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Abstract—In this paper, we consider two inter-dependent deep
networks, where one network taps into the other, to perform two
challenging cognitive vision tasks - scene classification and object
recognition jointly. Recently, convolutional neural networks have
shown promising results in each of these tasks. However, as
scene and objects are interrelated, the performance of both of
these recognition tasks can be further improved by exploiting
dependencies between scene and object deep networks. The
advantages of considering the inter-dependency between these
networks are the following: 1. improvement of accuracy in both
scene and object classification, and 2. significant reduction of
computational cost in object detection. In order to formulate
our framework, we employ two convolutional neural networks
(CNNs), scene-CNN and object-CNN. We utilize scene-CNN to
generate object proposals which indicate the probable object
locations in an image. Object proposals found in the process
are semantically relevant to the object. More importantly, the
number of object proposals is fewer in amount when compared
to other existing methods which reduces the computational cost
significantly. Thereafter, in scene classification, we train three
hidden layers in order to combine the global (image as a whole)
and local features (object information in an image). Features ex-
tracted from CNN architecture along with the features processed
from object-CNN are combined to perform efficient classification.
We perform rigorous experiments on five datasets to demonstrate
that our proposed framework outperforms other state-of-the-art
methods in classifying scenes as well as recognizing objects.

I. INTRODUCTION

Scene classification is a challenging problem due to the
severe differences in intra-class and inter-class scene categories
[1]. Most of the feature-based object recognition algorithms
perform poorly in the face of variability of illumination,
deformation, background clutter and occlusion. In recent years,
the study of deep learning has been a growing interest due to its
superior performance in several recognition tasks, for instance,
object detection [2], and scene classification [3]. One of the
common architectures used in deep learning is convolutional
neural network (CNN) to perform aforementioned tasks. In
this paper, we consider two inter-dependent neural networks -
where one network taps into the other - to perform joint scene
and object recognition.

In computer vision, most of the existing approaches focus
on individual classification of scenes or objects [3], [2], [4].
These approaches perform feature extraction, then classification.
However, there are certain objects that co-occur in a scene. In
this circumstance, it can be very useful to represent the inter-
relationship between scenes and objects in order to classify
both. In [5], [6], context-based approaches are presented using
graphical model where inter-relationships between scene and
objects are taken into account to recognize them. However,
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Fig. 1. In this figure, we compare recognition performance with and without
considering inter-dependency between scene and object CNNs. In top row,
left figure shows the scene prediction of an image using [3] without having
CNN inter-link and right side is the prediction of our approach when the
interdependency of CNNs is utilized. In the bottom row, our region proposal
technique exploiting scene-CNN (right side) provides more accurate candidate
windows with small number of proposals (∼ 250) whereas selective search [7]
(left side) used in current state-of-the-art methods, provides proposal windows
(∼ 2400) without having tight bounding boxes around the objects. Please note
that only few of the proposals are shown.

the performance of these approaches highly depends on
classification probabilities and detection scores obtained from
scene classifiers and object detectors respectively. Current state-
of-the-art [3], [2], [4] methods show that CNN based visual
recognition task demonstrates outstanding performance in terms
of accuracy. So, we pose a question, ‘can CNN based scene and
object recognition benefit each other by exploiting the inter-
connections between them in order to improve performance?’
The answer to this question is investigated in this paper.

The current best-performing detectors are based on the
technique of finding region proposals to localize objects. For
instance, R-CNN [2] uses [7] to identify a large number
of regions from an image which are then considered to
perform object classification. In [8], it is observed that through
the activation of receptive fields of a convolutional layer,
semantic regions can be localized which is then used in object
recognition. These semantic regions are very useful as they
are related to objects in an image. Furthermore, as objects
comprise a scene, detection scores from the detectors can also
be useful to identify robust features to classify a scene. Fig. 1
represents the motivation of this work.

