
EFFICIENT SELECTION OF INFORMATIVE AND DIVERSE TRAINING SAMPLES WITH
APPLICATIONS IN SCENE CLASSIFICATION

Sujoy Paul, Jawadul H. Bappy and Amit K. Roy-Chowdhury

Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521

ABSTRACT

The huge amount of time required to construct a set of labeled
images to train a classifier has led researchers to develop al-
gorithms which can identify the most informative training im-
ages, such that labelling those will be sufficient to achieve a
considerable classification accuracy. In this paper we focus
on choosing a subset of the most informative and diverse im-
ages based on which the classification model can be learned
efficiently. The size of the subset to be chosen is determined
by the available budget for manual labeling. Although the
problem of identifying the informative images can be solved
by active learning algorithms, it will require a set of labeled
images for initial model construction, which is not required in
our method as we identify the best samples at one shot. We
incorporate the concepts of strong and weak teacher to help
the learner to learn the model efficiently with limited bud-
get for manual labeling. We perform rigorous experiments on
two challenging scene classification datasets to demonstrate
the effectiveness of our algorithm.

Index Terms— scene classification, informative sample
selection

1. INTRODUCTION

Scene classification is one of the most fundamental problems
in computer vision, gaining interest of many researchers over
the last decade. Unlike object classification, scenes are gener-
ally composed of multiple entities, with different shape, size,
color, exposure and interactions between them. The learner
in a traditional scene classification algorithm [1, 2, 3] learns
over a lot of labeled images. With the huge corpus of images
available today, it becomes unrealistic to have all the data la-
beled beforehand. Moreover, the manual process of labeling
all the samples is a tedious job. In this paper, we concentrate
on solving this problem, by choosing the most informative
samples for manual labeling, thus making efficient use of the
available budget for labeling.

Recently, there have been some works [4, 5, 6] addressing
the problem involved in manually labeling all data for train-
ing a learner. There has been some success in solving this
problem because, not all training examples are equally infor-
mative [7]. Most of these active learning algorithms begin
with a set of labeled images and then update the model based

on the initial model through manually labeling the most in-
formative unlabeled samples. This approach is effective in
scenarios where the input data is not available at the outset
e.g. streaming inputs. On the other hand, there may be sce-
narios where all the images is available at once and we need
to identify the best examples to label.

The proposed method addresses this problem. Instead
of labeling all the images, we choose only the most infor-
mative and diverse subset of images to train the learner to
achieve considerable classification accuracy on the test set.
The amount of images to be chosen for manual labeling is
dependent on the available budget for manual labeling. Our
proposed method complements active learning approaches.
Most active learning methods assume that there is a set of la-
beled instances for initial model construction. The proposed
method avoids this assumption and chooses the best subset
of images at one shot, thus saving the computational time in-
volved in the iterative process of selecting the informative im-
ages in most active learning frameworks.

Related Work: An overview of the commonly used tech-
niques for active learning, i.e., efficiently choosing the train-
ing instances, may be found in [8]. The idea of selecting the
best training instances have been successfully implemented
for computer vision problems like tracking [9], activity recog-
nition [10], object detection [11], etc. Recently, an algorithm
based on entropy and KL-Divergence [12], was proposed for
batch mode active learning. But, most of these works assume
that there is a set of labeled images for initial training.

Various confidence measures of the learner on unlabeled
instances have been used for image classification [13]. In
[14], an active learning framework for scene classification
was proposed, which have query for labeling at the scene as
well as the object level. A framework combining information
density measure and uncertainty measure for query selection
was proposed in [5], which requires a labeled set of images
for initial training. Batch mode incremental learning coupled
with efficient image selection for training was proposed in
[15]. The concept of best-vs-second best as an uncertainty
measure was used in [16] to choose the best training instances
for image classification. Recently, the problem of image clas-
sification was addressed using Laplacian Sparse Coding [17]

