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An Information Theoretic Criterion for Evaluating
the Quality of 3-D Reconstructions From Video

Amit K. Roy-Chowdhury and Rama Chellappa

Abstract—Even though numerous algorithms exist for esti-
mating the three-dimensional (3-D) structure of a scene from its
video, the solutions obtained are often of unacceptable quality. To
overcome some of the deficiencies, many application systems rely
on processing more data than necessary, thus raising the question:
how is the accuracy of the solution related to the amount of data
processed by the algorithm? Can we automatically recognize
situations where the quality of the data is so bad that even a
large number of additional observations will not yield the desired
solution? Previous efforts to answer this question have used
statistical measures like second order moments. They are useful
if the estimate of the structure is unbiased and the higher order
statistical effects are negligible, which is often not the case. This
paper introduces an alternative information-theoretic criterion
for evaluating the quality of a 3-D reconstruction. The accuracy of
the reconstruction is judged by considering the change in mutual
information (MI) (termed as the incremental MI) between a scene
and its reconstructions. An example of 3-D reconstruction from
a video sequence using optical flow equations and known noise
distribution is considered and it is shown how the MI can be
computed from first principles. We present simulations on both
synthetic and real data to demonstrate the effectiveness of the
proposed criterion.

Index Terms—Entropy, error analysis, information theory, mu-
tual information (MI), structure from motion.

1. INTRODUCTION

ECONSTRUCTING a three-dimensional (3-D) model of

a scene from a video sequence is an important problem
for applications in multimedia, recognition, medical imaging
etc. There are different methods for estimating the 3-D struc-
ture of a scene from both still and moving images [1]. One of
the well known strategies of reconstructing a scene from a video
sequence is the structure from motion (SfM) algorithm, which
works by computing the motion between corresponding points
in an image sequence and then estimating the 3-D structure and
the motion of the camera. The accuracy of SfM solutions is lim-
ited by various factors which can be broadly classified as in-
herent geometric indeterminacies [2], [3] and statistical inaccu-
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racies [4]-[6]. This paper deals with the statistical aspect of the
error in the 3-D estimates.

3-D reconstructions using SfM obtained from a sequence of
images are often of unacceptable quality. The main reason for
this is the poor quality of input images and lack of robustness in
reconstruction algorithms to deal with this issue [7], [8]. There-
fore, many application systems process more images than nec-
essary, hoping to minimize the effect of the errors because of the
redundancy in the processed input data. For such cases, in order
to obtain an optimal 3-D reconstruction system, it is important
to understand how the quality of the 3-D estimates is affected
by the number of images processed. Is it possible to obtain a
quantitative measure of the quality as a function of the number
of images and to recognize situations where the input data is so
poor that it is not possible to obtain a 3-D estimate of the desired
fidelity?

This is the precise question this paper addresses. We pose the
StM problem in the classical information theoretic framework
and propose a cost function for quality evaluation based on com-
puting the mutual information (MI) between the scene structure
and its estimates. We track the change in MI, which we term
as the incremental MI (IMI), with increasing number of input
images. The underlying idea is the following: as more images
are considered, the change in the MI between the estimate ob-
tained from these images and the scene structure decreases. The
method does not depend on any particular algorithm, though the
estimation of the IMI can be optimized for a particular method.
We propose methods for estimating the MI using statistical sam-
pling techniques. Using an example of reconstructing a scene
from video using optical flow [8], [9] and Gaussian noise distri-
bution, we show how the IMI can be computed from first prin-
ciples in terms of the input parameters.

The paper is organized as follows. We start with an overview
of error analysis methods in SfM and a brief survey of the use
of information theory in computer vision. We then provide a
motivation for the use of an information theoretic criterion.
Section IV provides a formal problem description. Section V
introduces the IMI criterion and analyzes some of its properties
and its applicability to our problem. We also show how it
can be computed in the most general setting. In Section VI,
we consider an example of reconstructing a 3-D scene with
video corrupted by Gaussian noise and derive the IMI from
first principles. Finally, in Section VII, we provide detailed
experimental results using both simulated and real data.

II. RELATED WORK

We will briefly survey existing work in the two areas which
this paper deals with, namely the error analysis for 3-D recon-
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structions and the role of information theoretic concepts in video
processing.

A. Error Analysis for 3-D Reconstruction

Many researchers have analyzed the sensitivity and robust-
ness of many of the existing algorithms. The work of Weng et al.
[10] is one of the earliest instances of estimating the standard de-
viation of the error in reconstruction using first-order perturba-
tions in the input. The Cramer-Rao lower bounds on the estima-
tion error variance of the structure and motion parameters from
a sequence of monocular images was derived in [11]. Young and
Chellappa derived bounds on the estimation error for structure
and motion parameters from two images under perspective pro-
jection as well as from a sequence of stereo images [5]. Sim-
ilar results were derived by Daniilidis and Nagel in [12] and
the coupling of the translation and rotation for a small field of
view was studied. They also proved that many algorithms for
3-D motion estimation, that work by minimizing an objective
function, suffer from instabilities, and examined the error sen-
sitivity in terms of translation direction, viewing angle and dis-
tance of the moving object from the camera. Zhang’s work [8]
on determining the uncertainty in estimation of the fundamental
matrix is another important contribution in this area. Chiuso et
al. [13] and Soatto and Brockett [14] have analyzed SfM in order
to obtain provably convergent and optimal algorithms. Oliensis
emphasized the need to understand algorithm behavior and the
characteristics of the natural phenomenon that is being modeled
[7]. Ma et al. [15] also addressed the issues of sensitivity and
robustness in their motion recovery algorithm. Sun ez al. [16]
proposed an error characterization of the factorization method
for 3-D shape and motion recovery from image sequences using
matrix perturbation theory. Morris et al. [17] analyzed the non-
trivial effects of unknown scale factor, referred to in the litera-
ture as gauge freedom, on the covariance calculations in SfM.
In [18] and [19], we showed that it is possible to analytically
compute the error covariance of 3-D reconstruction as a func-
tion of the error covariance of the optical flow estimates. Using
the implicit function theorem [20], we proved that such a result
could be derived without strong statistical assumptions. In [21],
the authors showed that the statistical bias in the optical flow
could be used to explain certain geometrical optical illusions.
We have extended their work to prove that the 3-D estimate from
SfM using optical flow is also significantly statistically biased
[18], [22].

