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ABSTRACT

We present an approach which incorporates spatiotemporal
features as well as the relationships between them, into a
sparse dictionary learning framework for activity recognition.
We propose that the dictionary learning framework can be
adapted to learning complex relationships between features in
an unsupervised manner. From a set of training videos, a dic-
tionary is learned for individual features, as well as the rela-
tionships between them using a stacked predictive sparse de-
composition framework. This combined dictionary provides
a representation of the structure of the video and is spatio-
temporally pooled in a local manner to obtain descriptors.
The descriptors are then combined using a multiple kernel
learning framework to design classifiers. Experiments have
been conducted on two popular activity recognition datasets
to demonstrate the superior performance of our approach on
single person as well as multi-person activities.

Index Terms— Sparse coding, activity recognition, mul-
tiple kernel learning

1. INTRODUCTION

Most traditional approaches for activity recognition [1] ex-
tract a set of spatio-temporal features which represent the
points of interest in the video. These feature descriptors are
then fed to classifiers to learn different action categories.
Recently, it has been widely acknowledged that, in addi-
tion to the features themselves, the structural similarities [2]
between sets of features play an important role in discrimi-
nating between activities. In other words, the spatiotemporal
arrangement of features can provide contextual information
to distinguish between actions that result in similar feature
sets. Researchers have proposed different ways to represent
this structure. Approaches such as [2], [3] have encoded these
relationships as logical relations or as graph-based models.
However, such methods use “hand picked” attributes to rep-
resent structure and/or require graph matching algorithms to
quantify structural similarities. We propose that sparse dic-
tionary learning methods can be used to automatically learn a
natural representation of the structural relationships between
features.
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Recently, sparse coding techniques have gained popular-
ity in the field of activity recognition. Different methods of
sparse dictionary learning such as deep Boltzmann machines
[4], stacked auto-encoders and sparse coders [5] have been
used to represent image data in the context of object recog-
nition. A 3D convolutional network learned over a fixed set
of input frames to represent the video was proposed in [6].
A cascading systems of independent subspace analysis and
spatial pooling was used to learn a set of local features which
was then classified using K-means vector quantization and x?2
kernel in [7]. Action attributes were modeled using a sparse
dictionary based representation in [8]. Anomaly detection
was performed by measuring the encoding error of features
learned using sparse coding in [9]. Sparse coding in conjunc-
tion with spatial temporal pyramid matching was proposed for
activity recognition in [10]. Shift invariant sparse coding was
used for activity recognition in [11]. However, most of these
approaches work on a video representation using pixel data
computed over the entire video and do not explore structural
relationships between features.

As an alternative, we design a sparse dictionary learn-
ing approach to learn a compact dictionary from well-known
features such as space time interest points or HOG features.
We suggest that, these interest points provide an effective
and compact representation of patterns in a video. How-
ever, for efficient activity recognition, an effective encoding
of these features is essential. This is where sparse coding
can be useful. Sparse dictionary learning provides us with
a more efficient non-linear encoding method as compared to
vector quantization [12]. In addition, we also utilize sparse
dictionary learning to learn a “‘combination dictionary” for a
set of “combination features” which can then be used along
with the individual features for recognition. The combination
features would encode more complex relationships between
features as compared to traditional approaches.

Given a set of training videos, we first compute some well
known features such as [13]. We then perform a dictionary
learning for the features using a predictive sparse decompo-
sition (PSD) algorithm. This is a sparse dictionary learning
framework which learns a dictionary and a set of sparse co-
efficients, as well as an “encoder” through a feedback mech-
anism. The encoder can be used to generate the sparse co-
efficients for any given input by a simple matrix vector mul-
tiplication. Similarly, we also learn a relationship dictionary



which is learned through a PSD with pairs of features as in-
put. This dictionary encodes the structural relationship be-
tween different pairs of features as observed in the training
data. A local pooling strategy is then applied to the individual
features as well as the relationship features to generate feature
descriptors. These feature descriptors are then combined to
learn a discriminative classifier using a multiple kernel learn-
ing approach.