Proposed Framework: A pictorial representation of the
flow of the proposed framework is presented in Fig. 1. Given
a pool of unlabeled images, the framework starts by extract-
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Fig. 1: This figure presents our proposed framework, which is comprised of the following stages: CNN feature is extracted from
the pool of unlabeled images, k-means is applied on the extracted image features, entropy is used as a measure to identify the
most informative images for manual labeling, i.e., strong teacher, thereafter the weak teacher is invoked and finally the model
is learned from the set of images labeled by strong and weak teacher.

ing the deep features from them. These unlabeled features are
fed to the k-means algorithm, thereby obtaining an estimate
of the cluster centroids along with labels of each scene class.
Then, using the distance of each image feature from the cen-
troids, we obtain the probability of each image belonging to
each scene class. Thereafter, using these probabilities, the un-
certainty of each image label obtained from k-means is com-
puted. Considering that each image is independent, the total
entropy of all the images in the unlabeled pool boils down to
the summation of the individual image entropy. Using this re-
sult and to ensure diversity in the chosen set of images, those
images having the highest entropy are called for manual la-
beling, which is the strong teacher. Moreover, we exploit
the confidence of the strong teacher and k-means to teach the
learner with a weak teacher as discussed in Section 2. We use
the SVM with linear kernel as the learner.

2. PROPOSED ALGORITHM

Our scene classification algorithm involves two main steps.
The first step is the extraction of features from images. The
second step is identifying the best training samples and invok-
ing human to label the same. Thereafter training the learner
with those samples. The rest of the section discusses these
steps in detail.

Feature Extraction: We use convolutional neural net-
work (CNN) to extract the features from the images. In
our deep network, five convolutional layers and two fully-
connected layers are employed. We use pre-trained model
‘Places205 Alexnet’ [18] to extract the features from deep
network. Finally, we obtain the feature vectors with 4096
dimension from the last fully-connected (fc7) layer.

Selecting informative images for manual labeling: Af-
ter extracting the features from the images, we have a pool
of N unlabeled images having feature vectors {x(i)}Ni=1. In
our algorithm, we incorporate the concept of strong and weak
teacher, to choose the best training images for labeling and
help the learner to learn the model efficiently. Generally, the
strong teacher is human, whose accuracy in labeling is con-
sidered to be perfect. The weak teacher on the other hand
provides tentative labels. The cost of invoking strong teacher

is generally much higher compared to weak teacher and often
its budget is specified, i.e., the affordable number of labels
that can be provided by the strong teacher.

The goal of our algorithm is to maximize the efficiency of
the learner using this limited budget. In the literature, gener-
ally a classifier is trained initially, with a small batch of la-
beled instances. In our method, we don’t require any initial
batch of labeled images. We start by applying k-means on
{x(i)}Ni=1, to get an estimate of the boundaries of the classes.
Let us consider {C(j)}kj=1 to be the k centroids of the clusters
{Cj}kj=1 obtained after applying k-means. The probability of
x(i) belonging to each cluster may be expressed as,

P (i) = [p(x(i) ∈ C1), p(x
(i) ∈ C2), . . . , p(x

(i) ∈ Ck)] (1)

where,

p(x(i) ∈ Cj) =
exp(−α||x(i) − C(j)||22)∑k

m=1 exp(−α||x(i) − C
(m)||22)

(2)

α is a scalar parameter. Using (1) and (2), the entropy for
each image can be expressed as,

H(P (i)) = −
k∑

i=1

p(x(i) ∈ Cj) log2(p(x
(i) ∈ Cj)) (3)

which is a measure of the uncertainty in the cluster label as-
signed by k-means. Assuming that the individual samples are
independent of each other, the pairwise mutual information
[19] between the samples I(x(i), x(j)) = 0. Thus, the total
entropy of all the samples can be represented as,

H(P (1), P (2), . . . , P (N)) =

N∑
i=1

H(P (i))

=
∑

x(i)∈S,|S|=M

H(P (i)) +
∑

x(j) /∈S

H(P (j)) (4)

where S ⊂ {x(i)}Ni=1, and M is determined by the query
budget to be discussed subsequently.