B. Information Theoretic Concepts in Image and Video
Processing

Recently, information theoretic concepts have been used in
various problems in image processing and computer vision, like
image registration [23], object recognition [24], [25] and feature
extraction and clustering [26], [27]. In [23], the authors propose a
method for aligning two images by maximizing the MI between
them and use a stochastic optimization algorithm to perform
the optimization. The underlying continuous pdfs (probability
distribution functions) were represented using Parzen window
densities [28]. In [24], the MI (termed “transinformation’)
was used to optimally place receptive fields over the object
of interest. This was extended to include sequential decision

processes in [25]. A slightly different technique using the
“average loss of entropy” was used in [29], [30] for viewpoint
selection. In the area of feature extraction, an information
theoretic approach using Fano’s inequality for the error rate
in classification was proposed in [26]. Information theory was
used in clustering and other pattern recognition problems by
Watanbe [31], [32] and a few other authors [27], [33]. In
[27], the authors developed a clustering algorithm based on
a sample-by-sample estimate of Renyi’s entropy [34].

We are not aware of any previous work on the use of infor-
mation theoretic ideas for the quality evaluation of 3-D recon-
struction algorithms from video. The closest reference we can
draw to our work is the geometric information criterion (GIC) of
Kanatani [35], which deals with model selection for geometric
data. We will show later that our criterion, the IMI, for evalu-
ating the quality of 3-D reconstructions is related to the idea of
reducing the uncertainty in the reconstructions, which, in turn,
is conceptually related to the MDL principle [36].

III. MOTIVATION FOR AN INFORMATION THEORETIC CRITERION

As is evident from the literature survey above, the statistical
quality analysis of 3-D reconstruction algorithms has been
studied quite extensively. However, most of the methods have
relied on computing the second order statistical moments,
like covariance of the estimate. The covariance is a preferred
measure because of its relation to the Cramer—Rao lower bound
(CRLB), which dictates the minimum variance that an estimator
can achieve [37]. If the variance of a sequence of estimates of
the 3-D structure tends toward the CRLB, then the estimate is
said to be asymptotically efficient. However, computation of
the CRLB often assumes that the estimate is unbiased (see [5]).
This is because, computing the bias of an estimator is not an
easy task. Hence, even though expressions exist for the CRLB
of a biased estimator (known as the generalized CRLB), it is
rarely used. The other main objection to the use of variance
as a measure of quality is that it neglects the effect of higher
order statistics. This is often a major approximation because
the outliers, which are the source of many problems in SfM,
are often not modeled accurately by second order statistics.

Recent work [21], [22] has shown that the depth estimates
obtained from SfM algorithms are statistically biased, and the
bias is significant. Also, as we have shown in [19], the noise
in the SfM estimates is significantly non-Gaussian. Hence
we propose an information theoretic criterion which works by
estimating the probability distribution function of the concerned
physical quantities (i.e., the depth), rather than concentrate on
certain moments only. This method does not depend on the
particular algorithm used for reconstructing the 3-D scene.
The major limitation of an information theoretic criterion is
its efficient, robust and accurate estimation. This is because it
is often difficult, and computationally expensive, to estimate
the probability density functions of the parameters of interest.
However, estimation of MI has received some attention among
researchers in signal processing and information theory [38]. It
is our hope that such information theoretic criteria, as proposed
in this paper, will become practically applicable as progress
is made on robustly estimating them.
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Fig. 1. (a)Block diagram representation of the reconstruction framework. X is the inverse depth that we want to estimate, (FI (1), ..., H(L)) are the intermediate

reconstructions (e.g., from pairs of frames), and X is the final fused estimate. (b) A channel model representation of the 3-D reconstruction framework in (a). The

channel is characterized by the probability distribution function P(H(®)|X).

One of the common measures used for computing the
accuracy of 3-D reconstruction is the reprojection error, which
is the mismatch between an image and the projected model
[39]. Since comparison is done in the image domain, it is
difficult to infer precisely that the cause of a large reprojection
error is the 3-D model. A bad 3-D estimate will lead to large
reprojection errors. However, a small reprojection error may
be obtained in spite of an inaccurate 3-D model. We provide
an alternate way of computing the accuracy of 3-D models.
Another point is that reprojection errors are often computed
using squared differences between the image and the projection.
This leads to undue importance on the second order moments.

IV. PROBLEM FORMULATION

Theoretically speaking, it is possible to solve for the scene
structure and camera motion from two images of the scene [1].
For N corresponding points in two frames, we can write 2N
equations relating the horizontal and vertical components of the
image plane motion for each point with the depth at the point
and the camera motion between two frames. The number of un-
knowns is N + 5: the depth at N points, three camera rotation
parameters and two camera translation parameters (since we can
get only the translation direction because of the scale ambiguity
[1]). Thus it is possible to solve for the unknowns from the mo-
tion equations in a least squares framework. Details of this can
be found in our previous work [19], where we considered the
statistical uncertainties in the 3-D estimate. However, the solu-
tion obtained from a least-squares procedure is not satisfactory
in many practical examples. In this paper, we focus on eval-
uating the quality of the reconstruction from video sequences
with a small baseline.