The main contributions of our work are: 1) We propose a
novel representation to learn the structural relationships be-
tween features in the context of activity recognition. 2) We
learn a compact dictionary of structure elements using pre-
dictive sparse decomposition, which can then be used to train
classifiers in a manner similar to individual feature dictionar-
ies. 3) We describe a method to combine the individual fea-
tures with structural features using a multiple kernel learning
framework for classification of activities.

2. SPARSE CODING FRAMEWORK

1. Video Representation

We use STIP points [13] as a set of individual features, or
salient points in the video. We utilize the histogram of gradi-
ents (HOG) descriptor constructed over these interest points.
Therefore, the video is composed of a set of p individual STIP
features given by F"d = {find, find. . find},

We also define pairs of features in a video as “combina-
tion features” since they capture the structural information in
the video. A combination feature is obtained by a concate-
nation of a pair of features along with their relative spatial
and temporal information. A combination feature can be writ-
ten as [ = [(2; — ), (01 — ;) (b — 1), fim?, 7).
The set of all combination features in a video can be given
by Feom = {feombyi j € {1,2,..p}}. Note that, we scale
the space and time coordinates of the interest points to lie in
a unit cube to make it independent of the actual co-ordinates
in a video. Also, here, we restrict the model to computing
combination features between points which are within a pre-
defined spatio-temporal distance of each other. This distance
can be fixed by the user.

2.2. Stacked Predictive Sparse Coding (SPSD)

A 2-layer stacked predictive sparse decomposition coder
model is constructed to generate the feature dictionary and
combination dictionary. We begin by describing a single layer
of the predictive sparse decomposition coder (PSD) and then
extend the model to the stacked PSD.

2.2.1. Predictive Sparse Decomposition (PSD)

A predictive sparse decomposition algorithm [14] is an un-
supervised learning algorithm for learning a one-layer model
that computes a distributed representation for its input. Given
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Fig. 1. The figure illustrates the architecture of the SPSD
used in our approach. Layer 1 PSD is trained on individual
features F'"? to obtain sparse coefficients Z?"?. These are
used to generate combination features F°°™® which are fed
to Layer 2 PSD to obtain coefficients Z¢°™b. Coefficients
of all pairs related to a single feature are combined to form
structural features ZStmuct,

a set of input features, ' € ™, which are obtained from the
training data, the objective of the PSD is to arrive at a rep-
resentation Z € R™ for each input F' using a set of k basis
functions forming the columns of a dictionary matrix or de-
coder D € R™*™. For an input vector of size n forming the
input X, the PSD consists of three components: an encoder
W, the dictionary D and a set of codes Z. The overall opti-
mization function is expressed as:

G(F;Z,W,D) = |[WF—Z|[3+ | Z|1+|DZ - F||3, (1)

where I € R", Z € R*, dictionary D € R"** and encoder
W € RFX"_ The first term represents the feedforward or the
encoding, the second term denotes the sparsity constraint and
the last term denotes the feedback/decoding. A is a param-
eter that controls the sparsity of the solution, i.e., sparsity is
increased with higher value of A\. The parameter X is varied
between 0.01 and 1 in steps of 0.05 and the optimum value
is selected through cross validation to minimizes G(.). Here,
we used A = 0.2.

The learning protocol involves computing the optimal D,
W and Z that minimizes G(.). The process is iterative by
fixing one set of parameters while optimizing others and vice
versa, i.e., iterate over steps (2) and (3) as given below.

1. Randomly initialize D and W.

2. Fix D and W and minimize Equation 1 with respect to
Z, where Z for each input vector is estimated via the
gradient descent method.

3. Fix Z and estimate D and W, where D, W are approx-
imated through stochastic gradient descent algorithm.

The stochastic gradient descent algorithm approximates
the true gradient of the function by the gradient of a single



example or the sum over a small number of randomly chosen
training examples in each iteration.