Towards this goal, we use two CNN architectures that
mutually interact to predict both scene and object labels. We
call these two deep networks - scene-CNN (S-CNN) and Object-
CNN (O-CNN). The inter-dependence between S-CNN and
O-CNN exploits the fact that one network taps into a layer
of the other in order to perform efficient classification and
vice versa. S-CNN is used to generate the semantic regions for



object proposals that are taken as input to the O-CNN to detect
objects. The information flow from S-CNN to O-CNN helps
us to build better object detector. More importantly, the whole
framework performs very efficiently in terms of computational
time (10 − 240× faster) when compared to the R-CNN [2].
Similarly, flow from object to S-CNN helps to build informative
features to improve scene classification.
Framework Overview and Main Contributions. In this
paper, our goal is to design a bidirectional information flow
framework for jointly classifying scenes and recognizing
objects. In our joint scene and object classification model, we
have two CNNs, S-CNN and O-CNN. Our framework is shown
in Fig. 2. In object detection, we exploit the features from final
convolutional layer of S-CNN to activate the receptive fields
(RFs) to obtain the regions where an object might appear. These
proposals are fed into O-CNN architecture to extract features.
Then, with these features we train class-specific binary SVM
classifiers that gives us the probability of appearance of an
object in a test set. In scene classification, we extract features
of an image from S-CNN that represents global information.
Thereafter, we exploit object detection scores which are fed
into a network that consists of three hidden layers in order
to model the interaction of scene and objects in an image as
shown in Fig. 2. The object level information gives us the
local features of the scene. By combining both global and
local features, we model the output layer based on softmax
regression. Finally, we fine tune both S-CNN and O-CNN
(please see Sec. III for details) for better performance.
Our main contributions in this paper are as follows:
• In our joint scene classification and object recognition

framework, both deep networks- S-CNN and O-CNN - take
advantage of interdependence of scene and objects in order to
improve performance.
• Receptive fields from last convolutional layer in S-CNN

provide the region proposals for object detection. The number
of proposed regions is significantly reduced (1-3 orders less
compared to [7]) which leads to less computation cost with
high recognition accuracy.
• As scene and objects co-occur, objects provide useful

information about scene. So, we also take into account object
detections along with features from S-CNN which are processed
through three hidden layers. In this way, we compute robust
features to achieve better performance on scene prediction.

II. PRIOR WORK

Many of the scene classification methods use low dimen-
sional features such as GIST [9], and SIFT descriptor [10]. In
[11], spatial pooling regions are learned to construct mid-level
representation to classify scenes. In [3], convolutional neural
network is trained on places-205 dataset to learn deep features
for scene recognition. In [12], the authors train a multi-scale
convolutional network from raw pixels to extract dense feature
vectors for scene labeling. In [13], context-specific objects
and their layout are used to learn scene structure which is
further used as low dimensional features to classify scenes.
However, the authors do not use any interactive approach where
recognizing one can benefit the other.

In object detection, some of the efficient techniques exploit
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Fig. 2. Joint framework for scene and object classification. Orange and green
dotted boxes represent the scene and object deep network respectively. Purple
color implies the interlink between these two network. The flow from S-CNN
to O-CNN gives us the probable object locations in an image. Then, the
detection scores of the objects are taken as input to the hidden layer Ho

which represents the local information of a scene. Finally, both global and
local features are propagated through two hidden layers Hs1 and Hs2 to the
output layer where scene labels are predicted. Best viewable in color.

sliding window [14] and boosting [15]. One of the promising
approaches in recognition tasks has been to exploit the
relationships between objects in a scene using a graphical
model [5], [6]. Several different methods [16], [17] have
been employed to represent context models to achieve higher
accuracy in recognizing objects. In [18], objects are represented
using mixtures of deformable part models (DPM). In [2],
regions with CNN (R-CNN) features are used for object
detection and their deep networks have shown very good results.
However, finding regions by selective search [7] and then
classifying approximately 2400 warped regions are indeed
computationally expensive. In [19], authors present object
detection using an additional spatial pyramid pooling layer
that use selective search to find the candidate windows which
are put on feature map of the CNN.