Since the motion between nearby frames of a video sequence
is usually small, the SfM equations based on motion estimates
from optical flow [9] is typically valid. However, since the
motion is small, even a small amount of error in motion
estimates can lead to large errors in structure estimates. This
is the classical low signal-to-noise ratio case in signal processing.
In our experiments, we have observed that the error can often
be as large as (sometimes even greater than) the actual motion
between two corresponding points. Hence, in order to obtain

accurate solutions to the 3-D structure estimation problems,
it is necessary to understand the nature of these errors and
their effects. It has been shown by many authors [7], [40]
that one of the ways to reduce the effects of these errors is
to integrate the estimates over the entire video sequence. In
this paper, we try to understand how the quality of the final
reconstruction is affected by the number of images in the
video sequence in an algorithm-independent manner. We pose
the SfM reconstruction problem in an information theoretic
framework and use the MI between the unknown scene structure
and the 3-D estimate to get a precise idea of the quality of
the reconstruction.

A. Notational Convention

Fig. 1 is a block-diagram representation of the 3-D structure
estimation algorithm. {H(7),s = 1,...,L} represents the
inverse depth! from individual reconstructions, which in our
case are the structure estimates from pairs of frames from
the video sequence (may or may not be adjacent ones). We
assume that all the depth values are aligned to a common
frame of reference. Feature points will be represented by
subscripts, separate reconstructions will be within parenthesis.
Thus Hy(i) represents the estimate of the k" feature point
for the #*® reconstruction.? Unless required, the subscript will
often be omitted from the notation. The vector of estimates
of the inverse depth [Hy(1),..., Hy(L)]' will be denoted
by H,(CL). The boldface notation H(i) will represent all the
features in the i*" reconstruction. The final estimate X of
X = [X1,..., X ] is obtained by fusing the individual recon-
structions (H(1),...,H(L)). Our analysis will assume that the
feature points are independent and each of them will be treated
separately. Hence, we will use the notation H(") to denote all
the reconstructions for a particular feature point, which we do
not represent explicitly. Similarly, X will represent the inverse
depth at a particular unspecified point.

I'The inverse depth is used throughout this paper since it is the quantity that is
estimated from the SfM equations for reconstruction from optical flow and its
statistics can be obtained in an analytic form more easily than for the depth.

2The reconstruction can be obtained from any two pairs of frames, which are
not necessarily adjacent, as long as the assumptions of optical flow computation
are not violated.
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B. System Model

We assume that the individual estimates are corrupted by ad-
ditive noise, i.e.

H(i) =X +V(3) (1)
where X is the inverse depth value of the particular fea-
ture. A more abstract representation of Fig. 1(a) is shown
in Fig. 1(b), where the 3-D reconstruction strategy is repre-
sented in a channel model. The input to the channel is the
unknown 3-D scene in the form of a video sequence. The
output is the sequence of the inverse depths of the scene
(aligned to a particular frame of reference) represented as
H(). The channel is a conceptual representation of the 3-D
reconstruction strategy comprising of the video sequence, the
correspondence algorithm and the two-frame SfM algorithm.
It is characterized by the probability distribution function
P(HW®)|X), which is assumed to be known or can be esti-
mated. If the components of H(E) are statistically independent,
PH™M|X) = [[~, P(H(:)|X). In a later section, we will
show how the channel characteristic can be estimated in terms
of known parameters of the input video sequence.

The fusion algorithm is treated as a post-processing stage,
separate from the channel. From Fig. 1(b), it is clear that X,
H@) and X form a Markov chain, ie., X — H@) — X.
Representing by I( X, Y'), the MI between two random variables
X and Y, we can use the data processing inequality [41] and
obtain

I(X,X)<T (X, H<L>) . )
This allows us to use the MI between the unknown scene struc-
ture and its intermediate estimates as a criterion for evaluating
the reconstruction quality, since we are assured that the MI of
the final reconstruction with the actual scene depth will always

be lower or equal. An efficient fusion algorithm should be such
that (X, X) is as close as possible to I(X, H(F).

V. INCREMENTAL MUTUAL INFORMATION

Consider the channel model representation of the reconstruc-
tion strategy in Fig. 1(b) and the data processing inequality of
(2). A typical representation of the MI I(X, X ) and I(X, H(E))
is shown in Fig. 2, which is a diagrammatic representation of the
data processing inequality as a function of the number of frames,
n.

The data processing inequality allows us to evaluate the
quality of reconstruction even before the final estimate, X s
has been obtained. This enables us to understand the effect of
intermediate reconstructions and the fusion strategy separately.
Since our evaluation criterion is based on I(X,H)), we
can decide whether considering more images from the video
sequence will add to the quality of the final reconstruction.
Thus, it is possible to monitor the progress of a multi-frame
3-D reconstruction algorithm as it processes more and more
video frames.

A

Mutual Information

o

Number of Individual Reconstructions (n)

Fig. 2. Typical plot of the MI in the data processing inequality of (2).

Our criterion for evaluating the quality of reconstruction
depends on estimating the difference in MI for the two sets of
observations, HX) and H—1), We term this as the IML, i.e.

AI(L) =1 (X./ H<L>) .y (X, H<L—1>) . 3)
The term gives us an idea of the contribution of the L*" obser-
vation to the reconstruction strategy with respect to the previous
(L — 1) observations. As the number of observations increase,
the effect of an additional observation decreases and approaches
zero in the limit. In order to be assured that the reconstruction
quality is actually improving, we need to consider only those
situations where the MI 1(X, H(")) is nondecreasing. This en-
sures that we remove cases where the reconstruction is actually
getting worse, and further observations are not improving it any
more.

Using the relationship between MI and entropy, it is pos-
sible to obtain a different interpretation of the IMI. Denoting
by h(X) the entropy of the random variable X, we know that
[411I1(X;Y) = h(X)+ h(Y) — h(X,Y). Thus AI(L) in (3)
can be written as

AI(L)=1 (X;H(L)) 7 (X;H(Lq))

iy (X|H<L—1>) —h (X|H<L>) . (4)
The quantity defined as the IMI can also be referred to as the in-
cremental conditional entropy. Since entropy of a random vari-
able is a measure of its uncertainty, A measures the reduction
in the uncertainty as we add an extra observation. Since the IMI
tends to zero in the limit, the difference in the conditional en-
tropy also approaches zero. Thus we will consider more and
more images from the video sequence till the uncertainty in the
final structure estimate can be reduced no further. This is the in-
tuitive idea behind our criterion in (3).

