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ABSTRACT

Activity forecasting has recently become an active research
area for its importance in critical applications like automated
navigation and human-computer interaction. However, for a
video observed upto a certain time, all of the existing forecast-
ing works focus on predicting the activity label, i.e., predict-
ing what the next unobserved activity is. To the best of our
knowledge, no work has answered the crucial question yet:
when the next unobserved activity will occur. In this paper,
we propose an approach for predicting the starting time of the
next unobserved activity without assuming that we know its
label. We model activities occurring at a variable rate using
a Log-Gaussian Cox Process (LGCP) and learn the rate func-
tion from the training data. Then the starting time is predicted
using importance sampling algorithm. In our experiments on
the challenging MPII-Cooking dataset, we find that both the
label of the last observed activity and the label of the activity
being predicted affect the time prediction accuracy.

Index Terms— Activity forecasting, Inhomogeneous
Poisson Process (IPP), importance sampling.

1. INTRODUCTION

Activity forecasting has a wide range of applications in intelli-
gent video surveillance, robot vision, human-computer inter-
action, game control, etc. [1]. The problem of activity fore-
casting can be split into two parts: forecasting the label of the
next unobserved activity and forecasting the starting time of
that activity. Although there have been few works on activity
label prediction, to the best of our knowledge, forecasting the
starting time is a novel problem which has not been explored
in the video analysis community yet.

For a video which has been observed upto a particular
time, our paper aims to determine exactly when an unob-
served activity will occur irrespective of its label. Predict-
ing the starting time of the next unobserved activity is crucial
for applications like automated navigation, effective surveil-
lance systems and more natural human-computer interfaces.
For example, in case of anomaly detection in videos [2], if
the starting time of the next activity does not match the pre-
dicted time, an anomaly may be detected. For video comple-
tion [3, 4], the occurrence time of the activity in the previous

frame and the next frame can help to infer about the activi-
ties in the missing frame and reconstruct accordingly. In case
of saliency detection in videos [5, 6], the predicted time can
help determine the most salient location in the video. For au-
tonomous navigation [7], activity time forecasting can help
to decide how to maneuver depending on the next predicted
activity at the predicted time. In active sensing [8], robots
can make decision about when to perform the next action by
knowing the timing of the next activity in that region.

In order to predict the starting time of an unobserved ac-
tivity, a model is required that represents the inter-activity
time and the rate at which activities are happening. We pro-
pose to model the inter-activity time between activities using
Log-Gaussian Cox Process (LGCP) [9]. Our method works
without any knowledge of the label of the unobserved activity.
This is critical because it will allow the system to anticipate
when something will happen, even if what will happen is not
known exactly. Moreover, knowledge of the starting time of
the next unobserved activity can help to determine its label.

Prior Work: Few works have shown significant accuracy
in forecasting the label of the activity well before they are
observed such as approaches using semantic scene labeling
[10], Probabilistic Suffix tree (PST) [11], augmented- Hidden
Conditional Random Field (a-HCRF) [12], Markov Random
Field (MRF) [13], kernel-based reinforcement learning [14],
and max-margin learning [15]. However, to the best of our
knowledge, no work on activity forecasting has been able to
predict the starting time of the unobserved activity with or
without any information about its label. Thus, forecasting the
starting time is a novel problem in the video understanding
community. There are a few relevant works in other fields
like modeling tweet arrival time [16] and modeling conflict
dynamics in war [17]. We leverage upon the ideas presented
in these papers but adapt our solution approach for learning
the model parameters based on our problem in video analysis.

Main Contribution and Overview of Our Approach:
The contribution of our work is a novel framework for predict-
ing the starting time of the next unobserved activity in a video
irrespective of its label. We leverage upon a Poisson process
for modeling the inter-activity time. Because of the bursty
nature of activities in most of the video datasets, their inter-
arrival times generally follow an exponential distribution. It is
therefore justified to consider them as a part of a Poisson pro-
cess since the distribution of inter-arrival time for a Poisson
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Fig. 1. Overview of our approach. In the test video, the Kth

activity, aK , occurred at time, tK , and the occurrence time of
the next unobserved activity, aK+1, is tK+1 = tK +TK . The
cross sign represents the occurrence of activities.

process is exponential. The rate parameter associated with
such process is the expected number of occurrences per unit
of time. As the activities usually occur at different rates at
different periods in the videos, we use a special case of In-
homogeneous Poisson Process (IPP) [18], the Log-Gaussian
Cox Process (LGCP) for modeling these activities where the
rate parameter itself is a function of time. The choice of this
model is justified in more details later. We learn the parame-
ters of the rate function in the training phase and then predict
the starting time of the next unobserved activity in a video
through importance sampling using the starting time and the
label of the last observed activity. Detailed overview of our
proposed framework is illustrated in Fig. 1.

