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Abstract. Recent research on structure and motion recovery has focused on issues related to sensitivity and
robustness of existing techniques. One possible reason is that in practical applications, the underlying assumptions
made by existing algorithms are often violated. In this paper, we propose a framework for 3D reconstruction from
short monocular video sequences taking into account the statistical errors in reconstruction algorithms. Detailed
error analysis is especially important for this problem because the motion between pairs of frames is small and
slight perturbations in its estimates can lead to large errors in 3D reconstruction. We focus on the following issues:
physical sources of errors, their experimental and theoretical analysis, robust estimation techniques and measures
for characterizing the quality of the final reconstruction. We derive a precise relationship between the error in the
reconstruction and the error in the image correspondences. The error analysis is used to design a robust, recursive
multi-frame fusion algorithm using “stochastic approximation” as the framework since it is capable of dealing with
incomplete information about errors in observations. Rate-distortion analysis is proposed for evaluating the quality
of the final reconstruction as a function of the number of frames and the error in the image correspondences. Finally,
to demonstrate the effectiveness of the algorithm, examples of depth reconstruction are shown for different video
sequences.

Keywords: structure and motion estimation, error analysis, Robbins-Monro stochastic approximation, rate
distortion theory

1. Introduction

Extraction of the 3D structure of a scene from a se-
quence of images, termed structure from motion (SfM),
has been the central problem in computer vision for the
past two decades. Extensive literature on the subject can
be found in Faugeras (1993), Hartley and Zisserman
(2000), and Oliensis (2000), among others. While there
is no doubt that immense progress has been made in the
understanding of the problem, especially its geometri-
cal aspects, many of the available algorithms perform
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poorly in real-life applications. This has motivated re-
cent research on issues of sensitivity, robustness and
error characterization of existing techniques (Faugeras,
1993; Kanatani, 1996; Zhang, 1998; Ma et al., 2000;
Sun et al., 2001), etc.

The errors which affect the quality of SfM algorithms
can be broadly classified into two groups—geometrical
and statistical. The geometrical errors arise because
of the well-known ambiguities (e.g. the scale ambi-
guity) present in the mathematical description of the
problem (see Zhang and Faugeras, 1992 or Hartley
and Zisserman, 2000). They can usually be handled by
imposing additional constraints on the solution space.
The statistical errors are a result of the poor quality of
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the video sequence. They are an inherent part of the
input data and need to be compensated for if the final
output solution is to be robust enough for engineering
applications.

SfM algorithms often make assumptions about the
inputs (e.g. perfect image correspondences) that are vi-
olated in practice and lead to errors in the reconstruc-
tion. An understanding of the strengths and shortcom-
ings of some of the existing algorithms can be found
in Triggs et al. (2000). In order to make our algo-
rithms work in the presence of these errors, we might
be tempted to introduce preprocessing stages to min-
imize their effects (e.g. design better correspondence
algorithms). However, the sources of the errors are of-
ten unknown; preprocessing stages are independent re-
search problems in their own right (the correspondence
problem is a very good example of this); and incorpo-
rating these stages adds to the total computational cost
of the final system. The alternative is to understand
these errors in a statistical sense and account for their
influence within the structure of the main algorithm.
This paper aims to achieve that goal.

1.1. Related Work

Pioneered by the seminal work of Longuet-Higgins
(1981) and the eight-point algorithm developed inde-
pendently by Tsai and Huang (1981), SfM has been
one of the most vibrant research areas in computer vi-
sion. Most of the earlier work concentrated on develop-
ing efficient algorithms for reconstructing 3D structure
from multiple frames. The use of multiple frames was
motivated by the hope that the extra information will
help to minimize the errors that are inevitably present
in two-frame reconstructions. The problem of track-
ing an object across multiple frames was addressed
in Gennery (1992) where a known object and its past
position and velocity were used to predict its new lo-
cation. Broida and Chellappa (1991) investigated the
use of the extended Kalman filter for estimating mo-
tion and structure from a sequence of monocular im-
ages. Azarbayejani and Pentland (1995) extended their
work to include the estimation of the focal length of the
camera, along with motion and structure. Tomasi and
Kanade (1992) developed an algorithm for shape and
motion estimation under orthographic projection using
the factorization theorem. Szeliski and Kang (1994)
proposed a non-linear least squares optimization us-
ing the Levinburg-Marquardt method. Oliensis (1999)
developed a multi-frame algorithm under perspective

projection, which was extended recently in Oliensis
and Genc (2001). Most of these multi-frame methods
can be characterized as batch processing (but not nec-
essarily sequential or progressive) which means that
the problem of estimating motion and structure is for-
mulated as one of minimizing an objective function
defined as a sum of squares of the differences between
the actual observed images and the projections of their
estimated 3D locations, over all tracked positions and
images (bundle adjustment). In contrast, Thomas and
Oliensis (1999) proposed a fusion algorithm that com-
putes the final reconstruction from intermediate recon-
structions by analyzing the uncertainties in them, rather
than from image data directly. Estimation of 3D mo-
tion from an overlapping image sequence was done in
Weng et al. (1987) based on two-view motion analysis
from either monocular or binocular image pairs.

Many researchers have analyzed the sensitivity and
robustness of several existing algorithms for recon-
structing a scene from its video sequence. The work
of Weng et al. (1989, 1993) is one of the earliest in-
stances of estimating the standard deviation of the er-
ror in reconstruction using first-order perturbations in
the input. The Cramer-Rao lower bounds on the esti-
mation error variance of the structure and motion pa-
rameters from a sequence of monocular images was
derived in Broida and Chellappa (1989). Young and
Chellappa (1992) derived bounds on the estimation er-
ror for structure and motion parameters from two im-
ages under perspective projection using optical flow,
as well as from a sequence of stereo images (Young
and Chellappa, 1990). Similar results were derived in
Daniilidis and Nagel (1993) and the coupling of the
translation and rotation for a small field of view was
studied. Daniilidis and Nagel (1990) have also shown
that many algorithms for three-dimensional motion es-
timation, which work by minimizing an objective func-
tion leading to an eigenvector solution, suffer from in-
stabilities. Zhang’s work (Zhang, 1998) on determining
the uncertainty in the estimation of the fundamental
matrix is another important contribution in this area.
Haralick (1996) showed how well-known estimation
techniques could be used to propagate additive ran-
dom perturbations through different vision algorithms.
Soatto and Brockett (1998) have analyzed SfM in order
to obtain provably convergent and optimal algorithms.
Oliensis (2000) has emphasized the need to understand
algorithm behavior and the characteristics of the natu-
ral phenomenon that is being modeled. Ma et al. (2000)
also addressed the issues of sensitivity and robustness
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in their motion recovery algorithm. Recently, Sun et al.
(2001) have proposed an error characterization of the
factorization method for 3-D shape and motion recov-
ery from image sequences using matrix perturbation
theory. Morris et al. (2000) extended the covariance-
based uncertainty calculations to account for geometric
indeterminacies, referred to in the literature as gauge
freedom.

A different source of error is the bias in depth estima-
tion. Some authors, notably (Daniilidis and Spetsakis,
1993; Kanatani, 1993), have proved that there exists
a bias in the translation and rotation estimates from
stereo. Recently, it has been proposed that the bias
in the optical flow field can be a possible explanation
for many geometrical optical illusions (Fermuller and
Aloimonos, 2001). In a separate work, we have shown
that the 3D reconstruction from monocular video is
statistically biased and the bias is numerically signifi-
cant (Roy Chowdhury and Chellappa, 2003b). The er-
ror analysis presented in this paper assumes an un-
biased estimate. In Roy Chowdhury (2002), we have
shown how the results presented here can be combined
with the results on the bias of the estimate to obtain a
generalized Crmaer-Rao lower bound for the minimum
variance of an SfM estimate, thus extending the results
in Young and Chellappa (1992).

1.2. Overview of Paper

In this paper we deal with the problem of 3D recon-
struction from short monocular video streams. This is
important in a number of applications, e.g. surveillance,
where all that may be available is a short video sequence
of a person’s face from one view and we may want
to recognize him/her from a slightly different view.
Detailed error analysis is especially important for this
problem because the motion between pairs of frames is
small and slight perturbations in its estimates can lead
to large errors in 3D reconstruction. We use the two-
frame algorithm described in Srinivasan (2000), based
on the optical flow equations of SfM. Our algorithm is
not specific to this method; however, the algorithm de-
scribed in this paper is computationally more efficient
than most others and we wish to build on it to develop
a fast, reliable multi-frame algorithm.

Also, this paper will concentrate on fusion algo-
rithms for 3D reconstruction. By fusion, we mean a
multi-frame SfM (MFSfM) algorithm that computes
the final reconstruction from intermediate reconstruc-
tions (by analyzing the uncertainties in them) rather

than from image data directly. An alternative approach,
“integration over time,” relies on updating a previous
structure estimate with information contained in the
new image, weighted by their respective uncertain-
ties. However, this method is potentially unstable if
the initial structure estimates are inaccurate. To their
discredit, however, fusion strategies usually fail if the
intermediate reconstructions are of poor quality.