The rate at which the IMI decreases is also an important mea-
sure of the progress of the algorithm. An extremely slow rate of
fall indicates that more images will be necessary to achieve an
acceptable level of quality. Since there is motion between ad-
jacent frames of the video, a particular point will move out of
the field of view of the camera after a certain amount of time.
A very slow rate of fall of Al might mean that the quality of
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the reconstruction is not good enough even when the point is no
longer visible. The rate of change of AT can be obtained as

A?I(L) =AI(L) — AI(L - 1)
=1 (X, H®) +1(x,HE2)

—of (X, H<L—1>) . (5)

Combining (3) and (5), we can state that an acceptable
reconstruction quality has been achieved when I(X,H®))
is nondecreasing and the following conditions are satisfied
simultaneously

A?I(L) <0, VL > Lg
AI(L) <t (6)

where Lg is a constant and 7 is a threshold defining an ac-
ceptable quality of reconstruction. Since AI(L) is monotone
nonincreasing for L > Lg and is bounded below by zero, the
monotone convergence theorem [20] applied to (4) implies that
h(XHE-D) — h(X|HT) — hq for some L > L. Thus,
hg is the minimum level of uncertainty in a scene described by
L observations.

Since the criterion does not depend on how the intermediate
reconstructions are obtained, it is, in principle, independent of
the 3-D reconstruction strategy. However, the procedure for es-
timation of IMI may be optimized for a particular algorithm.

A. Estimating the MI

We now turn our attention to estimating the IMI from the data.
This requires a knowledge of the probability density functions
of the random variables, which we do not know a priori and have
to estimate from samples. The entropy of a random variable z,
with pdf p, can be expressed as

h(z) = B [~logp(2)] - )

Thus, if we can estimate the probability densities, we can obtain
the IMI using (4).

We assume that the channel characteristic, P(H()|X), is
known. Using the observation model of (1) and assuming that
the noise process {V (i)} £, is independent of X, we can write

P (H<L>|X) =P ({X FVE)E, |X) =P (V(L>) )

Thus, knowledge of the channel characteristic implies that we
know the joint distribution of the noise process. If {V (i)}
is an independent sequence of random variables, the joint
distribution is simply the product of the noise distributions in
the individual reconstructions. In the next section, we show by
an example how the channel characteristic can be estimated from
first principles starting with the basic equations of SfM from
optical flow. Alternatively, the noise process can be assumed
stationary and the probability distribution estimated from the
initial few frames using histogram techniques. A method of
estimating the probability distributions and MI using statistical
sampling techniques can be found in [38].
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Once P(H)|X) is known, we can obtain

P (H(L>) - /P (H(L>|X> px(z)de
%
=3 P(HD) px(w:) ©)

r,€X

where px (z;) is the probability that the random variable X =
x;. Knowing px () implies that we have an a priori statistical
model on the scene structure X .

Expressing the MI in terms of the entropies, we can write

I (X,H<L>> =h (H(L>> —h (H(L>|X) .

Using P(H(®)|X) and P(H")), we can compute (10) by esti-
mating the entropies using the law of large numbers [42]. The
expected value of a random variable f(Z) (in this case it is the
entropy function) can be computed by sampling z; from the dis-
tribution P(z) and computing

(10)

Bz [f(2)] = %Zf(zi)- (1n

This can be used to compute the entropies from (7).

VI. A CASE STUDY: RECONSTRUCTING IN THE
PRESENCE OF GAUSSIAN NOISE

In this section, we consider the special case of Gaussian noise.
As explained in Section III, the bias in the structure estimates is
one of the reasons for using the IMI under Gaussian noise as-
sumptions. For this particular case we can derive a closed form
expression for the IMI, as opposed to the Monte Carlo simu-
lations necessary for the general case, which is dealt with in
Sections V-A and VII-A-3. Since the motion between nearby
frames in a video sequence is usually small, we will adopt the
optical flow framework for reconstructing the structure [1].

Consider a coordinate frame O-XYZ attached rigidly to a
camera with the origin at the center of perspective projection
and the Z-axis perpendicular to the image plane o-xy. Assume
that the camera is in motion with respect to the rigid body im-
aged scene with translational velocity V' = [vx,vy,vz] and
rotational velocity Q = [wx, wy,wz]. Itis assumed that the co-
ordinate frame is attached rigidly to the camera with the origin
at the center of perspective projection and the z-axis perpendic-
ular to the image plane. Using the small-motion approximation
to the perspective projection model for motion field analysis,
and denoting by p(z,y) and ¢(x, y), the horizontal and vertical
velocity fields of a point (z, y) in the image plane, we can write
the equations relating the object motion and scene depth as [1]

p(,y) = (@ — fap)h(z,y) + %ywx

— (f + %232) wy + ywz

q(z,y) =y — fyp)h(z,y) + (.f + %1}) wx
- lxywy —TWyz

12
7 12)
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where f is the focal length of the camera, (z;,y5) =
((vx [vz), (vy/v.)) is known as the focus of expansion (FOE),
and h(z,y) = (vz/z(x,y)) is the scaled inverse scene depth.
We will assume that the FOE is known over a few frames of the
video sequence. Under the assumption that the motion between
adjacent frames in a video is small, we compute the FOE from
the first two or three frames and then keep it constant over
the next few frames [43]. For N corresponding points, using
subscript k to represent the above defined quantities at the k*?
point and scaling all linear dimensions with respect to the focal
length, we define (similar to [43])

h=[hi,ho,....hn]h oy
T
>pN>(IN]2N><1

r, = I:.Lli'iyi, - (1 + $L2) 7yi:|§><1

u = [p17q17p27q27"'