In [20], a framework is proposed for joint scene and object
classification by exploiting contextual relationship between
scene and objects. In [6], the authors present joint segmentation,
object detection and scene classification that involves graphical
models [6] to delineate the contextual information. However,
these context-based approaches are highly dependent on initial
prediction of scene or object labels in order to improve the
accuracy. Unlike these approaches, we consider two CNNs-
one for scene and other for objects, where interaction between
them are exploited for efficient scene and object classification.

III. JOINT SCENE AND OBJECT MODEL

Our goal in this paper is to jointly model the scene and
objects where both can benefit each other in the recognition
process. Fig. 2 shows overall framework.

A. Object Detection

Our object detection model follows three steps- region
proposal, feature extraction and training binary classifiers.
Region Proposal. We adopt the region proposal technique as
presented in [8] where the proposals are fewer in number and
are mostly related to the objects in an image. Given an image,
the region proposal approach provides some regions to localize
the objects. We use final convolutional layer features of S-CNN
to activate the possible regions for object localization using
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Fig. 3. Representation of region proposal approach for localizing objects.
Given an image, receptive fields at final convolutional layer produce the
activation regions. Bounding boxes have been placed around the segmentation
using contour approximation method to obtain regions. Best viewable in color.

empirical receptive field for each unit. Along this process, we
obtain approximately 450 regions on average from all the units
of last convolutional layer in S-CNN. Contour approximation
method has been used to place a bounding box around the
activated region.

Fig. 3 shows some activated regions of an image using
receptive field. We observe that all the objects of an image
have been almost covered by the activation of RF of all the units
from last convolutional layer of the S-CNN. We eliminate some
of the proposals that overlap among themselves significantly
to locate the same object. In order to do that, we first calculate
Intersection over Union (IoU) among the bounding boxes of
region proposals. If IoU > λ, we keep one from them and
adjust the bounding boxes by multiplying a factor β. The
elimination process of redundant windows helps us to prevent
from high false positive rate. Then, we order the candidate
windows according to the area of the bounding boxes. We
approximately keep 250 regions with larger area. We do not
consider the bounding boxes with very small area as those
boxes imply part of the objects most of the time. For each
region, we extract the feature with 4096-dimension from last
fully connected layer (fc7).
Training Binary Classifiers. In order to detect objects, we
train class specific binary classifiers. Let, fO ∈ <4096×1 be the
feature vector from the fc7 layer. Each binary classifier will
compute the probability, P (Oi = 1|fO) where i denotes the
object class. For each binary classifier, we split the training set
into positive and negative examples. With all regions proposals,
we have the bounding boxes of different IoU overlap with
ground-truth bounding box. We select the IoU ≤ 0.3 as
negative examples. We only consider the ground-truth boxes
for each class as positive. With training features and labels, we
get one linear SVM model per class. To fit the large training
data we implement standard hard negative mining method as
presented in [18]. To reduce the object localization error, we
adopt the regression method as presented in [18].
B. Scene Classification

Scene classification employs two steps- feature extraction
and classification.
Feature Extraction. To categorize scenes, we apply deep
network to extract the features. Feature extraction involves
three steps. We first extract global feature from fc7 layer of the
S-CNN as shown in Fig. 2. Given an image, let fS ∈ <4096×1

be a vector obtained from the fc7 layer of S-CNN. The feature
from S-CNN gives us global information of an image. Objects
are important entities for a scene since they provide useful
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Fig. 4. This figure illustrates the feature extraction technique for scene
classification. At first, object detection scores are propagated through a hidden
layer Ho. Then, HS1 combines the feature from S-CNN for whole image and
the feature of processed detection scores from Ho. Finally, one more fully
connected layer connects these global and local features to the output layer in
order to predict scene labels. Please see in color monitor for better view.

information about the scene. In this paper, we represent the
semantic interaction between scene and objects by training
three hidden layers. Given the object proposals obtained from
S-CNN, object detectors detect objects in an image with
some probability score. From the detection of objects, we
can form a vector that implies whether a particular object is
present or not. With the probability of appearing an object,
we get object level (local) feature. For example, let consider a
vector po = [po1 , po2 , . . . poN ] that contains the probabilities of
appearing an object in the scene. Here, N is the total number
of object categories. The model structure shown to capture the
object level features is shown in Fig. 4.