We start with an analysis of the statistics of the error
in two-frame depth reconstruction (Section 2). An ex-
pression relating the error covariance in the image cor-
respondences to the error covariance in the shape and
motion reconstruction is derived. The expression does
not require the standard assumptions of Gaussianity
of the observations and is thus a generalization of the
results presented in Young and Chellappa (1992).1An
experimental study of the properties of two-frame
reconstructions allows us to choose an appropriate
optimization function and a robust solution frame-
work using stochastic approximation theory, which
can give optimal estimates even if information on the
noise statistics is incomplete (Saridis, 1974; Ljung
and Soderstrom, 1987; Benveniste et al., 1987; Spall,
2000). Based on this analysis, we develop our algorithm
(Section 3), which consists of two parts, a depth fu-
sion unit using Robbins-Monro stochastic approxima-
tion (RMSA) (Robbins and Monro, 1951) and a camera
motion tracking algorithm using a Kalman filter. Fi-
nally, we evaluate the quality of the multi-frame recon-
struction using the rate-distortion criterion from infor-
mation theory (Cover and Thomas, 1991) (Section 4).
This analysis allows us to precisely understand the sen-
sitivity of the final structure estimate to the number of
frames and to errors in the input information. Our re-
sults are demonstrated using video sequences captured
with an ordinary video camera (Section 5) with ap-
plication to 3D face modeling. We finally conclude in
Section 6 after discussing potential applications and
future research directions.

2. Statistical Analysis of Two-Frame
Reconstruction

We begin our study of the development of a robust
framework for multi-frame SfM with an analysis of
errors in two-frame reconstructions. We will start with
an experimental analysis of two-frame reconstruction
and then develop a theoretical framework for a precise
relationship between the errors in the images and the
errors in structure and motion estimates.
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2.1. The Basic Equations of SfM

Given two images, I1 and I2, we are interested in com-
puting the camera motion and structure of the scene
from which these images were derived. If p(x, y) and
q(x, y) are the horizontal and vertical velocity fields
of a point (x, y) in the image plane, they are related
to the 3D object motion and scene depth (under the
infinitesimal motion assumption) by

p(x, y) = (−vx + xvz)g(x, y) + xyωx

− (1 + x2) ωy + yωz
(1)

q(x, y) = (−vy + yvz)g(x, y) + (1 + y2) ωx

− xyωy − xωz,

where V = [vx , vy, vz] and Ω = [ωx , ωy, ωz] are the
translational and rotational motion vectors respectively,
g(x, y) = 1/Z (x, y) is the inverse scene depth, and all
linear dimensions are normalized in terms of the fo-
cal length f of the camera (Nalwa, 1993). The prob-
lem is to estimate V,Ω and Z given (p, q). (1) can be
rewritten in a more useful form (because of the scale
ambiguity (Nalwa, 1993)) as

p(x, y) = (x − x f )h(x, y) + xyωx

− (1 + x2) ωy + yωz
(2)

q(x, y) = (y − y f )h(x, y) + (1 + y2) ωx

− xyωy − xωz,

where (x f , y f ) = ( vx
vz

,
vy

vz
) is known as the focus of

expansion (FOE) and h(x, y) = vz
Z (x,y) . Our problem

is to obtain an accurate fused estimate of the structure
from multiple frames given the two-frame solution of
(2). While the scene depth Z is fixed across the frames,
the camera motion (V,Ω) changes. Thus the structure
is all that can be fused since it is the only thing that
remains fixed from image to image. However, we need
to track the camera motion across the frames in order
to align the models obtained from each pair of frames.

2.2. Qualitative Analysis

Our experiments in understanding the properties of
two-frame reconstructions have two parts: analyzing
the statistical distribution of the intermediate depth re-
constructions (we also refer to them as sub-estimates)
and time-series analysis of these sub-estimates. Our ex-
periments are conducted on two image sequences: the

Figure 1. One frame from each of the two video sequences:
(a) represents an image from an indoor video sequence and (b) from
an outdoor video sequence. These two sequences were used in the
qualitative analysis.

face sequence and the house sequence, one frame of
each of which is shown in Fig. 1 (they represent indoor
and outdoor video sequences respectively).

2.2.1. Distribution of Depth Sub-Estimates. To ob-
tain a good fused estimate from sub-estimates, one
should know how to weigh the sub-estimates and their
uncertainties in order that the final estimate accurately
reflects this information. In a general fusion problem,
this involves computing the likelihood function (Poor,
1988). Traditional fusion methods like Kalman filter-
ing provide a computational method for this likelihood
function and work well under Gaussian approxima-
tion. This typically happens when the sub-estimates
have small uncertainties because of which a Gaussian
approximation to reflect their variances is adequate.
The fact that the noise in the estimates is not Gaussian
has been mentioned by various authors (Chapter 12 of
Kanatani, 1996) and is due to several reasons, e.g. the
physical characteristics of the imaging system, the non-
linearities of the perspective projection model, etc. As
pointed out in Zhang (1998) and which we have ob-
served in our experiments as well, small errors due
to localization can usually be modeled by the second
order statistics, while the outliers (often due to false
matches) do not lend themselves to be modeled easily
by second-order statistics. Hence our analysis has two
parts. We try to model the second order statistics and
its propagation across the video sequence in order to
compensate for the smaller errors. The larger errors are
treated as outliers and rejected using the least median
of squares estimator, which is known to be robust to
outliers.

A standard test for Gaussianity of observations is to
analyze their higher-order statistics. It is well known



Stochastic Approximation and Rate-Distortion Analysis 31

0 20 40 60
0.2

0.3

0.4

Moment of Order1

0 20 40 60
0.05

0.1

Moment of Order2

0 20 40 60
0.02

0.04

0.06
Moment of Order3

0 20 40 60
0.02

0.025

0.03
Moment of Order4

0 20 40 60
0.01

0.015

0.02
Moment of Order5

0 20 40 60
0.008

0.01

0.012
Moment of Order6

0 20 40 60
0.2

0.3

0.4

Cumulant of Order1

0 20 40 60
0.04

0.06

0.08
Cumulant of Order2

0 20 40 60
0.1

0.15

0.2

Cumulant of Order3

0 20 40 60
0

0.01

0.02

Cumulant of Order4

Figure 2. Plot of estimates of the moments and cumulants of the two-frame depth for the face sequence of Fig. 1(a) against the feature points.
Skewness = −0.25; Kurtosis = 1.9 ⇒ left skewed and flat distribution.

that for Gaussian random variables, all odd central
moments are identically zero (this is actually true for
any symmetric distribution) and all cumulants of order
greater than two are zero (Papoulis, 1991). Figures 2
and 3 show plots of the estimates of the central mo-
ments and cumulants of two-frame depth against the
feature points. Analysis of these plots reveals that there
is significant non-Gaussianity in the distribution func-
tion of the depth. For the face sequence, the estimated
skewness is −0.25 and the kurtosis is 1.9, while for
the house sequence, the values are 1.1 and 3.2 respec-
tively (averaged over all features). Knowing that the
skewness of a standard normal distribution (N (0, 1))
is 0 and the kurtosis is 3 (Shao, 1998), we can infer
that the distribution of the depth sub-estimates for the
face sequence is left skewed (negative skewness) and
flat (kurtosis less than 3), while the same distribution
function for the house sequence is right skewed (pos-
itive skewness) and peaked (kurtosis greater than 3).
What these figures emphasize is that the distribution
function of the depth sub-estimates which need to be
fused is significantly non-Gaussian and it varies widely
depending on the data (in fact, it is impossible to even
infer whether the distribution is sub-Gaussian or super-

Gaussian). However, it is not possible to infer anything
more about the distribution functions, thus making it
impossible to write down the likelihood function.

2.3. Robust Estimators

Figure 4 shows a plot of the depth values across 50
frames for four randomly chosen points in the face im-
age sequence. It can be seen that there are isolated
outliers in all four cases. It is difficult to ascertain the
exact cause of the outliers; however, the general rea-
sons for their occurrence can be inferred.2Application
of least squares estimation techniques in the presence
of such outliers will severely affect the estimates. In
fact, regression analysis shows that least squares is vul-
nerable to outliers in both independent or explanatory
variables as well as the observations or response vari-
ables (Rousseeuw and Leroy, 1987). In our case, the
observations are the two-frame depth values which de-
pend on the image correspondences (p, q), and which
therefore are the explanatory variables. Thus there are
outliers in both of the variables and least-squares tech-
niques will perform poorly.
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Figure 3. Plot of estimates of the moments and cumulants of the two-frame depth for the outdoor house sequence of Fig. 1(b) against the
feature points. Skewness = 1.1; Kurtosis = 3.2 ⇒ right skewed and peaked distribution.