T
s; = [1 + :‘/7,27 —TiYi, _:I:i]3><1
0= [w‘y,w)’;wZ]gxl

g — T
—[7"1 S1 T2 52 TN SN]2N><3

(1 — Ty 0 0 7
Y1 — Y 0 0
0 Ty —If 0
P= 0 Y2 — Yf 0
0 0 TN — Tf
L0 0 YN —YfdanxnN

A =[P Slonx(n+3)

zZ = [g] . (13)
(N+3)x1
Then (12) can be written as
Az =u. (14)

Our aims are to compute z from u and to obtain a quantitative
idea of the accuracy of the 3-D reconstruction z as a function
of the uncertainty in the motion estimates u. Let us denote by
R, the covariance matrix of u and by C' the cost function that
minimizes the reprojection error (i.e., bundle adjustment)

N
A . 1
C=> i —p:)" + (2 — 4:)°] = SllAz - ul?
1=1
1 n=2N N+3 2 1 n=2N
=5 2 (“ - Z) =5 3 Ciun) (9)
k=1 1=1 k=1

where ug, ay; and z; represent elements of u, A and z,
respectively, and (p;, ¢;) are the projections of the depth and
motion estimates, z, onto the image plane and are obtained
from the right hand side of the (12). In [18], [19], using the
implicit function theorem (Chapter 9 of [20]), we proved the
following result.

Theorem 1: Define

Ap, =0 -~ 0 —(zp—my) O -~ 0
—zryr (L+23) —wi].
= [~z —z)Li(N)| = ri] = [Appn | Arpm]
A, =100 -+ 0 —(yr—ys) O - 0
—(L+97) apyp(N) ]

= [—(yp —y) (V)| — sg] = [Aggn|Aggm] (16)

where k = [k/2] is the ceiling of k (k will then represent the
number of feature points N andi = 1,...,n = 2N)and L, (N)
denotes a 1 in the n*" position of the array of length N and zeros
elsewhere. The subscript p in Ay, and ¢ in Ay, denotes that the
elements of the respective vectors are derived from the p'"* and

q*® components of the motion in (12). Then

aCT oCy, . oCT ack) s an

R,=J" kg, Tk Tk
(k 0z JOu ou 0z

N
= J_I(Z (A%pAEpRuEp —}—AZ{]AEQRM‘W)) JT (18)
k=1

and

N

J= Z (AEPTA,—CP + Al_chAI_cq) (19)
i=1

where Ry, = diag[Ry1p, Ruig, - - -, Runp, Rung]-

This theorem gives an expression for the covariance of the
inverse depth estimate as a function of the covariance of the
noise in the two-dimensional (2-D) image-plane motion esti-
mates. Because of the partitioning of z in (13), we can write

Rn Rue ]
R, = [ (20)
R”, Rq

where Ry, and Rgq are the covariances of h and Q and Ryq is
the cross-covariance between h and .

Recall our previous formulation in (1), where X was the
unknown true inverse depth of a particular point. Assume
that X ~ N(0,02 = Qx), i.e., the mean of X is subtracted
out. Also, {V (i), = 1,..., L} is a sequence of independent
random variables distributed as N (0, 0—‘2/(1‘))’ representing the
noise distribution in the L two-frame inverse depth estimates.

Since Ry in (20) is the error covariance of the two-frame
depth estimate, we get Cov[H(¢)|X] = Rpu(é). Thus
Qv = diag[Rn(1),...,Rn(L)], where Ry, (4) is the value of
Ry, at a particular point for the inverse depth obtained from the
i and (7 + 1) frames.

From (1), E[H ()] = 0 and

E[H@)HG)]=E[(X+V(@)(X+V(5)]= Qx+Qv(i)(521:{)

3By diagla,...,an] or diagla;]
size N x N.

~» We mean a diagonal matrix of

i=1,...,
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where 6;; is a Kronecker delta function. Thus the covariance of
HOD) is Qv = Qv + lLQXl{, where 1, is a vector of L
ones. Using the fact that the entropy (differential) of a Gaussian
random variable Z ~ N(0,X) is (1/2)log(2me|X|) [41] (|.]
denotes the determinant), the MI between X and H ()

Qx )
Qv (7)
(22)

X H@)=h () = h(HO1) =5 1og (14

Next, consider the MI between the unknown X and the vector
of observations H(X). We will denote by | K| the determinant of
a matrix K

{n) - () -

@ (g ( ) - 1og (2meQv-(4))

(b)l1 |Qv+1LQ4\—1€|
Qv

()

(23)

where (a) is a result of applying the chain rule of entropy
and substituting the expression for the differential entropy
of a Gaussian random variable; (b) is due to the fact that
Qv| = HiL=1 Qv(i) = H,L-Lzl 0‘2,@.). Using the method of
induction and the properties of determinants, it can be shown
that |Qv +1.Qx17| = Hz 1‘7V(z) +o; Ez 1 HJ 1 UV(J)
(see Appendix A). Then from (23), the expression for the MI
becomes

L 2
I (X; H<L>) - %1og <1 n ; UZX. ) .4

V(i)
Thus, the IMI AT(L) is

AI(L) =1 (X; H(L>>

~Liog Qv +1.Qx17| |Qy -]
2 Qv +121Qx17_ |7 [Quw|

I (X;H(L_l))

L L L
1 | [Iiz U%’(v‘) + 02 Dict Hﬂ':l U%’(j)
= — Og I
2 ILi- 1%/(1)"‘022 HJ 1OV
1
— l log 1+ %,(L)
2 é +ZL 1 0' )
log | 1+~ QV(L) (25)
o +Zz 1 Qv(z

Hence, we are able to obtain a closed form expression for
AI(L) in terms of the parameters of the input video sequence
by starting from the basic equations of 3-D reconstruction from
optical flow.
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A. Estimation Theoretic Interpretation

Since we have considered the case of Gaussian noise, it is
possible to give an alternative interpretation to the results in (25)
from an estimation theoretic perspective. The mean squared dis-
tortion for M feature points is defined as

M
D(X,X) = % Y E [(Xk - Xk)ﬂ . (26)
k=1

Let p(Xg, Hi(1),. .., Hi(L)) denote the joint density function
of the parameter and observations. The mean square error esti-
mator X of X, obtained from H("), is X (L) = E[X;|H{"].
Using the definition of CRLB we can write the following set of
inequalities:

f |
— E [~ %= logp (Xi, H(1), ...