2. PROPOSED APPROACH

Problem Statement: If a video is observed upto time t
with K occurrences of activities, A = {ai}Ki=1, the Kth ac-
tivity, aK occurred at time tK and the occurrence time of the
next unobserved activity, aK+1, is tK + TK , then we want
to predict this inter-activity time TK as shown in Fig. 1. We
start by justifying the use of a Poisson process model, then
learn the parameters of this model in the training phase, and
finally predict the starting time using an importance sampling
algorithm.

Motivation for Poisson Process Assumption: A Pois-
son process is a stochastic process counting the number of
events in a given time interval. If the rate at which these
events occur is λ, then the time between each pair of con-
secutive events has an exponential distribution with parame-
ter λ. For a homogeneous Poisson process, the rate parame-
ter λ is the expected number of events which occur per unit
time. For a homogeneous Poisson process N(t) with rate
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Fig. 2. Histograms of the inter-activity time for all the activi-
ties in videoclip 25 from MPII-Cooking dataset [19] (left) and
histograms of the average inter-activity time of different types
of activities from all the videos of MPII-Cooking dataset [19]
(right).

parameter λ, the waiting time until the first arrival is more
than t if and only if there is no arrival before time t. So,
p(T1 > t) = p(N(t) = 0) = e−λt and p(T1 ≤ t) =
p(N(t) > 0) = 1 − e−λt. Here, 1 − e−λt is the cumula-
tive distribution function (CDF) for exponential distribution.
We verified it numerically that all the videos from our dataset
have an exponential inter-activity time. So, we chose Poisson
process for modeling the inter-activity time. The distribution
of inter-activity times in a video from our dataset is shown
in Fig. 2 (left). An Inhomogeneous Poisson Process counts
events which occur at a variable rate and the generalized rate
function is given as λ(t). The histogram of the inter-activity
times for different types of activities is shown in Fig. 2 (right).
Since the activities occur at a variable rate, we assume an In-
homogeneous Poisson Process in our case where the rate pa-
rameter varies with time.

Learning Rate Function λ(t): For an IPP with rate func-
tion λ(t), the expected number of events in the time interval
[t1, t2] is Nt1,t2 =

∫ t2
t1
λ(t)dt and the probability that exactly

x activities occur in the time interval [t1, t2] is,

p(N(t2)−N(t1) = x) =

(∫ t2
t1
λ(t)dt

)x
exp

(
−
∫ t2
t1
λ(t)dt

)
x!

(1)
As mentioned earlier, the Kth activity, aK occurred at

time tK and the occurrence time of the next unobserved ac-
tivity aK+1, is tK +TK . The probability that another activity
occurs by time tK+τ which is the cumulative distribution for
TK is given by,

p(TK ≤ τ) = 1− p(TK > τ)

= 1− p(No activity occurred in [tK , tK + τ ])

= 1− exp

(
−
∫ tK+τ

tK

λ(t)dt

)
= 1− exp

(
−
∫ τ

0

λ(tK + t)dt

)
(2)



By taking the derivative of Eqn. (2), we obtain the proba-
bility density function of TK as

p(TK = τ) = λ(tK + τ) exp

(
−
∫ τ

0

λ(tK + t)dt

)
(3)

We assume λ(t) to be constant in an interval to get rid of
the integration complexity [9,20] and the approximate density
of TK would be

p(TK = τ) = λ(tK + τ) exp
(
−τλ

(
tK +

τ

2

))
(4)

We propose to use Log-Gaussian Cox Process (LGCP)
where the rate parameter λ(t) has a non-parametric form and
is considered to be a function of time, so the model complex-
ity depends only on the data. In LGCP, λ(t) is assumed to
be stochastic. We assume the occurrences of all the activities
as a single Poisson process and associate a specific intentisy
function λ(t) = exp(f(t)) with it. As it is a Log-Gaussian
Cox process, where taking the logarithm of the rate function
should yield a Gaussian distribution, f(t) is defined through a
Gaussian Process (GP) prior [21]. So, finally the approximate
density of TK becomes

p(TK = τ) = exp(f(tK + τ)) exp
(
−τ exp

(
f
(
tK +

τ

2

)))
= exp

(
exp(−(tK + τ − µ)2/2σ2)√

(2πσ2)

)

exp

(
−τ exp

(
exp(−(tK + τ

2 − µ)
2/2σ2)√

(2πσ2)

))
(5)

From the training videos, we learn the inter-activity times
for all the activity labels irrespective of the next activities and
compute their mean and variance. Then for predicting the
starting time of the next unobserved activity, given the label
of the last observed activity, we choose the parameters µ and
σ from the mean and variance computed from the training
data based on the label of that activity.