Numerous papers have been published in the statis-
tics and signal processing literature over the last two
decades on designing robust estimators (Rousseeuw
and Leroy, 1987). The two most popular robust meth-
ods are M-estimators and the least-median-of-squares
(LMedS) method.3A good review of these methods in
general and as applied to vision in particular can be
found in Rousseeuw (1984), Meer et al. (1992), and
Black and Rangarajan (1996). In our method, we use
LMedS, which estimates the parameters by solving the
nonlinear minimization of the residual ri ,

(3)min median r2
i .

i

The median is a preferred estimator as it has a high
breakdown point. In fact, experiments prove that this
method is very robust to outliers due to either bad local-
ization or false matches (Zhang and Faugeras, 1992).
However, unlike M-estimators, the LMedS problem
cannot be reduced to a weighted least-squares prob-
lem, thus complicating its computation. It is also a
well-known fact that the efficiency of LMedS is low in
the presence of Gaussian noise (Rousseeuw, 1984).4As
discussed before, the noise in the structure estimates de-

viates appreciably from Gaussianity and thus LMedS
is a good choice for our application.

Given that the two-frame depth observations are non-
Gaussian, a linear mean square error estimator like the
Kalman filter is optimal (in the minimum variance
sense) only among the class of linear estimators (for
the Gaussian case, the Kalman filter is the minimum
mean square estimator among all estimators). We must
therefore search over a larger class of non-linear esti-
mators. However, rather than search for a general non-
linear estimator, we restrict our search to those esti-
mators which minimize the median of squares. The
question now is, is it possible to develop a recur-
sive strategy for this optimization taking into account
the statistics of the observations we mentioned pre-
viously? Before answering this question, however, we
will present a quantitative analysis of the error in the re-
construction as a function of the error in the input image
correspondences.

2.4. Theoretical Analysis

In our experimental studies, we found that it is not
possible to postulate a distribution on the depth
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Figure 4. A plot of the depth values across 50 frames for four randomly chosen points from the face sequence. It can be seen that there are
isolated outliers in all four cases.

sub-estimates, making it impossible to express the
likelihood function in an analytical form. We will
now show that, even though the distribution function
is unknown, it is possible to infer the second-order
statistics of the distribution. Specifically, we derive a
closed-form expression for the covariance of structure
and motion estimates as a function of the covariance
of the image correspondences, which can be estimated
experimentally.

Recall Eq. (2). We first consider the case where the
FOE is known and then discuss the unknown FOE case.

2.4.1. Known FOE. In situations where the FOE does
not change appreciably over a few frames, it is possible
to estimate the FOE from the first two or three frames
and assume that it remains constant for the next few
frames.

In our analysis, we will follow the notation of Srini-
vasan (2000). Consider N points (for a sparse depth
map, this denotes N feature points, while for a dense

depth map it denotes the number of pixels in the image).
Let us define

h = (h1, h2, . . . , hN )T
N×1

u = (p1, q1, p2, q2, . . . , pN , qN )T
2N×1

ri = (
xi yi , −

(
1 + x2

i

)
, yi

)T

3×1

si = (
1 + y2

i , −xi yi , −xi
)T

3×1

Ω = (wx , wy, wz)
T
3×1

Q = [r1 s1 r2 s2 . . . rN sN ]T
2N×3

P =




x1 − x f 0 · · · 0

y1 − y f 0 · · · 0

0 x2 − x f · · · 0

0 y2 − y f · · · 0
...

...
. . .

...

0 0 · · · xN − x f

0 0 · · · yN − y f




2N×N
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B = [P Q]2N×(N+3)

z =
[

h

Ω

]
(N+3)×1

. (4)

Then (2) can be written as

Bz = u. (5)

We want to compute z from u. Note that for known
FOE (x f , y f ), we have linear system of equations. Let
z = ψ(u). Expanding ψ in a Taylor series around E[u],

ψ(u) = ψ(E[u]) + Dψ (E[u])(u − E[u])

+O(u − E[u])2, (6)

where O(x2) denotes terms of order 2 or higher in x
and Dψ (x) = ∂ψ

∂x . Up to a first-order approximation,

ψ(u) − ψ(E[u]) = Dψ (E[u])(u − E[u]). (7)

The covariance of z can then be written as

Rz = E[(ψ(u) − E[ψ(u)])(ψ(u) − E[ψ(u)])T ]

= E[Dψ (E[u])(u − E[u])

× (u − E[u])T (Dψ (E[u]))T ]

= Dψ (E[u])Ru Dψ (E[u])T (8)

where Ru is the covariance matrix of u and we
have used the first order approximation that E[z] =
ψ(E[u]). Now consider the cost function

C = 1

2
‖Bz − u‖2

= 1

2

n=2N∑
i=1

(
ui −

N+3∑
j=1

bi j z j

)2

= 1

2

n∑
i=1

C2
i (ui , z)

= 1

2

N∑
i=1

(
C2

pi + C2
qi

)
, (9)

where C pi and Cqi are the components of the cost func-
tion corresponding to the p and q components of the
motion and bi j is the (i, j)th element of B.

We now state a result which gives a precise relation-
ship between the error in image correspondences Ru

and the error in depth and motion estimate Rz. We will

then show how the results can be extended for the case
where the FOE is unknown.

Theorem 1. Define

Aī p =
[
0 · · · 0 − (xī − x f ) 0 · · · 0 − xī yī

(
1 + x2

ī

) −yī

]
,

= [−(xī − x f )Iī (N )| − rī ] = [Aī ph | Aī pm ]

Aīq =
[
0 · · · 0 − (yī − y f ) 0 · · · 0 − (

1 + y2
ī

)
xī yī (N ) xī

]
,

= [−(yī − y f )Iī (N ) | −sī ] = [Aīqh | Aīqm ] (10)

where ī = �i/2� is the upper ceiling of i (ī will
then represent the number of feature points N and
i = 1, . . . , n = 2N ) and In(N ) denotes a 1 in the
nth position of the array of length N and zeros else-
where. The subscript p in Aī p and q in Aīq denotes
that the elements of the respective vectors are derived
from the pth and qth components of the motion in (2).
Then

Rz = H−1

( ∑
i

∂CT
i

∂z
∂Ci

∂u
Ru

∂CT
i

∂u
∂Ci

∂z

)
H−T (11)

= H−1

(
N∑

ī=1

(
AT

ī p Aī p Ruī p + AT
īq Aīq Ruīq

))
H−T ,

(12)

and

H =
N∑

ī=1

(
AT

ī p Aī p + AT
īq Aīq

)
. (13)

2.5. Proof of Error Covariance Result

We use the implicit function theorem (Walter, 1976) to
prove the above result. It has been used previously for
the derivation of the uncertainty in the fundamental
matrix (Faugeras, 1993) and for establishing partial
results on the uniqueness of the structure and motion
parameters when a long sequence is used (Broida,
1985). It was used in Fessler (1996) for error calcula-
tions in medical imaging applications. We use it here
to derive explicit expressions for error covariance in
terms of the parameters of (2).

Implicit function theorem: The implicit function the-
orem states that if f is a continuously differentiable
mapping, f (x, y) = 0 can be solved uniquely for y in
terms of x under certain conditions. We state the theo-
rem precisely as described by Rudin in Walter (1976).
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Let f be a C ′ mapping of an open set E ⊂ �n+m into
�n , such that f(a, b) = 0 for some point (a, b) ∈ E .
Put A = f′(a, b) and assume that Ax (the derivative
matrix of f with respect to its first argument x ∈ �n)
is invertible. Then there exist open sets U ∈ �n+m

and W ∈ �m , with (a, b) ∈ U and b ∈ W , having the
following property: To every y ∈ W there corresponds
a unique x such that f(g(y), y) = 0 and

g′(b) = −(Ax )−1 Ay .� (14)

For our problem, we desire to obtain our parameter
of interest z by minimizing C . Choosing a = E[z] and
b = E[u] (this is the point at which all the derivatives
are computed), let

φ = ∂CT

∂z
, and H = ∂φ

∂z
. (15)

φ is a m ×1 vector and H is a symmetric m ×m matrix.
Then from the implicit function theorem

Dψ (u) = −H−1 ∂φ

∂u
. (16)

Thus (8) becomes

Rz = H−1 ∂φ

∂u
Ru

∂φT

∂u
H−T . (17)

Then from (9) and (15),

φ = ∂C

∂z

T

=
∑

i

Ci
∂CT

i

∂z

H = ∂φ

∂z
=

∑
i

∂CT
i

∂z
∂Ci

∂z
+ Ci

∑
i

∂2CT
i

∂z2

≈
∑

i

∂CT
i

∂z
∂Ci

∂z

∂φ

∂u
≈

∑
i

∂CT
i

∂z
∂Ci

∂u
. (18)

Thus Eq. (17) becomes

Rz = H−1

( ∑
i j

∂CT
i

∂z
∂Ci

∂u
Ru

∂CT
j

∂u
∂C j

∂z

)
H−T , (19)

which gives a precise relationship between the uncer-
tainty of the image correspondences Ru and the uncer-
tainty of the depth and motion estimates Rz. Substitut-
ing our cost function from (9), we get

∂Ci

∂z
=

{
Aī p, i odd

Aīq , i even
, (20)

as a 1 × (N + 3) dimensional vector and

∂Ci

∂u
=

[
∂Ci

∂p1

∂Ci

∂q1
· · · ∂Ci

∂pN

∂Ci

∂qN

]
,

= Ii (2N ), (21)

as a 1 × 2N dimensional array. Hence the Hessian in
(18) becomes

H =
N∑

ī=1

(
AT

ī p Aī p + AT
īq Aīq

)
. (22)

The above expression can be represented as H = BT B,
which can be derived by vector calculus techniques.
However, as is clear from (18), the expression for the
Hessian in (22) is an approximation from the implicit
function theorem. This method of derivation allows
easy extension to the unknown FOE (and thus more
general) case, where the advantages of a linear system
are lost.