M 1
Zz: + ZL 1E[ axz logp(Hk( )|X)]
1
M N
3 ket (é + 2kt ﬁ)
1

E |

,Hy(L))]

P2

(27
M Zk 1 DA

The last step is a result of the application of Jensen’s inequality
[37] and that E[—(92/0X?)log p(Hi(D)|X)] = (1/Qv; (i))-
Recalling that (25) is for a particular feature point where the
subscript has been suppressed for clarity of notation, let us de-
note Al 2 I(Xp;HY) — 1(X; H ™). Then from (27)
and the last expression of (25), we get

Mk:llov(Dk(L_—l

2 Dy(L) )>'

Alternatively, using a Kalman filter with observation model as in
(1), a constant parameter system model (i.e. X(i +1) = X(i)),
and the initial condition that Cov[X (0)] = o2, the innovations
at the LP stage, vp = Xp — X . Then followmg the stan-
dard derivation for the Kalman filter (actually a recursive least
squares problem because of the constant parameter) [37], it can
be shown that variance of the innovations

(28)

1

0.2

P, =0t |1+ —— (29)
! ) Ly
V(i)
which shows that, for each feature point, the IMI is related to
P, as

P.
AT log i . (30)
"2\ A
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Plots of the variation of IMI with different camera motion parameters. The 3-D plots represents the variation of the IMI with the number of intermediate

reconstructions and the motion parameter, while the 2-D plots represents the variation of the IMI with the number of intermediate reconstructions for each value
of the camera motion parameter. Each of the camera motion parameters are varied over a certain range, keeping the others fixed at their nominal value described
in the text. The different plots are obtained for each of the six camera motion parameters whose range is as follows: (a) vx € [0.001,0.1]; (b) vy € [0.001,0.1];
(c) vz € [0.001,0.1]; (d) wx € (0,3] degrees/frame; (e)wy € (0,3] degrees/frame; and (f) w, € (0, 3] degrees/frame.

In this section, we present the results of experiments carried
out in order to analyze the criterion based on IMI using
both simulated and real data. With the simulation data, we

VII. EXPERIMENTAL RESULTS

analyze the dependencies of the IMI on different camera
motion parameters. We also show how the IMI can be used

to identify a few troublesome points which affect the quality
of the entire reconstruction. Next, we consider real 3-D range
data and analyze the reconstruction using the IMI criterion
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for quality adjustment. Finally, a video sequence as captured
by an ordinary video camera is considered and the effect of
our criterion on the 3-D reconstruction algorithm is studied.
In all the experiments, we consider the situation where the MI
I(X,H®)) is nondecreasing, which is the interesting case as
explained in Section V. The fusion algorithm is described in
[19] and uses a least median of squares estimator, which is
solved by using the Robbins-Monro stochastic approximation
algorithm.

A. Experiments With Simulated Data

The aim of the following experiments with simulation data is
to analyze the effect of different camera motion parameters on
the IMI criterion, given that the true depth values are known.
Also, we will analyze the effect of different levels of noise in
the feature positions. For this purpose, a set of fifty 3-D points
were generated so that their true positions are known. The initial
positions of these points were set randomly. Different kinds of
motion were applied to these points so as to obtain various mo-
tion tracks for each of them. The perspective projections of these
points were generated on a 512 X 512 pixel grid and Gaussian
noise with zero mean and known variance was added to these
2-D locations. This resulted in creating a set of tracked features.
The median value of the true motion between two consecutive
frames (median computed over all frames and features) was
around 15 pixels in both the horizontal and vertical directions.
Pairs of such motion tracks, corresponding to pairs of frames of
an image sequence, are given as the input to the 3-D reconstruc-
tion algorithm. In order to take advantage of a longer baseline
between the images, the pairs of frames are chosen by skipping
two intermediate frames between them, e.g. frames 1 and 4, 2,
and 5, etc. to form pairs. We solve for the depth using the true
value of the camera motion. This is a simple least-squares solu-
tion of (12), which ensures that the errors in the depth computa-
tion are solely due to noise in the feature positions (i.e., without
noise in the feature positions, the reconstruction will be perfect).
This allows us to separate and study the effects of noise in fea-
ture positions on the depth estimate. In practice, errors in camera
motion estimates and algorithmic imperfections will also affect
the solution.

1) Variation With Motion Parameters: In this set of exper-
iments, we vary the different camera motion parameters one
at a time and analyze the change in the IMI. For each kind
of motion, the image projections are obtained, which are the
input to the 3-D reconstruction algorithm. Since the 3-D recon-
struction algorithm assumes that the motion between pairs of
frames is small, we have to be careful in choosing the range over
which the camera motion parameters can be allowed to vary.
The range for each motion parameter was sampled uniformly at
100 points. For this experiment, a small Gaussian noise with a
variance of 5 pixels was added to each of the feature positions
independently. The IMI was computed using (25). The number
of frames considered for each reconstruction varied a little, de-
pending upon the length of time that the feature positions re-
mained within the field of view of the camera, for that kind of
motion. In Fig. 3, we plot the IMI averaged over all the fea-
ture positions, as each of the six camera motion parameters are
varied. The 3-D plots represent the variation of the IMI with the
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number of intermediate reconstructions and for each value of the
particular camera motion parameter that is changed. The change
with the camera motion parameter can be seen along the y-axis.
In the 2-D plot, separate curves are obtained for each value of
the motion parameter of interest. Thus the 2-D plots are the dif-
ferent y-z cross-sections of the 3-D plots in the first column.
The nominal values of the different parameters are set at v, =
vy = v, = 0.01 and wx = wy = wz = 1 degree/frame. The
exact units of the translational motion do not matter because the
equations involve the FOE z; = (v, /v.) and yy = (vy /vz).
We vary each parameter at a time, keeping all the other fixed at
the nominal value.