Diverse subset selection. It may be noted from (4), that
one possible solution of choosing the subset S is such that



after labeling those samples by the strong teacher, the total
entropy will be minimized. In other words, S may be chosen
such that the entropy of those samples in S are among the
highest entropy in the entire unlabeled pool of images. But,
it may happen that the samples having the highest entropy
are cluttered within a small area in the feature space, thus
lacking diversity. This will be problematic for the learner, as
it will not be able to learn about all the classes efficiently. To
avoid this problem, we choose the samples having the highest
entropy from each cluster obtained from k-means to constitute
the optimal subset S∗ which may be expressed as,

S∗j = argmax
Sj ,|Sj |=kj

∑
x(i)∈Cj

H(P (i))

S∗ = {S∗1 , S∗2 , . . . , S∗k} (5)

where kj =
(k+M)∗Lj

N − 1, Lj being the number of images
belonging to the jth class as obtained from k-means. The
value of kj ensures that the number of samples chosen from
each cluster of k-means are proportional to the number of
samples present in the respective clusters. It may be noted
that although this subset of images will not minimize the total
entropy in (4) maximally, it will help the learner learn diver-
sified samples. This optimal subset are queried to the human,
the strong teacher, to get the correct labels. Intuitively, this
approximately boils down to the idea of querying the images
near the boundary of dissimilar classes (as shown in Fig. 2),
which are in fact the most uncertain images.

Subset selection for weak teacher. We can exploit the
confidence of the k-means algorithm and the labels provided
by strong teacher. There is a high probability that the image
features very near to a cluster centroid belong to the same
class as that of the centroid. But the labels of the centroids
are unknown. We resort to the strong teacher to query the
centroids along with the subset chosen in 5. Thus, we need to
query k more images to the strong teacher, leading to a total
of k +M queries to the strong teacher. Therefore, the total
budget of query, i.e. the affordable number of queries to the
strong teacher, determines the values of M in (5). After the
strong teacher labels the queried images, those having metric
dx(i) = exp(−β||xi − C(i)||2) ≥ δ are assigned the same
label as that of the centroid C(i). This is the weak teacher. δ
is generally set to a value high enough to diminish the proba-
bility of assigning a wrong label by the weak teacher. Finally,
all the images labeled by the strong and weak teacher are used
as training images. An example of the data points labeled by
strong and weak teacher is presented is in Fig 2.

3. EXPERIMENTS

Objective: The main objective of the experiments is to an-
alyze to how the proposed method performs with stipulated
amount of budget for manual labeling. We use SVM [20] with
linear kernel as the learner. We compare our results with three

Strong Teacher Weak Teacher
K-means 
clusters

Fig. 2: This figure presents an example of the probable area
in feature space labeled by strong and weak teacher. Different
colors denote the class of each data point as obtained from k-
means as well as those labeled by the strong and weak teacher.
The other areas may not be labeled.

subset selection techniques - entropy based Uncertainty sam-
pling [13], Best v. Second Best (Bv2B) [15], Batch Rank[12].
We have implemented all the algorithms using the same im-
age features and learner used by us. We also compare with
three methods which consider the entire dataset to be manu-
ally labeled - Holistic Scene understanding (HSC) [21], Opti-
mized Laplacian Sparse Coding (OLSC) [17] and a baseline
Places [18] for Scene15 dataset. The sensitivity of the pro-
posed method on the parameter δ (mentioned in subset selec-
tion for weak teacher) is also analyzed.

Datasets: In this section, we validate the proposed al-
gorithm by testing it on two widely used scene classification
datasets - MSRC [21] and Scene15 [22]. The MSRC dataset
consists of 591 images from 21 scene classes. The Scene15
dataset is comprised of 15 scene classes, with 200 to 400 im-
ages for each scene category. We randomly choose 100 im-
ages per category for training set and the rest for testing.