Assuming that the feature points as well as
the components of the motion vector at each fea-
ture point are uncorrelated with each other, Ru =
diag[Ruī p, Ruīq ]ī=1,...,N . (Note that this condition is
weaker than the one required to prove the optimality
of the least squares criterion according to the Gauss-
Markov theorem (Shao, 1998).) Then we can obtain a
simpler relationship for the error covariances in (19):

Rz = H−1

( ∑
i

∂CT
i

∂z
∂Ci

∂u
Ru

∂CT
i

∂u
∂Ci

∂z

)
H−T

= H−1

(
N∑

ī=1

(
AT

ī p Aī p Ruī p + AT
īq Aīq Ruīq

))
H−T .

(23)

Equations (22) and (23) prove the statement of
Theorem 1. If we make the even stronger assump-
tion that the components of Ru are all identical (with
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variance r2), i.e. Ru = r2I2N×2N , then (23) simplifies
to

Rz = H−1(r2H)H−T

= r2H−1. (24)

It should be noted that the assumption of uncorrelated-
ness of the noise in the features is invoked only at the
end of the calculations. An advantage of our derivation
is that we can obtain the most general expression for the
covariance in (19). Thereafter the different assumptions
are introduced. In practice, these assumptions can be
used only if they are valid. Thus depending upon the
validity of the assumptions, different expressions for
the covariance in (19), (23) or (24) can be used. For a
dense flow field, (23) or (24) cannot be used.

2.6. Unknown FOE

When the focus of expansion in (2) is unknown, the
linear form of (5) is lost. The unknown vector z =
[h, x f , y f ,Ω]T = [h, m]T and the cost function is
C = 1

2

∑n
i=1 C2

i = 1
2

∑n
i=1 < ui − ûi (z), ui − ûi (z) >,

where ûi is the estimate of the 2D motion vector ob-
tained by projecting the reconstructed scene accord-

ing to (2) and < · > denotes inner product. However,
our method of deriving the error covariances using the
implicit function theorem allows us to use the same
method to derive the error covariances in this general
case. The derivation presented above remains exactly
the same except that we need to redefine the two vectors
Aī p and Aīq as follows:

Aī p = [−(xī − x f )Iī (N ) | hī 0 − rī ],

= [Aī ph | Aī pm],

Aīq = [−(yī − y f )Iī (N ) | 0 hī − sī ],

= [Aīqh | Aīqm] (25)

A very important distinction for the unknown FOE
case compared to the known FOE one is that Aī p and

Aīq are now functions of the inverse depth estimates
hī .

2.7. Structure of Rz

The Rz thus obtained has an interesting structure as a
result of our partitioning the vectors Aī p and Aīq into
structure and motion components. From (22),

H =
[

Hh Hhm

HT
hm Hm

]
(26)

where

Hh =
N∑

ī=1

(
AT

ī ph Aī ph + AT
īqh Aīqh

)

HT
hm =

N∑
ī=1

(
AT

ī pm Aī ph + AT
īqm Aīqh

)

Hm =
N∑

ī=1

(
AT

ī pm Aī pm + AT
īqm Aīqm

)
. (27)

Thus

Hh =




(x1 − x f )2 + (y1 − y f )2 · · · 0
...

. . .
...

0 · · · (xN − x f )2 + (yN − y f )2


 (28)

and

Hm =
N∑

ī=1

(
rT

ī
rī + sT

ī
sī

)
. (29)

Then the inverse of H (assuming it exists) is (Golub
and Van Loan, 1989)

H−1 =
[

Q S

ST G

]
(30)

with

Q = (
Hh − HhmH−1

m HT
hm

)−1

G = (
Hm − HT

hmH−1
h Hhm

)−1

S = −QHhmH−1
m . (31)
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From (23)

N∑
ī=1

(
AT

īp Aī p Ruī p + AT
īq Aīq Ruīq

)

=
[ ∑N

ī=1

(
AT

īph Aī ph Ruī p + AT
īqh Aīqh Ruīq

) ∑N
ī=1

(
AT

īph Aī pm Ruī p + AT
īqh Aīqm Ruīq

)
∑N

ī=1

(
Aī pm AT

īph Ruī p + Aīqm AT
īqh Ruīq

) ∑N
ī=1

(
AT

īpm Aī pm Ruī p + AT
īqm Aīqm Ruīq

)
]

=
[

A C

CT B

]
(32)

with

N∑
ī=1

(
AT

īph Aī ph Ruī p + AT
īqh Aīqh Ruīq

)

=




(x1 − x f )2σ 2
p1 + (y1 − y f )2σ 2

q1 · · · 0
...

. . .
...

0 · · · (xN − x f )2σ 2
pN + (yN − y f )2σ 2

q N


 , (33)

where σ 2
pī and σ 2

qī are the variances of the p and
q motion components for the i-th feature point (i.e.
Ruī p = σ 2

pī and Ruīq = σ 2
qī ). Then substituting (28)

and (32) into (23), we obtain a partition for Rz as

Rz =
[

Rh Rhm

RT
hm Rm

]
(34)

=
[

Q S

ST G

][
A C

CT B

][
Q S

ST G

]T

. (35)

Under the simplifying assumptions of Eq. (24), the par-
tition of Rz can be obtained from the partition of H
directly. Thus

Rh = r2

[
Q S

ST G

]
. (36)

This is precisely the expression for the covari-
ance and Cramer-Rao lower bound (CRLB) derived
in Young and Chellappa (1992) under an IID Gaussian
noise assumption. This should be the case since the
least squares technique is optimal under these condi-
tions (the Gauss-Markov theorem (Shao, 1998)).

2.8. Estimating the Covariance of the Feature Points

The covariance of the feature points is in principle a
function of the tracking algorithm, its parameters and

the image intensity function in the neighborhood of
the tracked points. We try to estimate the covariance
of the feature points due to measurement errors caused
primarily due to localization of the points. We use the
standard method for estimating the error covariance
using the inverse of the Hessian matrix of the second
partial derivatives of the intensity along x and y axes
(Sun et al., 2001). If x = [u(i, j), v(i, j)]T represents
the motion estimate in the x and y directions respec-
tively at a point (i, j), then the error covariance at that
point can be estimated by the inverse of the Hessian
matrix as

Ru =




∂2 I (i, j)

∂x2

∂2 I (i, j)

∂x∂y
∂2 I (i, j)

∂x∂y

∂2 I (i, j)

∂y2




−1

, (37)

where I (i, j) is the intensity at the point (i, j).

3. Fusion Algorithm Using Stochastic
Approximation

3.1. Problem Formulation and Notation

Figure 5 shows a block-diagram schematic of the com-
plete multi-frame fusion algorithm. The input is a video
sequence of a static scene captured by a moving camera.
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Figure 5. Block diagram of the multi-frame fusion system.

We choose an appropriate two-frame depth reconstruc-
tion strategy. The two frames maybe adjacent ones, or
maybe a few frames farther apart. However, the con-
straint of small motion in optical flow estimation needs
to be borne in mind. For simplicity of mathematical
notation, we will use the case of adjacent pair of frames
for explaining our algorithm. Our problem is to design
an efficient algorithm to align the depth maps onto a
single frame of reference (since the camera is mov-
ing), fuse the aligned depth maps in an appropriate
way and evaluate the quality of the final reconstruc-
tion in order to optimize the fusion strategy and de-
sign a stopping criterion. All this needs to be done
after due consideration is given to the possible sources
of errors and their effects as outlined in the previous
section.

Since we are dealing with multiple points and mul-
tiple frames, it is worthwhile to present our notational
conventions to avoid confusion. Subscripts will refer to
feature points and superscripts will refer to frame num-
bers. Thus x j

i refers to the variable x for the i-th feature
point in the j-th frame. When either of them is omit-
ted, it means that the expressions are valid irrespective
of the omitted feature point or frame number. As an
example, when we referred to pi previously, it meant
the horizontal component of the image velocity at the
i-th feature point, and is true for any frame. Similarly,
when we use si in the analysis below, it represents the
structure at the i-th frame, and the expression is true
for every feature point.