The interesting fact to note from the curves in Fig. 3 is that the
IMI does not change much with the rotational motion. This is to
be expected because, under perspective projection and the set-up
of (12), the rotational motion does not affect the depth computa-
tion. Therefore as long as the rotational motion is not so large as
to introduce errors in the image-plane motion computation, the
quality of the reconstruction should not change too much with
the rotation. The IMI should, however, change with the transla-
tional motion, and this is shown in the respective plots.

2) Variation With Noise in Feature Positions: In the above
experiments, we assumed that the noise in the feature positions
was small and studied the variation of the IMI with different
camera motion parameters. However, in practice, the noise will
vary depending upon a number of external parameters, like
lighting conditions, imaging system, etc. Hence, we now study
how noise in feature positions will affect the IMI estimates
of the quality of the reconstruction. We use the same set of
3-D points used in the above experiment and generate a set of
motion tracks for all the points using the nominal values of the
camera motion parameters. For this experiment, the motion
parameters are kept fixed, while the noise level in the feature
positions is varied. Fig. 4(a), (b) plots the reconstructed depth
and the IMI, when Gaussian noise with standard deviations of
2 and 5 pixels, respectively, is added to the positions of the
feature points. A similar plot with noise of standard deviation
of 5 pixels is shown in Fig. 4(c), but the range of depth values
is larger, as is clear from the vertical axis. Since the motion
between consecutive frames is smaller due to the larger depth,
we considered the motion between every fifth frame in the
sequence. The IMI is plotted for every single feature in the
lower figure of each of the pairs of plots. For the case of low
noise (standard deviation of two pixels), the IMI decreases
continuously for every feature point. However, for higher noise
cases, the IMI behaves in a much more complicated manner. It
decreases monotonically for some of the features, while for the
others this is not the case. The monotonic decrease corresponds
to those points which are reconstructed accurately. The points
for which the IMI behaves erratically are the ones at which the
reconstruction is not very accurate.

3) IMI Estimated From Monte Carlo Simulations: In this
section, we show how to estimate the IMI with an unknown
(non-Gaussian) noise distribution, using Monte Carlo sampling
to approximate the distribution, as explained in Section V-A. As
in the previous experiments, a set of features were tracked over
a number of frames, with the camera motion set at the nom-
inal value. However, noise was added to the feature positions
according to a uniform distribution. For each feature point, the
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(a)—(b) Plots of the depth reconstruction for the 50 feature points along with the IMI for each feature, for different levels of noise in the feature positions.

The upper figure in each pair of plots represents the depth reconstruction for the feature points, while the lower figure represents the IMI as a function of the
number of intermediate reconstructions, for each feature point separately. For the depth reconstruction, the solid line represents the true depth, and the dotted line
represents the reconstructed value. The standard deviation of the noise in the three plots is as follows: (a) Two pixels and (b) five pixels. (c) Same plot as above,
except that the range of the depth values is larger. The standard deviation of the noise is five pixels. (d) Uniform noise example: the upper plot shows the true depth
values of the 3-D points (the solid line) and the fused estimate from the intermediate reconstructions from all the ten frames (the dotted lines). The lower plot shows
the change in the IMI, obtained using Monte Carlo simulations, with increasing number of intermediate reconstructions.

noise was added uniformly in a 5 X 5 block around that point.
In this case, we cannot use the closed form expressions that we
could derive for the Gaussian noise case. Hence, the technique
for estimating the IMI, as explained in Section V-A, was fol-
lowed. The noise in the feature points was assumed to be inde-
pendent. The points were tracked over 50 frames, out of which
the first thirty were used for estimating the distribution of the
two-frame depth estimates using (8). The IMI was computed by
following the steps described in the above-mentioned section.
The 3-D positions of the points were estimated from the StM
equations in (12), assuming that the camera motion is known
and using the least-squares method described before. For some
of the points, the results were erroneous as is clear from the
first plot of Fig. 4(d). The lower plot of the same figure de-
picts this case where the IMI remains large and does not follow
the steadily decreasing trend as in some of the previous exam-
ples. This is an example of a situation where the reconstruction
quality is not of the desired fidelity. However, the reprojection
error, computed from (15), decreases monotonically, with in-
creasing number of intermediate reconstructions.

B. Experiments With Range and Video Data

We now show how our IMI criterion can be used in real-life
3-D reconstruction problems. For this purpose, we consider two
experiments. The first involves the situation where 3-D range
data of a face is available. A video sequence is generated from
this range data. We estimate the structure of the face using the
video sequence of it, use the IMI criterion for assessing the
quality of the reconstruction, and finally compare this depth es-
timate with the true value. In the second experiment, we use a
video sequence of a face captured with a ordinary video camera
and plot the IMI criterion and the 3-D reconstruction of it.

1) Experiments With Face Range Data: We experimented
with a publicly available database of 3-D models obtained from
a Minolta 700 range scanner.*. We will report numerical results
from our algorithm on some of the data available here, though
we will not publish the images or 3-D models of the subjects. In
order to perform an accurate analysis of our methods, we require

4The data is available [Online] at: http://sampl.eng.ohio-state.edu/sampl/
data/3-DDB/RID/minolta/faces-hands.1299/index.html
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Fig. 6.