Next, we combine both global and local features. As shown
in the Fig. 4, we use total three hidden layers, namely, Ho, HS1

and HS2 to propagate both the feature vectors fS and po. The
vector po is propagated to the HS1 through one hidden layer
Ho. Here, every single hidden unit in Ho is connected to all
the units in HS1. HS1 is used as intermediate layer to combine
both global (features from fc7 layer of S-CNN) and local
(object level semantic information) features. The interaction
between scene and objects is established through this hidden
layer. Finally, one more hidden layer HS2 is incorporated to
connect with softmax layer to predict the scene labels. Thus,
appearance of the objects in a scene has an influence to predict
the scene labels.
Classification. We use softmax to predict the label of the
scene. Let, θ = [Wo,WS1,WS2] be the parameters of the
3 hidden layers where Wo,WS1,WS2 denote the parameters
of the layers Ho, HS1, HS2 respectively. Given a feature f
extracted from HS2, the softmax function can be written as

P (Si|f) =
exp(W

T
S2,if)∑Ns

l=1 exp
(WT

S2,lf)
(1)

Here, i ∈ {1, ..., Ns} is the scene label. WS2,i implies the
weight vector of the final layer corresponding to the class i. θi
includes all the parameters of the hidden layers of Ho, HS1 and
HS2 for class i. f is the test feature, which can be expressed
as f = [fS , po]. Now, we get predicted label by maximizing
P (Si|f) with respect to i. The predicted label can be expressed
as, Spred = argmax

i
P (Si|f) The parameter θ can be found

by solving an optimization problem. If we are given a set
of training features along with labels, θ can be obtained by
minimizing the cross entropy error.



L(θ) = − 1

M

M∑
p=1

Ns∑
q=1

I(Sp = q) log(Sp = q|xp; θ) (2)

We find the optimal θ by using a standard gradient descent
method. Here, I(.) is the indicator function, it gives the value
1 if p = q, otherwise 0. Sp and xp imply the scene label and
the feature of the sample p. M is the number of samples.

Training the Hidden Layers. To train the hidden layers,
we modify the cost function by adding a regularization term
that penalizes large weights to improve generalization which
can be expressed as

L′(θ) =
1

M

M∑
i

Lθ(f
i) + γR(θ) (3)

Here, Lθ(f i) is the error averaged over instances and R is the
regularization term. The data error Lθ(f i) is computed from
forward propagation. Loss L′ is obtained from the output of the
layers. We use stochastic gradient descent (SGD) to optmize
the network in order to find the weights θ by minimizing the
loss L′ over the data. SGD coordinates between forward and
backward to update the weights. We first need to compute the
gradients of both error term and regularization term. With these
gradients, we have 5L′(θ) which is the gradient of L′(θ) as
in Eqn. 3. Now, we can update parameters as follows

Vt+1 = µVt − α5 L′(θt) (4)
θt+1 = θt + Vt+1 (5)

Where, µ is the momentum and α is the learning rate. Vt+1 is
the gradient of the model parameter θ. Finally, we update the
parameters in each iterations using the Eqn. 5.

Fine-Tuning of S-CNN and O-CNN. We use two separate
pre-trained models- one for S-CNN and other for O-CNN. The
pre-trained models, for scene or objects, are trained on large
number of categories. Here, our objective is to fine-tune the
CNN parameters with new datasets both for S-CNN and O-
CNN. We consider object proposals obtained from the new
technique to tune the parameters. We use N+1 classes where N
is the number of object class and additional 1 is for background.
In order to fine-tune the pre-trained model of O-CNN, we split
the dataset to form training and validation set. We consider
Intersection over Union (IoU) (≥ 0.5) between the bounding
boxes of a proposed region and ground-truth as positive and rest
of the regions as negatives. We fine-tune the CNN parameters
using stochastic gradient descent solver [21]. Similarly, for
scene, we feed the data with two sources. One in input layer
of S-CNN and other one in hidden layer Ho with the ground-
truth detections of the objects. With the input data samples and
corresponding labels, we fine tune S-CNN network as well.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our object recognition and scene
classification results on five challenging datasets and compare
our method to other approaches.
Datasets. In SUN [23] dataset, we choose 150 scene classes
and 120 object categories to evaluate scene classification
and object detection performance. MIT-67 indoor [24] scene
dataset consists of 67 indoor scene categories. It also provides
large varieties of object categories. In MSRC [25] dataset, we