The problem can be stated as follows. Let si ∈ R3

represent the structure, computed for a particular point,

from i-th and (i + 1)-st frame, i = 1, . . . , K , where
the total number of frames is K + 1. Let the fused
structure sub-estimate at the i-th frame be denoted by
Si ∈ R3. Let Ωi and Vi represent the rotation and
translation of the camera between the i-th and (i + 1)-
st frames. Note that the camera motion estimates are
valid for all the points in the object in that frame. The
3 × 3 rotation matrix Pi describes the change of co-
ordinates between times i and i + 1, and is orthonor-
mal with positive determinant. When the rotational ve-
locity Ω is held constant between time samples, P is
related to Ω by P = eΩ̂.5The fused sub-estimate Si

can now be transformed as T i (Si ) = Pi Si + Vi T
. But

in order to do this, we need to estimate the motion
parameters V and Ω. Since we can determine only
the direction of translational motion (vx/vz, vy/vz), we
will represent the motion components by the vector
m = [ vx

vz
,

vy

vz
, ωx , ωy, ωz]. To keep the notation simple,

m will be used to denote each of the components of m.
Thus, the problems at stage (i +1) will be to i) reliably
track the motion parameters obtained from the two-
frame solutions, and ii) fuse si+1 and T i (Si ). If {li } is
the transformed sequence of inverse depth values with
respect to a common frame of reference, then the opti-
mal value of the depth at the point under consideration
is obtained as

u∗ = arg min
u

mediani
(
wi

l (l
i − u)2

)
, (39)

where wi
l = (R̄i

h(l))−1, with R̄i
h(l) representing the

covariance of li (which can be obtained from (35)).
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However, since we will be using a recursive strategy, it
is not necessary to align all the depth maps to a common
frame of reference a priori. We will use a Robbins-
Monro stochastic approximation (RMSA) algorithm
(refer to Appendix) where it is enough to align the
fused sub-estimate and the two-frame depth for each
pair of frames and proceed as more images become
available.

3.2. The Fusion Algorithm

For each feature point, we compute Xi (u) = wi
l (l

i −
u)2, u ∈ U . Our aim is to compute the median (say θ ) of
X0, . . . , X K i.e. to obtain θ such that g(θ ) = FX (θ ) −
0.5 = 0, where FX (θ ) is the distribution function of
θ . Define Y k(θ̂ k) = pk(θ̂ k) − 0.5, where pk(θ̂ k) =
I[Xk≤T̂ k (θ̂ k )] (I represents the indicator function, T̂ k is
the estimate of the camera motion and θ̂ k is the estimate
obtained at the kth stage). Then

E[Y k(θ̂ k) | θ̂ k] = E[pk(θ̂ k) | θ̂ k] − 0.5

= E
[
I[Xk≤T̂ k (θ̂ k )]

] − 0.5

= P(Xk ≤ T̂ k(θ̂ k)) − 0.5

= FX (θ̂ k) − 0.5 = g(θ̂ k).

Then the RM recursion for the problem is (Robbins and
Monro, 1951)

θ̂ k+1 = T̂ k(θ̂ k) − ak(pk(θ̂ k) − 0.5), (40)

where ak is determined by (53). When k = K , we
obtain the fused inverse depth θ̂ K+1, from which we
can get the fused depth value SK+1.

3.2.1. Motivation to use SA. “Stochastic approxima-
tion . . . may be considered as a recursive estimation
method, updated by an appropriately weighted, arbi-
trarily chosen error corrective term, with the only re-
quirement that in the limit it converges to the true pa-
rameter value sought” (Saridis, 1974). Recall that in
Section 2 we outlined the difficulty of choosing an ap-
propriate distribution of the noise in the depth sub-
estimates due the multiplicity of sources of error that
combine in a complicated manner and the danger of
assuming a statistical model that is incorrect and will
produce erroneous reconstructions. Stochastic Approx-
imation (SA) provides an elegant tool to deal with such
problems since we do not need to know the distribution

function of the error. Besides, it provides a recursive
algorithm and guarantees local optimality of the esti-
mate, which can be non-linear. On the other hand, the
Kalman filter is optimal only among the class of linear
filters (in the mean square sense) for any noise distri-
bution. For the Gaussian distribution, it is an optimal
filter in the mean square sense. Since LMedS is a non-
linear estimator and the distribution of the depth sub-
estimates is unknown, SA is used to obtain an optimal
solution based on the method of calculating the quan-
tile of any distribution recursively, proposed originally
by Robbins and Monro in their seminal paper (Robbins
and Monro, 1951). The issues of convergence and op-
timality of RMSA have been studied in depth and we
direct the interested reader to some excellent references
in Appendix.

3.3. Optimal Camera Motion Estimation

Since depth and rotational motion are dependent on
each other, there is every reason to be suspicious of
the camera motion values also. However, experimen-
tal analysis has shown that the camera motion is less
prone to outliers than the depth estimates. A possi-
ble reason for this is that the camera motion is ob-
tained using a larger number of feature points in the
image and thus is less susceptible to input errors in
some of the features. Our camera motion estimator
is a smoothing filter which tracks the motion across
the frames and removes any sharp unwanted varia-
tions. The discrete-time dynamical model of the camera
motion is

mi = mi−1 + wi ,

yi = mi + vi . (41)

w is a zero-mean white noise process with E[wi w j ] =
Qiδ(i, j). The observations yi of the camera motion
(output of the two-frame algorithm) are corrupted by a
zero-mean noise process vi with a diagonal covariance
matrix Vi . v and w are assumed to be mutually uncor-
related across all instants of time, i.e. E[vi w j ] = 0
for all (i, j), and are also independent of the param-
eter mi at all time instants. We are interested in de-
signing a linear mean square error (LMSE) estimator
of the camera motion mt based on the observations
y = [yt , yt−1, . . . , yt−k+1]′. Let m̂t |s denote the esti-
mate of m̂t based on the observations [y1, . . . , ys] and
�t |s = E[(mt − m̂t |s)(mt − m̂t |s)′]. Then the LMSE
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Figure 6. Block diagram of the multi-frame fusion algorithm.

estimate can be obtained from the Kalman filtering al-
gorithm as follows. Re-indexing the observation vector
y as [yk, . . . , y1], the Kalman filter is given by the fol-
lowing recursion (Poor, 1988):

m̂k | k = m̂k | k−1 + K k(yk − m̂k | k)

m̂k | k−1 = m̂k−1 | k−1

K k = �k | k−1[Vk + �k | k−1]−1

�k | k−1 = �k−1 | k−1 + Qk . (42)

Then �yk = E[(yk − E[yk])(yk − E[yk])′] = E[(mk +
vk − µm)(mk + vk − µm)′] = E[(mk − µm)(mk −
µm)′] + Vk = Rk

m, where µm = E[mi ] = E[mi−1] =
E[yi ]. Thus the observation noise covariance can be
estimated from (35) and the camera motion filter is
derived.

3.3.1. Why Kalman Filter? Since the system dynam-
ics of the camera motion are time-varying, SA tech-
niques are not guaranteed to converge. One heuristic
that is commonly applied is to choose the step size
ak in (52) to be a small positive number as a trade-
off between tracking capability and noise sensitivity
(Chapter 2 of Ljung and Soderstrom, 1987). In our
experiments, we found that it was possible to make
the step-size small and constant and make the algo-
rithm converge. However, for different kinds of cam-
era motions, this constant had to be different. This is a
problem as it would require tuning the parameter every
time the camera motion changed, without any guar-
antee of optimality of performance. Hence, we set-
tled for a tracking algorithm using the Kalman filter
and analytically computing the error covariances. Also,
the presence of outliers in two-frame camera motion
estimates is less pronounced than in the depth sub-

estimates; hence least squares is a good criterion for
tracking camera motion. The difficulty of incorporating
time-varying dynamics into the SA approach, coupled
with the suitability of a least squares criterion, dic-
tates the choice of the Kalman filter for camera motion
estimation.

3.4. The Algorithm

Assume that we have the fused 3D structure Si obtained
from i frames and the 2-frame depth map si+1 computed
from the i-th and (i + 1)-st frames. Figure 6 shows a
block diagram of the multi-frame fusion algorithm. The
main steps of the algorithm are:

Track Estimate the camera motion according to the
optimal linear camera motion estimation filter of
(42).

Transform Transform the previous model Si to the
new reference frame.

Update Update the transformed model using si+1 to
obtain Si+1 from (40).

Evaluate Reconstruction Compute a performance
measure for the fused reconstruction (explained in
the next section).

Iterate Decide whether to stop on the basis of the
performance measure. If not, set i = i + 1 and go
back to Track.

