assume that we have encoded and decoded
till frame t, and the next frame isIt+1. The encoders for the two
views then separately take the following steps.

Step E1: Estimate the motion fromIt to It+1 using the tracking
algorithm. Render the image,Ĩt+1, using the estimated mo-
tion and 3D model.
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Fig. 2. (a)-(b): Original images of left view and right view respectively for the first frame. (c)-(d): Reconstructed results using the proposed
compression scheme. (e)-(f): Original images of left view and right view respectively for the seventeenth frame. (g)-(h): Reconstructed
results using the proposed compression scheme.

Step E2: Compute the residualδIt+1 = It+1− Ĩt+1. If the resid-
ual is above a certain threshold, go to Intra-frame coding.
Else proceed to next step.

Step E3: Quantize the result from Step E2.

Step E4: Transmit the quantized residuals, along with the quan-
tized rotation and translation vectors.

The following are the actions taken by the decoders.

Step D1: Dequantize the 3D motion estimates and illumination
parameters.

Step D2: Dequantize the residuals, and denote it asδ̂It+1.

Step D3: Using the 3D motion estimates and the 3D model, syn-

thesize an estimate of the rendered image,ˆ̃It+1.

Step D4: Obtain the reconstructed image asÎt+1 = ˆ̃It+1+δ̂It+1.

It should be noted that unlike usual predictive coding schemes
such as the DPCM, the in-built decoder at the encoders may not
be in synch with the actual decoders. That is because if a pair of
corresponding pixel values at the I-frame falls outside of the sup-
port set indicated in Figure 1, their reconstruction at the decoder
will be different from the reconstruction estimate at the encoder.
Even though the P-frame coding is traditional, this possibly out-
of-synch initialization of the reconstruction may cause drift. One
remedy to this problem is to use a low prediction coefficientρ, and

useδIt+1 = It+1 − ρĨt+1 andÎt+1 = ρ
ˆ̃
It+1 + δ̂It+1, so that the

discrepancy between the built-in decoders and the actual decoders
will be quickly forgotten. Analysis of the tradeoff betweenρ and
the coding efficiency is left as future work.

5. EXPERIMENTAL RESULTS

In our experiments, we applied the distributed model-based com-
pression algorithm on a video sequence of a rotating head. The
original images in the first frame (I-frame) in both the sequences
and the reconstructed images at the decoder are shown in Figure
2(a-d). The original images in the seventeenth frame (first I-frame

followed by sixteenth P-frames) and the reconstruction results are
shown in Figure 2(e-h). A binary visibility map of the common
set of features is exchanged between the sensors whenever there
is an appearance or disappearance of features. The bit-rate for the
I-frame is 0.40 bits per pixel (bpp) and the average bit-rate for P-
frame is 0.24 bpp.

In Figure 3, we show the effect of choosingW under fixed
bit-rate for the I-frame. The horizontal axis represents the average
number bits used for each pixel in encoded area of the image (i.e.,
the face) and the vertical axis is for the PSNR of the reconstructed
image compared with the input image. We also compare with the
results of the conventional model-based coding of the two sources
separately. Employing distributed coding is clearly advantageous
over separate coding of the I-frame. More specifically, we observe
as high as 3dB gain in PSNR over separate coding. It is also inter-
esting to observe that in low bit rates,W = 1 outperforms other
values ofW . That is because in the low-resolution quantization
regime,W = 1 already sufficiently covers the support set.

We also show in Figure 4 the distortion of the P-frames, where
the number of quantization levels for the residuals is fixed as 8,
16, or 32. In this plot, only the first frame is intra-coded and all
subsequent frames are P-frames. The plot shows that around the
fifteenth frame, there is a decrease in the achieved PSNR, and thus
we need to switch to intra-coding. However, it should be borne in
mind that this is the distortion between the decoded image and in-
put image. In a distributed scheme, the in-built decoder within the
encoder will not have access to this result. Thus the actual determi-
nation of the instance where the P-frame sequence is broken by an
I-frame will have to be made on the basis of the residuals in each
sequence (i.e., the sum of tracking and quantization errors). We
have not analyzed this issue in this paper in detail and obtaining a
robust scheme for determining I-frames in a distributed setting is
part of our future work.

6. CONCLUSIONS

In this paper, we have presented an algorithm for distributed, model-
based video compression. Our scheme relies on 3D model-based
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tracking algorithm that operates independently on each of the video
sequences. The tracked features points are coded using a combi-
nation of distributed compression and predictive coding schemes.
I-frames are coded using the distributed scheme, while P-frames
are reconstructed from the transmitted motion estimates and im-
age residuals. Since I-frames account for a significant amount of
the total bit budget, significant savings in resources is possible us-
ing this scheme.
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