2.2.2. Cascading the PSD

Layer 1: The first layer of SPSD is designed for represent-
ing individual features. Given a set of N training videos,
the input to Layer 1 PSD are the set of all individual features
de_,tected in these videos F"? = {fgﬁ“ll), "f(z{ljn)’ ..f(ll’\’,‘il)..
f(%i,pNT)}’ where video ¢ contains p; features. The PSD
has connections from all input nodes to all output nodes. A
layer 1 encoder W and a layer 1 decoder D" are learned.
The output nodes are the sparse coefficients computed for

: ind __ ind ind ind ind
the input features Z*"* = {3(1,1)’2(1,2)“2(1,;)1)’ (N 1)
ind }
(N7,pNp)T°

Layer 2: The second layer of the SPSD is designed for
representing combination features. We use the output of the
first layer, which is the sparse coefficients to generate the in-
put for the second layer. Since we intend to use both individ-
ual as well as combination features for recognition, using the
same lower level representation to learn a higher level repre-
sentation has the advantage that the statistical information of
the first layer is also shared with the second layer [15]. We
wish to model relationships between pairs of features which
are within a pre-defined spatio-temporal distance.

The combination features for the second layer are ob-
tained by concatenating the coefficients of related pairs of
features along with their relative spatial and temporal in-
formation. The input to the second layer is therefore given
by F = {[(xh) = T(h.j))s Wikit) = Ykos))s Ehi) —
) z(gd) 2]k € {1,2.N7}},i,5 < pr. The PSD
has connections from all input nodes to all output nodes. A
layer 2 encoder W™ and a layer 1 decoder D™ are
learned. The output nodes are the sparse coefficients com-
puted for the combination features Z°™" = {277 k €
{1,2..N7}},4,5 < pi}. Since each individual feature can
lie in the vicinity of multiple other features, we compute a
structural feature by combining the coefficients of all pairs re-
S5 )
where ny, ; is the number of pairs related to the ith feature
in the k' training video. The output of the layer 2 PSD is
therefore the collection of structural features Ztmu<t,

The two layers of the SPSD are learned sequentially in a
greedy manner using the method described in Sec 2.2.1. The
SPSD is illustrated in Figure 1.

Spatiotemporal Pooling: The obtained coefficients are
pooled to form one individual descriptor V"¢ and one com-
bination descriptor 1°°™® per video. We divide the video
into equal sized non-overlapping spatio-temporal blocks and
perform a max pooling of the data over each block. For the

it" spatiotemporal block, the descriptor generated is given by

v; = max(| z("’frl’;“ [ szg)”t l,.. | sz;“% ), where m;

is the number of codes generated in the i*" spatiotemporal

lated to a single feature as z(slﬁfgc’f =
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Fig. 2. The figure shows some sample frames from the UT
Interaction dataset for different retrieved activities along with
two instances of individual feature descriptors and combina-
tion feature descriptors of the corresponding activity. It can
be seen that the combination feature descriptors look distinct
for different activities and have well defined peaks.

block. The final descriptor is obtained by concatenating all
local descriptors.

2.3. Classification of Activities

For classification of activities, we wish to combine the two
features in a discriminative framework. Having two different
sets of features for a data, like the individual features and the
combination features in our case, we can define the discrim-
inant as a combination function of two kernels, one for each
set of features.

ke(Vi, Vi) = [l (V1 VY 20), 2

where the combination function f. : ®2 — R can be linear
or non linear. The kernel functions {r; : RP™ x RP» —
%}?zl is defined for the two sets of features, each of dimen-
sion D,,.

Here, we assume f, to be a linear weighted combination
of the two kernels. Therefore, the combination kernel is de-
fined as

Kfc(‘/i, Vj) _ wlml(‘/iind’ ijind) 4 UJQIQQ(V;»Comb, ijcomb)
3)
We choose the kernels to be polynomial. Optimal perfor-
mance was achieved for a polynomial kernel of order 3. The
function is solved using an SVM base learner as described
in [16]. The weights w; and w4 are decided experimentally
using cross-validation.