4. Information Theoretic Analysis
for Multi-Frame Algorithms

In this section, we introduce two different measures
of performance for multi-frame algorithms. The first
relates to the error covariance in the structure esti-
mate as a function of the number of frames, while
the second deals with the information content in the
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estimate. Either one of them or their combination can
be used in practice depending on the application. The
first is applicable to a small number of frames, while
the second criterion can be used if the number of
frames is sufficiently large to produce a reliable es-
timate of the distribution of the two-frame depth val-
ues. The second method, however, gives a running es-
timate of the performance of the algorithm, as we shall
explain.

A point that needs to be noted here is that we implic-
itly assume in our multi-frame fusion algorithm that
most of the 2-frame reconstructions are of reasonable
quality. If all the intermediate reconstructions are of
extremely poor quality, no amount of processing will
lead to a final solution which is acceptable. A very
interesting question to address would be to identify
such situations automatically. We are not aware of any
previous work on multi-frame SfM that tries to auto-
matically recognize situations where the quality of the
intermediate estimates is so poor that it is extremely
difficult, if not impossible, to obtain a reasonable fi-
nal estimate. We use ideas from information theory
to address this problem. Due to space constraints, we
cannot include them here, but the interested reader can
access a short version of it in Roy Chowdhury and
Chellappa (2002).

4.1. Rate-Distortion Analysis

Rate-distortion is used to obtain an idea of the qual-
ity of the reconstruction as a function of the num-
ber of frames. Other methods, like estimating con-
fidence regions, are based on numerical simulations
(Cho et al., 1997). In many applications, this is the
only way possible because of a lack of analytical
structure in the basic problem formulation. We show
here that for the problem of 3D reconstruction from
optical flow, the error estimates can be obtained ana-
lytically without resorting to simulations. While confi-
dence regions, estimated by methods like bootstrapping
could be used, the ability to obtain analytical closed
form expressions has the added advantage of analyz-
ing the effects of different parameters on the quality of
reconstruction.

Let the two-frame inverse depth values for a par-
ticular feature point be denoted by X1, X2, . . . , X N .
For the purposes of this analysis, we will assume
that the sequence of depth values does not have any
outliers (it is handled by the LMedS estimator) and
hence the sample mean X̄ is an unbiased estimate of

the true value X∗. We will derive an expression for
the error in the multi-frame estimate as a function
of the number of frames and the error in the image
correspondences. Now E[X̄ ] = 1

N

∑N
i=1 E[Xi ] and

Cov[X̄ ] = E[(X̄ − X∗)2] = E[X̄2] − E[X̄ ]2.

E[X̄ ]2 =
(

E

[
1

N

N∑
i=1

Xi

])2

= 1

N 2

(
N∑

i=1

E[Xi ]

)2

= 1

N 2

[
N∑

i=1

E[Xi ]2 +
N∑

i=1

N∑
j=1

E[Xi ]E[X j ]

]
,

i �= j (43)

and

E[X̄2] = E

[(
1

N

N∑
i=1

Xi

)2]

= 1

N 2
E

[
N∑

i=1

Xi 2 +
N∑

i=1

N∑
j=1

Xi X j

]
, i �= j

= 1

N 2

[
N∑

i=1

E
[
Xi 2] +

N∑
i=1

N∑
j=1

E[Xi X j ]

]
,

i �= j (44)

which yields the expression for the covariance of the
estimator as

Cov[X̄ ] = 1

N 2

[
N∑

i=1

Cov[Xi ] +
N∑

i=1

N∑
j=1

(E[Xi X j ]

−E[Xi ]E[X j ])

]
, i �= j. (45)

The first summation, Cov[Xi ], is the variance of the
two-frame depth estimates obtained from Ri

z in (24).
Under the assumption of independence of the two-
frame observations, the second term of (45) vanishes
and we obtain a closed-form expression for the variance
of the estimator for the N -frame SfM algorithm.The
covariance of the estimate of the j-th feature point is

Cov[X̄ j ] = 1

N 2

[
N∑

i=1

Ri
h( j, j)

]
, (46)

where Ri
h( j, j) is the j-th diagonal term obtained

from (35) for the i-th and (i + 1)-st frames. Under
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the assumption of IID Gaussian noise of Young and
Chellappa (1992) for the two-frame algorithm, (46)
simplifies to the following form:

Cov[X̄ j ] = 1

N 2

[
N∑

i=1

r i 2
Qi ( j, j)

]
,

= 1

N 2

[
N∑

i=1

r i 2(
Hi

h − Hi
hmHi−1

m HiT
hm

)−1

]
,

(47)

where the terms are defined in (30) and (31). The ex-
pressions are valid for both the known and unknown
FOE cases with Aī p and Aīq appropriately defined.

The average distortion in the reconstruction over M
feature points is

EM,N [(X̄ − E[X̄ ])2]

= EM [EN [(X̄ − E[X̄ ])2 | X̄ = X̄ j ]]

= 1

MN2

M∑
j=1

N∑
i=1

Ri
h( j, j)

= 1

MN2

N∑
i=1

trace
(
Ri

h

)
. (48)

Figure 7 plots the covariance of the estimator for
the inverse depth as a function of frame number using
(48) for the two video sequences of our experiments
(Section 2.2). A few interesting observations regarding
these curves can now be made.

– In the traditional rate-distortion function used in
source coding (Cover and Thomas, 1991), the dis-
tortion of a signal X from its n-bit representation Xn

is plotted as a function of n, distortion usually being
defined in a mean square sense. In our application,
we analyze the precision of the reconstruction with
increasing number of frames; hence the analogy of
rate with the number of frames. (Of course, the true
error will be different from the plots, because of the
approximations in the derivation; however, they are a
very good approximation.) We will call these curves
the video rate-distortion (VRD) curves.

– Given a specific tolerable level of distortion, each
of these curves specifies the minimum number of
frames necessary to achieve that level of distortion.

– The errors in SfM are due to a number of reasons,
the effects of which are impossible to quantify sep-
arately. These curves give a compact representation

for understanding the effects of these various sources
of errors on the final estimate.

– Each curve identifies an operating point of a MFSfM
algorithm as a trade-off between tolerable recon-
struction error and the computational cost of con-
sidering more frames.

– The curves depend on the covariance of the image
correspondences only, if the FOE is known. In situ-
ations where the FOE does not change appreciably
over the image sequence of interest, it is possible to
plot these curves after the first pair of frames itself
(after estimating the FOE).

– Though the average distortion over all features is
plotted here, the curves can also be obtained for
each individual feature point using (46). Since the
uncertainty of the depth estimates is a function of
the feature point (as the variance of the image cor-
respondences will depend on the particular feature),
the curves can be used to identify points which are
more prone to reconstruction errors and thus would
require greater numbers of frames to achieve tolera-
ble distortion.

– The nature of the plots for the unknown FOE case
will remain the same, with Aī p and Aīq defined ap-
propriately as in (25) (and now depending on h).
However, they can no longer be computed without
first estimating h. Hence the distortion in (48) needs
to be estimated as the algorithm progresses.

4.2. Relative Information

We now introduce a second measure of fidelity for
multi-frame structure reconstruction based on the in-
formation content rather than the error characteristic.
If f̂ is the density of an estimate, its Shannon, or
differential, entropy is defined as Cover and Thomas
(1991)

H ( f̂ ) = −
∫

f̂ (η) ln f̂ (η)dη. (49)

If f̂
1
, . . . , f̂

α
, . . . , f̂

N
is a time sequence of the distri-

bution of the estimates, then the incremental differen-
tial entropy

Iα = H ( f̂
α−1

) − H ( f̂
α
) (50)

is a measure of the decrease in differential entropy.
Since entropy is a measure of uncertainty, we will call
(50) as the relative information (Goodman et al., 1997).
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Figure 7. Plot of average distortion in reconstruction as a function of the number of frames for the two video sequences. The vertical axis is
scaled down by a factor of 103.

Computation of the differential entropy may be diffi-
cult in practice, as we need to know the distribution
of the estimates. The distribution can be estimated us-
ing histogram techniques; however, if the number of
frames is small the method can be inaccurate. Our ex-
perimental results, however, show that with more than
twenty frames, the results obtained by this method are
similar to those for the other criterion explained above.
The intuitive understanding of the method is that with
more frames, the distribution of the inverse depth esti-
mates converges, and so does the differential entropy
at two consecutive time instants.

Figure 8 shows plots of the estimates of the rela-
tive information against the frame number for a ran-
dom selection of nine feature points. To estimate the
density functions, standard histogram techniques were
used. Since this estimate is usually unreliable for a few
samples, the values for the first fifteen frames are ne-
glected. Some interesting observations can be made
from these plots. As expected, the relative informa-
tion converges toward zero as the number of frames in-
creases, indicating a decrease in uncertainty. The sud-
den peaks or dips (plots (b), (e), (f )) correspond to
outliers in the observation sequence. These values sud-
denly perturb the histogram estimate; however, as the

number of observations increases these isolated effects
die down. If the relative information converges to zero
and then diverges (plots (c), (e)), it possibly means that
the later values are erroneous and because of this the
information content tends to increase. If after a suffi-
cient number of frames the relative information plot
does not approach zero, it implies that the informa-
tion content in the observations is still significant and
more observations may be required. Thus continuous
monitoring of the relative information can give impor-
tant clues regarding the convergence of the MFSfM
algorithm.