Prediction of Starting Time using Importance Sam-
pling: For predicting the starting time of the next unobserved
activity, we define our nominal distribution p(TK = τ). As
we know the label of the last observed activity, we choose
the parameters µ and σ of this distribution as the mean and
variance of the inter-activity time for that activity label from
the training data. We also have the observed starting time,
tK of the last observed activity, aK . The inter-activity time
TK is then obtained through importance sampling algorithm
with an exponential proposal distribution according to [22].
The starting time of the next unobserved activity, aK is then
found as tK+1 = tK +TK . The entire method is described in
Algorithm 1.

Algorithm 1 Starting Time Prediction
1: Input Starting time of last observed activity tK , label of

last observed activity, proposal distribution q(τ), number
of samples N

2: Learn rate function λ(τ) from training based on the label
of the last observed activity.

3: for n = 1 to N do
4: Sample tn ∼ q(τ)
5: Obtain weights wn = p(tn)

q(tn)
6:

end for
7: Evaluate inter-activity time as TK =

∑N
n=1 tnwn∑N
m=1 wm

8: Predict the next activity starting time as tK+1 = tK+TK
9: return tK+1

3. EXPERIMENTAL RESULTS

The objective of the experiments is to analyze the perfor-
mance of our framework for predicting the starting time
of future activities. We conduct our experiments on MPII-
Cooking dataset [19]. Activity numbers we use are same as
the original dataset. We have excluded 17 types of activities
(1, 8, 11, 12, 18, 24, 28, 30, 37, 43-46, 53, 61, 63, 64) from our
experiments. These activities have very low sample points in
the video (occurred infrequently) and the standard deviations
of their durations are much higher compared to other activ-
ities. Hence, it is not possible to learn a reliable model for
these activities. We worked with 44 videos having 48 types
of activities and the training-testing videoclip ratio is 15 : 7.
Five random combinations of training and testing videos are
chosen, and results are averaged over these combinations.

Prediction Error: We analyze the prediction error in two
ways: as a function of the last observed activity and as a func-
tion of the activity being predicted. For the 48 types of ac-
tivities we used in the dataset, the Root-Mean-Square Error
(RMSE) values of the predicted starting time based on the la-
bel of the last observed activity and the label of the activity
being predicted are shown in Fig. 3 and Fig. 4 respectively.
For the first case, the label of the last observed activity is fixed
and we predict the starting time of the next activity irrespec-
tive of its label. For the latter case, the label of the activity
being predicted is fixed and we predict its starting time irre-
spective of the label of the last observed activity. We observe
that activities with fewer examples in the testing set produce
higher RMSE for prediction. We find an average RMSE of
3.6489 seconds for the predicted starting time based on the
label of the last observed activity and an average RMSE of
3.6785 seconds based on the label of the activity being pre-
dicted. The normalized RMSE of the predicted starting times
for all the possible activity sequnces in the videos are shown
in Fig. 5. As can be seen from the figure, in most cases the
RMSE values are small. The activity sequences which oc-
curred fewer times produce higher RMSE as it is difficult to
learn a reliable model for those sequences. The actual RMSE



values are provided in the supplementary material. We obtain
an overall RMSE of 3.9431 seconds for all of our predicted
starting times.
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Fig. 3. RMSE of the predicted starting time based on the label
of the last observed activity. The gaps in the figure are due to
the activities we removed in the beginning.
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Fig. 4. RMSE of the predicted starting time based on the label
of the activity being predicted. The gaps in the figure are due
to the activities we removed in the beginning.

Increasing the Prediction Horizon: If we do a multi-
step prediction, i.e., increase the forecasting horizon then the
RMSE value for prediction increases. For one step prediction,
we use the observed starting time of the last activity. But, in
case of multi-step prediction, we use the predicted value of
the starting time of the last activity instead of their observed
starting time and so the error accumulates. This gradual in-
crease in RMSE for predicted starting time is shown in Fig. 6
upto a forecasting horizon of 5 activities.

Comparison with a Baseline Model: We Use a Homo-
geneous Poisson process (HPP) as a baseline method which
has an exponential distribution for the inter-activity times.
The rate parameter is constant and is the reciprocal of the
average inter-arrival times for all the activities in the train-
ing data. Using this baseline model, we obtain an overall
RMSE value of 4.7972 seconds for predicted starting times
compared to 3.9431 seconds for our Inhomogeneous Poisson
Process (IPP) leading to a 21.66% increase in error.

Fig. 5. A graphical representation of the matrix where the
rows represent the last observed activity, the columns rep-
resent the next predicted activity and each entry represents
the corresponding normalized RMSE for starting time predic-
tion. The white cross markers represent the activity sequences
which never occurred. This is best viewed in color.
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Fig. 6. RMSE of the predicted starting time for multi-step
prediction with increasing forecasting horizon.

4. CONCLUSION

We predicted the starting time of an unobserved activity by
modeling all the activities using Log-Gaussian Cox Process
(LGCP). The method does not require any knowledge about
the label of the unobserved activities. In future, we intend to
use this starting time information to improve the accuracy of
the label forecasting algorithms, and study the accuracy of the
forecasting methodology in various applications.
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