3. EXPERIMENTS

We perform experiments on two publicly available datasets:
the UT Austin Interaction data [2] and the UCLA office
dataset [18]. The UT Interaction dataset consists of high
resolution video of two actors performing actions such as
handshake, kicking, hugging, pushing, punching and point-
ing. The videos are of different lengths and the activities are
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Fig. 3. Figure a) shows the ROC curves obtained using in-
dividual feature descriptors in an SVM framework, combina-
tion feature descriptors in an SVM framework and individual
+ combination feature descriptors using our approach for the
UT Interaction dataset. Figure b) shows the ROC curves for
individual features and individual+combination features us-
ing our approach for the UCLA dataset.

Method [ BOW | Ryoo[2] | Gaur[17]] SPSD |
Precision | 50.3 70.1 71.5 76.7
Recall 52 73.1 73.1 74.2

Table 1. Precision and recall values of methods BOW, Ryoo
et al [2] and Gaur et al [17] and our approach for the UT
Interaction dataset.

performed from two different viewpoints. The UCLA office
dataset consists of indoor and outdoor videos of single and
two-person activities. Here, we perform experiments on the
lab scene containing close to 35 minutes of video captured
with a single fixed camera in a room. We work on 10 single
person activities: Enter lab, exit lab, sit down, stand up, work
on laptop, work on paper, throw trash, pour drink, pick phone
receiver and place receiver down.

For both datasets, we utilize the first half of the data as
training and the second half as testing. Each video is rescaled
to lie in a unit volume cuboid for generality. The individual
feature dictionary and combination dictionary are computed
over the training dataset in an unsupervised manner (without
considering the activity labels). The combination features are
computed for all features lying in a neighborhood of 0.1 from
the feature under consideration in the unit volume. The dic-
tionary size for the UT Interaction data was taken to be 250
for the individual features and 250 for the combination fea-
tures. The dictionary size for the UCLA data was taken as
500 elements for the individual as well as combination fea-
tures.

3.1. Analysis of the results

Some example of the individual feature descriptors and the
combination feature descriptors generated for one block of
data for the UT Interaction data are shown in Figure 2. It can
be seen that there are distinct peaks in the histograms. It can
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Fig. 4. Figures show the precision and recall obtained on
the UCLA dataset with our approach. Comparison has been
shown to the performance of BOW classifier [13]. The activ-
ities are mentioned in Section 3.

also be noticed that the combination features look more dis-
tinct as compared to the individual features. The performance
of our method on the UT Austin Interaction data is shown in
Table 1. It is seen that the performance of our method is supe-
rior as compared to other state of the art methods like [2] and
[17]. As shown in the table, we achieved an overall recog-
nition accuracy of 76.7%, while [2] achieves an accuracy of
70.1% and [17] achieves an accuracy of 71.5% with half the
data used for training. The ROC curves for recognition of
activities using just the individual features in an SVM frame-
work, just the combination features in an SVM framework
and both sets of features in a MKL framework are shown in
Figure 3 a).

For the UCLA dataset, we analyzed overall recognition
accuracy against [18] and the Bag-of-Words classifier [13].
The output of baseline classifier on unsegmented data gives
an accuracy of 78.7% while [18] has obtained an overall ac-
curacy of 92.3%. Our SPSD approach gives an overall accu-
racy of 93.1%. The values of precision and recall for BOW
and BOW+context are shown in Figure 4. The ROC curve in
Figure 3 b) shows the improvement in performance achieved
by using our approach as compared to the Bag-of-Words clas-
sifier.

4. CONCLUSION

In this paper, we have proposed a method to learn a natu-
ral representation for the structure in a video using predic-
tive sparse decomposition framework. We have proposed a
2-layer stacked PSD where the first layer computes sparse co-
efficients for individual features and these are used to com-
pute a sparse dictionary for combination of features. These
combination features are seen to be distinctive for different
activities, thereby increasing the performance of recognition
in conjunction with the individual features. In the future, we
plan to extend this work to have more levels of hierarchy to
be able to analyze structure in videos at different resolutions.
This work can also be extended to other applications where
structure of the data is crucial.
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