5. Experimental Results

We now present the results of our algorithm. The
main application of our work was on 3D face mod-
eling from short monocular video sequences. We first
present some simulation results with synthetic data to
demonstrate the accuracy of our algorithms. Then, we
present our results on the Yosemite sequence. Finally,
we consider a real-life scenario of 3D face modeling
and present a detailed analysis of our method. For this
problem, the input video sequences were captured from



44 Roy Chowdhury and Chellappa

15 20 25 30
−0.2

0

0.2

0.4

0.6
(a)

15 20 25 30
−0.4

−0.2

0

0.2

0.4
(b)

15 20 25 30
−0.2

0

0.2

0.4

0.6
(c)

15 20 25 30
−0.4

−0.2

0

0.2

0.4
(d)

15 20 25 30
−0.2

0

0.2

0.4

0.6
(e)

15 20 25 30
−0.5

0

0.5

1
(f)

15 20 25 30
−0.1

0

0.1

0.2

0.3
(g)

15 20 25 30
−0.2

0

0.2

0.4

0.6
(h)

15 20 25 30
−0.2

0

0.2

0.4

0.6
(i)

Figure 8. Plots of the relative information for a random selection of feature points. The vertical axis represents the value of the relative
information and the horizontal axis represents the frame number. Histogram techniques were used to compute the probability density functions;
hence the differential entropy was not computed for the first 15 frames.

a hand-held or tripod-mounted video camera. The out-
put was a 3D model of the scene. A C and MATLAB
implementation of the multi-frame fusion algorithm is
available. We also have an end-to-end system for 3D
reconstruction on a Pentium PC for demonstrations.
Videos of all the original and reconstructed scenes pre-
sented in this paper are available from the authors.

5.1. Estimating the Statistics of Feature
Position Errors

The first step in implementing our algorithm is to ob-
tain the statistics of the feature correspondences. Given
a sequence of images, the motion between the images
was estimated using optical flow. In our method, al-
though we obtain a dense flow field in order to obtain a
dense depth map, we compute the statistics for a subset
of points and assume them to be spatially wide-sense

stationary in a small region around that point. There
are many ways in which the error covariance of the
individual feature points may be computed. Sun et al.
(2001) proposes computing the second partial deriva-
tives of the image intensities in order to obtain the error
covariance of a point. We propose combining this with
resampling techniques like bootstrapping for obtaining
more robust estimates for the error covariances (Cho
et al., 1997). The variance in the image correspondence
for each feature was computed for the horizontal and
vertical components using the technique in Sun et al.
(2001) and repeated for 200 bootstrap samples and
50 initial frames (Efron and Tibshirani, 1993).6We con-
ducted experiments on the two sequences that we have
used throughout this paper, the face sequence and the
outdoor house sequence. Figures 9 and 10 depict the es-
timated variance of the feature points for the horizontal
and vertical components of the motion of the features.
The diameters of the circles are proportional to the
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Figure 9. Plot of the variances of the feature correspondences in a face sequence. The variance is represented at the corresponding feature
point in the image. The diameter of the circle is proportional to the variance for that feature point. One of the plots is for the variance in the
horizontal component of the motion for that feature, while the other is for the vertical component.

variance at that point. The variances in the inverse
depth estimates as obtained from (23) is also shown in
Figs. 12 and 13.7

5.2. Overview of Implementation Strategy

Figure 5 represents the overall 3D reconstruction strat-
egy based on our multi-frame fusion algorithm. The
optical flow computed for every pair of images was
given as the input to the two-frame SfM algorithm de-
scribed in Srinivasan (2000). The output was the depth
at these points and the motion of the camera between
these frames. For each pair of frames, the covariance
of the error in the structure and motion estimates was
computed according to (23). The Kalman filter based
camera motion estimator was implemented according

Figure 10. Plot of the variances of the feature correspondences in an outdoor sequence. The variance is represented at the corresponding feature
point in the image. The diameter of the circle is proportional to the variance for that feature point. One of the plots is for the variance in the
horizontal component of the motion for that feature, while the other is for the vertical component.

to (42). The depth maps from pairs of frames (consec-
utive or a few frames distant) were aligned on the ba-
sis of the camera motion estimates. The aligned depth
maps were then fused using the recursive RMSA fusion
algorithm. The multi-frame distortion curve for the en-
tire video sequence was computed at each step for the
individual feature points using (46) and for their av-
erage representation using (48). When the distortion
was below an accepted level, the computation was ter-
minated and the computed depth estimate accepted as
the final value. The final distortion for each feature
was used to decide whether to include it in model
building or not. In all the experiments the FOE was
estimated from the first two or three frames and as-
sumed constant thereafter. A discussion on the validity
of this assumption can be found in Srinivasan (2000).
In our experiments, we aim to reconstruct from a few
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frames of the video sequence where the motion be-
tween the start and end of the sequence is relatively
small. Hence the assumption of the constant FOE is
valid. Comparison with the estimates obtained from
every adjacent pair of frames showed that this was a
justified assumption. The depth map obtained at this
stage was used to build a 3D model using the Graphics
toolbox of MATLAB. The set of feature points were
used to create a Delaunay triangulation. The depth val-
ues were assigned to each of the vertices of the tri-
angle in order to create a mesh to which the texture
was mapped to create the final 3D model. The method
of building the 3D model of the scene is simplistic;
it is used only as a means to represent the results
of the algorithm. Advanced techniques in computer
graphics can definitely produce much better models of
the scene.

5.3. Synthetic Data

In order to analyze the numerical accuracy of our
method, we conducted some experiments with synthet-
ically generated data. We generated a set of fifty 3D
points and obtained their projections at different cam-
era positions, where the camera motion is small enough
for the optical flow equations in (2) to be valid. Thus, we
have a sequence of fifty frames, each with fifty points.
A subset of this was treated as input to our method. Ran-
dom noise was added to the point positions. We con-
sidered the following three cases for the experimental
analysis:

– The Kalman filtering approach, similar to Broida and
Chellappa (1989), but assuming that the focus of
expansion is known. We consider two cases where
(i) the noise covariance in the feature positions is
estimated, and (ii) the actual noise covariance is
used.

– Our stochastic approximation algorithm after esti-
mating the noise in feature point positions.

– Our stochastic approximation algorithm with the ac-
tual noise in feature point positions.

The results obtained using the noise estimation pro-
cedure outlined in this paper are appreciably better,
as shown in Table 1, where the root mean square
(RMS) error between the estimated 3D depths and
the true ones is reported as a percentage of the true
depth value. The trend in the results proves the effi-
cieny of our method for 3D reconstruction with un-

Table 1. The RMS error in the depth estimates as a
percentage of the true depth value.

Method Percentage error

1 Kalman filter, estimated noise 8.6

2 RMSA, estimated noise 4.7

3 Kalman filter, actual noise 3.4

4 RMSA, actual noise 2.1

known noise statistics. Since the noise distribution is
non-Gaussian, the Kalman filter is optimal (in the min-
imum mean square error sense) only within the class
of linear estimators (Poor, 1988). RMSA does better
since it searches over a larger class of estimators.

5.4. Yosemite Sequence

Figure 11 shows the reconstruction of the 3D scene
from the Yosemite video sequence. Fifteen frames
were used for this reconstruction. The size of each
image in the video was 316 × 252 pixels. (a) and
(b) represent two frames from the original sequence.
The depth map was reconstructed using the method
described above and the 3D model was constructed
from these values. (c) to (i) represent views of the
3D model from different angles. The 3D model is
flipped with respect to the original sequence in or-
der to obtain a better depiction of the computed
depth.

5.5. Face Modeling

In the set-up for conducting these experiments in our
lab, a commonly available video camera is mounted
on a tripod. A person is asked to sit in front of the
camera and move his/her head slowly in any desired
manner. The video sequence is captured and given as
an input to the MFSfM algorithm, which then recon-
structs the 3D model automatically (including motion
estimation). Each of the frames of the video sequence
was 140 × 162 pixels in size. We present our detailed
results on one particular video sequence. They would
be similar for other sequences. The first and last frames
on this sequence is shown in Fig. 14(a) and (b). From
these two images it is clear that we are concerned with
reconstructing the 3D structure from a short monocular
video sequence. The motivation for this problem comes
from the fact that the 3D model reconstructed in this
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Figure 11. (a) and (b) represent two images from the Yosemite sequence for which the depth was computed. The remaining figures (c)–(i) are
results of 3D reconstruction from 15 frames for different viewing angles.

way can be used for face recognition purposes across
different poses by taking 2D projections at different
viewing angles.