evaluate our results with the ground truth which is available in
[6] to classify 15 object categories and 21 scene classes. For
Scene-15 [26] dataset, we cannot show our object detection
results on scene-15 as there is no annotation for objects. We
evaluate object detection on VOC2010 [22] dataset that contains
20 object categories. Since scene ground-truths are not provided,
we can not perform scene classification on VOC2010.

Experimental Setup. We use pre-trained model ‘VGG net’
[3] which is trained on ‘places-205’ dataset to extract the scene
features from S-CNN. For O-CNN, we use pre-trained model
ILSVRC2012 as used in [2] to extract the features. We use caffe
[21] to implement the CNN architecture. For the convenience
of notation, we call the object detection framework (Region
proposals + O-CNN) as R′-CNN in the rest of the paper.

As discussed in Sec. III-A, we choose approximately 250
regions from proposed candidate bounding boxes using the
parameters λ and β. We choose the value of λ and β as 0.9
and 1.1. In MSRC dataset, 1-3 objects are present in an image
and the object occupies significant portion of the whole image.
So, we choose the top 10 activated regions with larger area
from proposed candidate bounding boxes for MSRC dataset.
Similarly, We choose 50 regions for VOC2010.

Training Data. In this paper, we split the dataset to form
training and validation set in order to fine-tune (FT) the O-
CNN parameters. Fine-tuning is required to adjust the CNN
parameters to new datasets. We fine-tune our object-CNN with
respect to VOC2010 [22], SUN [23] and MIT-67 datasets [24].
We consider our proposed object proposals with IoU ≥ 0.5 of
ground-truth as positive and rest of the regions as negatives.
With 50k iterations we fine-tune the CNN parameters using
SGD solver [21]. We do not finetune the parameters on MSRC
since this dataset does not contain enough samples.

Evaluation Criteria. We calculate the average precision
(AP) of each category comparing with the ground truth.
Precision depends on both correct labeling and localization
(overlap between object detection box and ground truth box).
Let the computed bounding box of an object be Ob and the
ground truth box be Gb, then the overlap ratio, OR = Ob∩Gb

Ob∪Gb
.

OR ≥ 0.5 is considered as correct recognition of an object
if the label of the object is also correct. From the average
precision (AP) of each category, we calculate the mean AP
(mAP) over all the categories.

Baseline Methods. Before presenting our results, we define
all the abbreviations that will be used as baseline methods.
� R′-SPP: Our region proposal technique (flow from S-CNN
to O-CNN) with spatial pyramid pooling [4] network.
� R′-CNN: Our region proposal with O-CNN (proposed).
� R′-CNN-FT1: R′-CNN with fine-tuned (FT) O-CNN.
� R′-CNN-FT2: R′-CNN with FT-O-CNN and FT-S-CNN.
� CNN1: ‘fc7’ feature from S-CNN with ‘Alexnet’ model.
� CNN2: ‘fc7’ feature from S-CNN with ‘VGGnet’ model.
� S-CNN+Ho: S-CNN feature concatenated with feature
extracted from Ho layer.
� S-CNN+HS1: S-CNN feature concatenated with feature
extracted from HS1 layer.
� S-CNN+HS2(S

′-CNN): S-CNN feature + feature extracted
from HS2 layer.