Accuracy analysis: For both the datasets, we have di-
vided the entire dataset into training and testing sets. Then,
we consider that the training set is not labeled. Thereafter, we
have applied our algorithm to compute the informative im-
ages and acquire only their labels. Using these labels, we train
the SVM classifier to build a model and obtain the classifica-
tion accuracy on the test set. For the MSRC dataset, we have
considered 5 Fold Cross Validation (5-FCV) to compare with
subset selection methods and standard partition as in [21] to
compare with the same. In case of Scene15 dataset, we ran-
domly choose 100 images per category for training set and
the remaining images for testing. By varying M (mentioned
just after (5)), the budget (k +M) varies, and we obtain dif-
ferent sets of informative images. Thus, we obtain different
learned models and classification accuracy on test set. These
classification accuracy are plotted in Fig. 3. Table 1 presents
the comparison with other scene classification methods which
consider the entire dataset is manually labeled.

Sensitivity analysis: We analyze the sensitivity of the
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Fig. 3: (a) and (b) present plots for 5-FCV accuracy vs. per-
centage of training images manually labeled. ’All Labeled’
corresponds to the accuracy of the proposed framework when
all the images in the training set is labeled.

proposed algorithm on the parameter δ. For different per-
centage of manual labeling, we vary δ from 0.25 to 0.35 for
MSRC and 0.6 to 0.7 for Scene15 dataset. After learning the
model for each of these values of δ, we obtain the classifica-
tion accuracy over the test set. These are plotted in Fig 4 for
the two datasets.

Observations and Discussions: It may be observed from
Fig 3 that the proposed method requires much lesser labeled
images than the entire training set, to achieve almost simi-
lar classification accuracy. Moreover, the proposed method
performs considerably well compared to the other subset se-
lection methods, especially for the MSRC dataset. In Table
1, it may be observed that the proposed method requires less
than 40% of the entire training dataset to obtain similar clas-
sification as HSC, which labels and uses the entire training set
to train (Note: standard partition [21] is used for this compar-
ison). It may also be noted from Table 1 that for the Scene15
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Fig. 4: This figure presents the variation in classification ac-
curacy on the parameter δ for the two dataset.

dataset, the proposed method requires only 40% manual la-
beling to achieve comparable and better accuracy than [18]
and OLSC [17] respectively.

The parameter δ sets a boundary around the centroid,
within which all feature vectors can be labeled to have the
same label as that of the centroid, i.e. weak teaching. As δ
is decreased, the bound increases, thus labeling higher num-
ber of data points to belong to the same class as that of the
centroid. But this increases the risk in the label provided be-
cause as the bound increases, feature vectors from dissimilar
classes may be labeled to belong to similar class. This ex-
plains Fig. 4, where the classification accuracy decreases as
δ is decreased. Thus, δ should be high value such that weak
teaching is offered only when the teacher is confident.

Table 1: Comparison with scene classification methods
which consider the entire dataset is manually labeled

Dataset
Proposed

Acc. (% Man. Lab.)
Other Algo.
Acc. (Name)

MSRC
84.71 (40)
87.84 (70)
90.19 (100)

80.6 (HSC [21])

Scene15
90.91 (40)
91.61 (70)
92.12 (100)

91.59 (Places [18])
90.67 (OLSC [17])

4. CONCLUSION

In this work, we proposed a framework to choose the most
informative images, such that only labeling those will help
the learner learn the classification model efficiently with lim-
ited budget for manual labeling. Future works will be di-
rected towards exploiting the interrelationships between im-
ages which will help the unlabeled images to gain information
from the labeled images. Moreover, the proposed method can
be framed to select only the informative images to label for
initial model construction in most active learning algorithms.
Acknowledgments. This work has been partially supported
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