The variance of the errors in the feature positions
is used to calculate the variance in the inverse depth
estimates. The variance of the inverse depth estimates
for each of the feature points, as computed from (23),
is shown in Fig. 12. The variance is proportional to
the diameter of the circle at that particular point. For
the flow based method, only Z is estimated from (2)
and X = x f h, Y = y f h are obtained from the per-
spective projection model, where h = 1/Z and f is
the focal length of the camera. For a calibrated sys-
tem (which we assume), the covariance of X and Y is
proportional to the covariance of h, given a particular
point (x, y) in the image. This is unlike some other
methods; e.g. in the uncertainty analysis of the factor-
ization method (Sun et al., 2001) 3D ellipsoids need
to be used to depict the uncertainty in reconstruction

since the 3D point (X, Y, Z ) on the object is estimated.
The diagonal elements of the covariance matrix Rh are
also plotted in the same figure. From these plots, it is
clear that the uncertainty in the estimates is a function
of the particular feature point. It is important to under-
stand these errors before creating the 3D model. One
single point in error can seriously affect the quality
of the entire model because of the interpolation tech-
niques which are inherent in the modeling process. The
video rate-distortion curve (VRD) for this sequence is
shown in Fig. 7. From this plot, it is clear that about
20 frames are sufficient to obtain a reconstruction with
a small level of distortion. Finally, Fig. 14 represents
the 3D model generated for this video sequence using
the multi-frame algorithm; a depth map image with in-
tensity corresponding to depth and views from differ-
ent camera positions not part of the original sequence
are presented in order to show the effectiveness of the
reconstruction.
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Figure 12. Plot of the variances of the inverse depth for different features in a face sequence. The variance is represented at the corresponding
feature point in the image. The diameter of the circle is proportional to the variance for that feature point. In the second plot, the diagonal
elements of Rh are shown.

Figure 13. Plot of the variances of the inverse depth for different features in an outdoor image sequence. In the first plot, the variance is
represented at the corresponding feature point in the image. The diameter of the circle is proportional to the variance for that feature point. In
the second plot, the diagonal elements of Rh are shown.
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Figure 14. (a) and (b) represent two images from a face video sequence. The FOE is marked on the image in (a) (above the left eye).
(c) represents the depth map, with intensity corresponding to depth. The remaining figures (d)–(f ) are results of 3D reconstructions from
15 frames for different viewing angles using the RMSA algorithm.

The algorithm that we have presented in this pa-
per is general enough to be applied to a large class
of video sequences. The aim of this paper is to
demonstrate how different estimation and informa-
tion theoretic criteria can be used to enhance the ro-
bustness and accuracy of multi-frame SfM algorithms.
However, the main application focus of our work has
been on modeling 3D faces. Since the analysis and
algorithm presented here would finally become part
of the 3D face modeling solution, we feel it nec-
essary to discuss it very briefly. Space constraints
prohibit a more detailed description. It can however
be found in another paper (Roy Chowdhury et al.,
2003a).

3D modeling of faces from a video sequence usually
take advantage of the fact that most faces have a similar
average representation, usually termed as a generic
face. In Shan et al. (2001) and Fua (2000), the authors
used a generic model to initialize the SfM algorithm.
While this often gives very good results, it suffers from
a disadvantage that the optimization can converge to
a solution very close to the initial point, resulting in

a reconstruction that bears the characteristics of the
generic model rather than the particular face which
we are trying to reconstruct. In Roy Chowdhury et al.
(2003a), we have shown that it is possible to overcome
this problem by introducing the generic model at a
later stage of the algorithm. This is possible because of
the detailed statistical analysis that we perform in our
algorithm and which has been the focus of this paper.
The output of our algorithm produces a reasonably
good reconstruction, and the generic model can be then
be used to correct for some of the local errors which
persist in order to produce a smooth reconstruction.
In Fig. 15, we depict some of the views from the
3D reconstruction obtained using the multi-frame
algorithm described in this paper and the generic
model.

5.5.1. Accuracy of Face Modeling Algorithm. In or-
der to analyze the accuracy of the 3D face reconstruc-
tion, we require the ground truth of the 3D models.
We experimented with a publicly available database of
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Figure 15. Different views of the 3D model after texture mapping.

3D models obtained from a Minolta 700 range scan-
ner. The data is available on the World Wide Web
at http://sampl.eng.ohio-state.edu/sampl/data/3DDB/
RID/minolta/faces-hands.1299/index.html. We will re-
port numerical results from our algorithm on some
of the data available here, though we will not pub-
lish the images or 3D models of the subjects. We will
use the same convention as on the website of referring
to the subjects as “frame001” to “frame005.”

In order to perform an accurate analysis of face-
modeling method, we require a video sequence of the
person and the 3D depth values. This, however, is not
available on this particular database or on any other
that we know of. Thus we had to generate a sequence
of images in order to apply our algorithm. This was
done using the 3D model and the texture map provided
on the web-site. We considered the error in the 3D esti-
mate compared to the actual 3D values. The percentage
RMS error of the 3D models with respect to the true
values is tabulated in Table 2.

6. Conclusions and Future Work

Our study provides a framework for error character-
ization and incorporation of robust statistics into the

Table 2. Average percentage error of
the 3D models

Subject index Percentage error

1 (frame 001) 3.6

2 (frame 002) 3.3

3 (frame 003) 3.2

4 (frame 004) 3.4

5 (frame 005) 3.0

SfM problem. While many algorithms exist for com-
puting the scene structure, their sensitivity to practi-
cal conditions is still an open question which we have
tried to address. We developed a robust estimation
theoretic framework for structure and motion com-
putation from short, monocular video sequences and
proposed a solution methodology using stochastic ap-
proximation, since the noise statistics are largely un-
known. A non-linear estimate, which asymptotically
converges to the true value, is obtained. A closed-
form expression for the error covariance of the mo-
tion and structure estimates as a function of the error
in the image correspondences is derived, without tak-
ing recourse to the standard assumptions of Gaussian
noise. Propagation of the two-frame error to multi-
frame reconstruction and its dependence on the num-
ber of frames is studied and a criterion based on
rate-distortion theory is proposed. Experimental re-
sults of scene (especially 3D face) reconstruction,
along with visualization of the errors, is presented.
The extension of this work to face recognition across
pose and illumination variation is being currently
studied.

Appendix: Robbins-Monro Stochastic
Approximation

The method of stochastic approximation (SA) is useful
for certain sequential parameter estimation problems
(Ljung and Soderstrom, 1987; Spall, 2000; Benveniste
et al., 1987). Let {e(k)} be a sequence of random vari-
ables with the same distribution indexed by a discrete
time variable k. A function Q(x, e(k)) is given such
that

E[Q(x, e(k))] = g(x) = 0 (51)

where E denotes expectation over e. The distribution
of e(k) is not known; the exact form of the function
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Q(x, e) may also be unknown, though its values are
observed and it can be constructed for any chosen x .
The problem is to determine the solution of g(x) =
0. Robbins and Monro (RM) suggested the following
scheme for solving (51) recursively as time evolves
(Robbins and Monro, 1951):

x̂(k) = x̂(k − 1) + ak Q(x̂(k − 1), e(k)) (52)

where the gain sequence {ak} must satisfy the fol-
lowing conditions (Benveniste et al., 1987; Ljung and
Soderstrom, 1987; Spall, 2000):

ak ≥ 0, ak → 0,

∞∑
k=1

ak = ∞,

∞∑
k=1

a2
k < ∞.

(53)

A popular choice of the gain sequence, which was used
in our experiments also, is ak = a/(k + 1)0.501. It
can be shown that the estimate obtained from SA is
unbiased, consistent and asymptotically normal, and
in many cases, also efficient (Ljung and Soderstrom,
1987; Poor, 1988).
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Notes

1. We have subsequently come to know that a somewhat similar
method was applied for error calculations in medical imaging
applications (Fessler, 1996).

2. Computation of the depth requires point correspondences be-
tween the frames using either flow-based or feature-based meth-
ods, usually with some heuristics. Zhang and Faugeras (1992)
cite two sources for outliers in matching feature points across
images. One of the causes is mislocation of features from
their exact pixel positions and the other is mismatched feature
correspondences.

3. The general viewpoint is that M-estimators are usually robust to
outliers due to bad localization but not to false matches (Zhang
and Faugeras, 1992).

4. The efficiency of an estimator is defined as the ratio of the lowest
achievable variance of the estimated parameters (obtained from
the inverse of the Fisher information matrix) and the actual vari-
ance obtained from the given method.

5. For any vector a = [a1, a2, a3], there exists a unique skew-
symmetric matrix

â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


 . (38)

The operator â performs the vector product on R3: âX = a ×
X, ∀X ∈ R3.

With an abuse of notation, the same variable is used for the
random variable and its realization.

6. As pointed out in Cho et al. (1997), 200 bootstrap samples and
more than 20 measurements suffice to produce a good estimate.

7. For some points with relatively smooth texture, the variance is
small, which is counter-intuitive. However, on close scrutiny, it
becomes clear that these regions have better illumination.
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