Methods VOC2010 [22] SUN [23] dataset MIT-67 [24] dataset MSRC [25] dataset
accuracy NR accuracy NR accuracy NR accuracy NR

DPM [18] 24.78% - 18.79% - 19.61% - 48.20% -
SPP [4] 50.78% ∼ 2400 - - - - - -
R′-SPP 52.32% 250 - - - - - -
R-CNN [2] 50.46% ∼ 2400 36.28% ∼ 2400 32.07% ∼ 2400 76.22% ∼ 2400
R′-CNN 52.80% 50 37.63% 250 32.88% 250 76.79% 10
R′-CNN-FT1 54.20% 50 39.76% 250 32.95% 250 - -
R′-CNN-FT2 56.12% 50 42.86% 250 34.72% 250 - -

TABLE I
MEAN AVERAGE PRECISION (MAP) OF STATE-OF-THE-ART METHODS AND OUR METHOD ON FOUR DATASETS. WITH NUMBER OF REGION PROPOSALS (NR)

WHICH ARE 1-3 ORDERS LESS THAN R-CNN [2], R′-CNN ACHIEVES BETTER PERFORMANCE.

� S′-CNN +FT1: S′-CNN with fine-tuned (FT) S-CNN.
� S′-CNN +FT2: S′-CNN with FT-S-CNN and FT-O-CNN.

a) Object Recognition Results:
Comparison against Other Detectors. We perform experi-
ments of our method, R′-CNN on four datasets- VOC2010
[22], SUN [23], MIT-67 Indoor [24] and MSRC [25] datasets.
In Table I, we compare our R′-CNN detector with DPM
[18] and R-CNN [2]. We implement both DPM and R-CNN
on aforementioned datasets. From Table I, we can see that
R′-CNN outperforms both DPM [18] and R-CNN [2]. After
fine-tuning both S-CNN and O-CNN, the performance of our
method is further improved. From Table I, the best comparable
result is found with R-CNN [2]. Our method achieves better
performance with compared to R-CNN with very less number
of region proposals.

We also analyze preliminary results on VOC dataset for
SPP [4] detector as presented in Table I. In SPP, proposals are
generated using [7] which are then projected into the feature
map of CNN to extract feature. Then, these features are used
to train and classify binary SVM. We use our object proposal
strategy instead of [7] in SPP net. We can see from the Table I
that our region selection strategy performs better in SPP on
VOC2010 dataset.
Reduction of Computational Cost. The main advantage of
using our region proposal technique in object recognition is that
it reduces the computational time as less number of proposals
are proposed. Our R′-CNN detector is approximately 9 times
faster than R-CNN [2] as we only classify around 250 regions
instead of 2400 regions presented in [2] on SUN [23] and
MIT-67 [24] datasets. For VOC2010 [22] and MSRC [25]
dataset, our method is 48 and 240 times faster than R-CNN
respectively. Results are shown in Table I. In Fig. 6 (b), we
observe that how object detection performance varies with
varying number of region proposals. It is not always useful to
have large number of object proposals as it might also increase
the rate of false positives which will be discussed next.
Is the proposed region proposal semantically meaningful?
In order to measure the region proposal quality, we also
calculate the ratio between the number of false positives (FP)
and the number of proposed regions, FPR = FP

NR
(NR is the

number of proposed regions). From our analysis, R-CNN [2]
has higher FPR than ours by approximately 1.43%, 2.32%,
1.06% and 1.21% on VOC2010 [22], SUN [23], MIT-67 Indoor
scene [24] and MSRC [25] datasets. Due to low FPR, our
approach achieves higher performance than R-CNN. Fig. 5
shows the object recognition results on some example images.
From Fig. 5, we observe that objects with larger pixel size are

Feature extraction SUN MIT-67 MSRC Scene15
GIST [9] 57.47% 29.08% 57.69% 68.02%
dSIFT [10] 61.13% 34.44% 71.36% 75.21%
CNN1 feature [3] 75.95% 70.00% 90.15% 91.06%
CNN2 feature [3] 76.62% 71.48% 91.67% 91.88%
S-CNN + Ho 76.36% 71.62% 90.88% -
S-CNN + HS1 76.92% 71.24% 92.08% -
S-CNN + HS2 77.85% 72.76% 93.14% 91.56%
S′-CNN+FT1 78.21% 73.68% - -
S′-CNN+FT2 79.49% 74.12% - -