Three-dimensional reconstruction from video using the method of measuring the IMI to judge the quality of the result. (a) One of the images from the

video along with the set of tracked features used for the reconstruction. (b) The change in the IMI with the number of images. (c) One view from the reconstructed

model.

a video sequence of the person and the 3-D depth values. This,
however, is not available on this particular database or in any
other that we know of. Thus we had to generate a sequence of
images in order to apply our algorithm.> This was done using
the 3-D model and the texture map provided on the web-site.
The 3-D reconstruction of the face was generated using our
algorithm described in [44] and [45]. For this paper, we use
the example referred to as “frame001” on this website. The
average error in the reconstruction was about 3%. The IMI
was computed using Theorem 1 and (25). The plot of the
IMI for this example is shown in Fig. 5. In Fig. 5(a), the
variation of the IMI with the number of i, the variation of the
IMI with the number of intermediate reconstructions and the
feature points is shown in a 3-D plot. In Fig. 5(b), a set of
2-D plots of the IMI versus the number of reconstructions,
for each feature point is shown. In Fig. 5(c), we plot the IMI
(for each feature point) when Gaussian noise with a standard

SThe optical flow computed with the generated sequences may be more accu-
rate than in a normal setting. However, we will also analyze after adding noise to
the feature positions. Hence the comparison of the 3-D reconstruction accuracy
should still be useful.

deviation of 5 pixels is added to the feature positions. In this
case, the average reconstruction error was around 4% and the
IMI varied significantly depending on the feature point. Such
variations can be used to identify points which can potentially
lead to erroneous reconstructions.

2) Experiments With Video Data: Finally, we present a
result on a video sequence captured with an ordinary video
camera. The video consists of a person moving his head in
front of a static camera. The aim was to reconstruct the model
of the head of the person from this video. The focal length of
the camera was known. Fig. 6(a) represents an image from the
video along with some of the feature points which were tracked.
Fig. 6(b) represents the change in the IMI between the unknown
3-D structure and the intermediate reconstructions from every
pair of frames. The covariance of the error in the intermediate
reconstructions were estimated using the result of Theorem 1.
This was used to estimate the IMI using (25). Based on this
measure, the 3-D model was reconstructed using 25 frames and
Fig. 6(c) shows one particular view of this model. Details of
the 3-D reconstruction algorithm can be found in [45].
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VIII. CONCLUSION

In this paper, we have introduced a method to evaluate the
quality of 3-D reconstruction from a video sequence in infor-
mation theoretic terms. We showed that the 3-D reconstruction
problem can be represented using a channel model, where the
channel characteristic can be estimated from the input parame-
ters of the video. Such a conceptual representation allows us to
derive a criterion for evaluating the reconstruction by computing
the change in the MI between the unknown scene structure and
the 3-D estimates obtained from increasing numbers of images
from the video sequence. This information theoretic criterion is
useful because it can deal with biased estimators and can cap-
ture the effects of higher-order statistics. We showed how the
IMI can be estimated in terms of the parameters of the feature
points tracked across the video sequence. Finally, we presented
results using both simulated and real data.

APPENDIX
COMPUTING THE ERROR COVARIANCES

We will derive an expression for the determinant of the matrix
Quv) + 1yQx 1% in (23). Represent by Ay the following
matrix:

2 2
J + 01,1 o o,
2 2 2 2
U.r U:r + Uvz U.r
Av=| (31)
2 2 2 2
UJ: J.?: J.?: + 0'17,\;

The aim is to compute the determinant of A . We will do so
by using the method of induction. Consider N = 2. Then the
determinant of A, denoted by |A2| = 02 (02 +J2 ) +o, 202
For N = 3,|As| = 02(02 02, +00,00 +00. 00 )+0 02 (72
Assume that

N N
2
|Ay| = H or+ Y o] o7 (32)
=1 j=1
J#i
Now consider the matrix
ro2, 9 2 2 2 .
Uz+av1 Oy Oy x
2 2, 2 2 2
Uz Uz+0vg e Crz x
Anii= :
2 2 2, 2 2
x Oy Og +UUN Oy
2 2 2 2, 2
L x Oz Oz Oz +0—’UN+1 a
(33)

Subtracting the second to last row from the last one, we get the
following matrix

r.2 2 2 2 2 7
Uzr + Jvl U.r x x
2 2 2 2 2
Uz Crz + U'U2 T T
: (34)
o2 or oitoy,  oF
_ 2 2
L 0 0 UUN UN+1 .
Then
Anyil =07, |An|+ 0}, [B| 35)
where
r2 2 2 2 2
Uw + le Uw T Ux
2 2 2 2 2
Ua: Ux + ng xT Ux
B = . :
2 2 2 2 2
(o o v O0pF+ 0y, Ox
L o} o2 ol s ]
(36)

Now, using the fact that the determinant of a matrix remains
unchanged by elementary row and column operations, we get

—o2

2 2
Oz + Oy vy 0y —Ou —0y,
2 2
ox ot 0 e 0 0
: 0 033
IB| =
2 2
ox 0 0 o 0
(7% 0 0 0 0
2 2
0y Oy 0y, 0y
012,2 0 0 0
N+1 _2 2
( 1) 0 J’U3
0 0 o2 .0
_ 2 2 2
- O'zle Uv_ O—UN,l (37)

Then substituting (32) and (37) into (35), we get

N+1 N N N
2 2 2 2 2 2
ANt = Hgvi+0UN+1 ZJJEHUW +0$H0w
=1 1=1 j=1 =1
JF#i
N+1 N+1
=l o+ Z 117 +o HJ
=1
J#t
N+1 N+1 N+1
_ 2 T 2 2 (38)
= lop o Oy,
i=1 i=1 j=1
J#i

which proves the hypothesis for |A x| in (32).
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