TABLE II
SCENE CLASSIFICATION ACCURACY.

more inclined to have correct label and localization.
b) Scene Classification Results:

Comparison with State-of-the-art Methods. Table II shows
the scene categorization accuracy of other state-of-the-art
methods and S′-CNN feature extraction technique. We first
compare proposed feature extraction method to other methods
such as GIST [9], dSIFT [10] and CNN [3]. S′-CNN technique
outperforms GIST, dSIFT by large margin. From Table II, the
best comparable result is found with CNN2 feature [3]. With
the tuned parameters of S-CNN and O-CNN, S′-CNN feature
based classification is further improved. For Scene-15 dataset,
as we do not have any annotation for objects, we use R-CNN [2]
to detect the objects. As detectors are not trained on this dataset,
we do not obtain the best performance with S′-CNN. From
Table II, we can conclude that information flow from O-CNN
to S-CNN improves the performance on scene categorization.
Is Selection of Regions Important in Scene Categorization?
Our proposed feature extraction technique exploits the local
features from O-CNN. However, the scene classification
performance depends on the quality of region proposals. We
carry out an experiment on SUN dataset with 7240 images that
have full annotation for objects. We select three different region
selection strategies namely, selective search [7] used in R-
CNN [2], proposed object proposal technique and ground truth
regions to detect objects. Region proposals with tight boundary
over objects give good detection results. Since object detection
scores are used to represent feature for scenes, object proposals
have direct impact in classifying scene. Table III demonstrates
the scene classification accuracy. From Table III, we observe
that our region selection strategy, S′-CNN outperforms the
CNN2 feature [3] method where no region selection is used. We
also compare with ground-truth as proposals, and our proposal
performance is close to the result of scene classification when
ground truth is used as region proposals.
Comparison with Other Joint Scene and Object Model. We
also compare our joint model with the holistic [6] approach
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Region Selection Strategy
CNN2 feature [3] S-CNN + R-CNN [2] S′-CNN Ground-truth
83.92% 83.64% 85.28% 86.14%

TABLE III
SCENE CLASSIFICATION PERFORMANCE WITH DIFFERENT REGION

SELECTION STRATEGIES.

Method Scene Object
Prediction Detection

MIT-67 Indoor Dataset
holistic [6] 72.04% 32.48%
Ours 74.12% 34.72%

MSRC Dataset
holistic[6] 92.28% 76.83%
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Fig. 6. (a) Comparison of other combined scene and object model, and (b)
Plot of mAP vs number of region proposals. Here, we can see that how the
detection performance changes with the number of object proposals.

for joint scene and object classification. Fig. 6(a) demonstrates
the comparison results on MIT-67 Indoor and MSRC datasets.
To make a fair comparison, we implement their holistic model
[6] on top of CNN2 based scene classification method and
R-CNN [2] based object detectors. Holistic model [6] does not
perform well when an image contains multiple objects. Thus,
our method outperforms [6] on MIT-67 Indoor dataset. On
MSRC dataset, both our model and holistic [6] approach are
comparable in classifying objects.
Discussion. Faster-RCNN [27] is one of the promising tech-
niques that provides object proposals using region proposal
network (RPN). However, faster-RCNN slides over the final
convolutional feature map and proposes 9 anchor boxes (region
proposals) for each spatial location which provides 20,000
anchors in total. After series of operations (ignoring cross-
boundary anchors and non-maximal suppression), RPN ends
up with 2000 proposals for training. Since sliding window
is computationally expensive, our region proposal technique
can provide significantly less number of initial anchor boxes
(e.g. 250*9 2250, one magnitude less) which can reduce the
computational burden. This is because our region proposals
are derived from the scene classification network.

V. CONCLUSION

In this paper, we propose a novel framework for joint scene
and object classification by exploiting the inter-dependence
between scene and object CNN architectures. In our frame-
work, S-CNN provides object proposals that improves the
performance of object detection. Similarly, bottom-up flow
from O-CNN to S-CNN aids to form robust features that
discriminate the different scene categories.
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