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This paper proposes an end-to-end system to recognizemulti-person behaviors in video, unifying different tasks
like segmentation, modeling and recognition within a single optical flow based motion analysis framework. We
show how optical flow can be used for analyzing activities of individual actors, as opposed to dense crowds,
which is what the existing literature has concentrated on mostly. The algorithm consists of two steps —

identification of motion patterns and modeling of motion patterns. Activities are analyzed using the underlying
motion patterns which are formed by the optical flow field over a period of time. Streaklines are used to capture
these motion patterns via integration of the flow field. To recognize the regions of interest, we utilize the
Helmholtz decomposition to compute the divergence potential. The extrema or critical points of this potential
indicates regions of high activity in the video, which are then represented as motion patterns by clustering the
streaklines.We then present amethod to compare two videos bymeasuring the similarity between their motion
patterns using a combination of shape theory and subspace analysis. Such an analysis allows us to represent,
compare and recognize a wide range of activities. We perform experiments on state-of-the-art datasets and
show that the proposed method is suitable for natural videos in the presence of noise, background clutter and
high intra class variations. Our method has two significant advantages over recent related approaches — it
provides a single framework that takes care of both low-level and high-level visual analysis tasks, and is
computationally efficient.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Natural videos usually consist ofmultiplemotion patterns generated
by objects moving at arbitrary speeds and time intervals. They could
have multiple events occurring simultaneously at arbitrary viewpoints
and varying scales. The analysis of such videos can be termed as com-
plex activity recognition. Recognition of complex activities often in-
volves dealing with features distributed in a high dimensional space
due to a higher amount of intra class variations. Algorithms dealing
with such sequences should be robust to background clutter, noise
and changes in viewpoint and scale. Most of the traditional activity
recognition algorithms, such as in Refs. [15,2,13], work with simpler
datasets like in Refs. [24,2] which place assumptions on the number of
objects, scale and viewpoint of the scene. However, in real world
situations it is hard to encounter such videos. Therefore, there is a
need for algorithms which can handle the structure and semantics of
complex activities.

A scene is a collection of moving pixels. Optical flow provides a
natural representation for this motion. It represents the pixel-wise
motion from one frame to the next; therefore, it captures the spatial

and temporal dynamics in a video. Since a complex activity involves
multiple motion patterns, it is useful to separate the motion patterns
before modeling them, to reduce the search space. One way of doing
this would be to compute tracks. However, it is not always feasible
to compute accurate tracks in real world videos. The problem of
separation of motion pattern reduces to the problem of segmentation
of optical flow. Although prone to the same inaccuracies as tracks,
optical flow is computed for every pixel in the video. It is therefore,
a more statistically reliable indicator in the presence of noise. These
factors motivate us to use optical flow as the input features for our
recognition algorithm.

In this work, we recognize activities by analyzing the underlying
pixelwise motion using optical flow. Each region in a video where the
pixels exhibit similar motion is said to constitute a motion pattern.
Individual motion patterns are considered as “events” which can be
identified by segmenting the flow patterns. This motion pattern could
be due to one or more objects in the scene. An activity is represented
as a collection of motion patterns. Optical flow is represented using
streaklines which are obtained by integrating the flow over time. The
activity in a video could be composed of multiple suchmotion patterns,
which are assumed to be correlated. Therefore, the overall match score
between two videos is obtained by matching the individual motion
patterns. The streaklineswhich constitute amotion pattern can be iden-
tified using their average shape vectors and spatio-temporal variation
with respect to the average shape. This variation is modeled using a
collection of linear subspaces which capture their spatio-temporal
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variation in a low dimensional representation. These patterns can be
matched by a combination of shape comparison and subspace analysis.
We validate the robustness of our algorithm by experimenting on two
realistic outdoor datasets. We do not place any assumptions on the
number of motion patterns in the scene. The proposed method can be
used across a wide range of activities with varying scales and view-
points. Some sample frames of the data used for activity recognition
are shown in Fig. 1.

1.1. Related work

A major thrust of research in complex activity recognition has
been in the selection of features and their representations. Different
representations have been used in activity recognition, most of
which can broadly be classified as local or global representations
[26]. Local representations like in Refs. [13,15] identify small
spatio-temporal regions in the video as the regions of interest. The
spatial and temporal modeling of activities is then performed in the
recognition stage. Global representation like in Refs. [3,5] on the
other hand, model the scene as a whole. These representations
often span a larger spatio-temporal volume, so the spatial and tempo-
ral information is captured in the features themselves. Methods such
as in Ref. [9] use STIP-based features for recognition of complex activ-
ities. The recognition is then performed by modeling relationships be-
tween these features in a complex graph based or histogram based
framework. We hypothesize that representing motion patterns
using optical flow is more intuitive than using spatio-temporal
features since the spatio-temporal information is embedded in the
flow. This therefore, is a global representation. Also, unlike previous
global methods which use histograms of optical flow, we explicitly
model the spatial and temporal evolution of flow.

Optical flow has widely been used in the past for activity recogni-
tion. It serves as an approximation of the true motion of objects
projected onto the image plane [26]. Optical flow has predominantly
been used in features like space–time interest points (STIP) [16] as a
part of the feature descriptor. The time series of histogram of optical
flow has been modeled as a non-linear dynamical system using
Binet–Cauchy kernels in Ref. [5]. Optical flow histograms have also
been used to analyze the motion of individual players in soccer
videos [8]. Most of such approaches utilize the statistics of optical
flow for recognition rather than the flow itself. This removes the
spatio-temporal structure from the flow. They also assume that the
flow belongs to one object in the scene. Optical flow has been exten-
sively used in crowd motion analysis. Dense crowd motion analysis
and segmentation has been performed using optical flow in Ref.
[12]. Helmholtz decomposition has been used to segment different

motions in crowd scenes by streakline computation in Ref. [18]. In
contrast to the above trends, we show how flow-based methods can
be used in the analysis of multi-object scenes with sparse motion.

Several recent approaches have dealt with recognition of complex
activities. The authors in Ref. [29] deal with multi-object activity rec-
ognition but only focus on recognition of simple actions such as en-
tering and exiting a door, performed by multiple actors in an indoor
scene which is free from clutter. We on the other hand deal with
cluttered scenes. Graphical models are commonly used to encode
the relationship between features. A Dynamic Bayesian network has
been used to model the temporal evolution in two person activities
in Ref. [20]. A grid based belief propagation method was used for
pose estimation in Ref. [17]. Some methods have tried to incorporate
the location of feature points into the recognition algorithm. The spa-
tial and temporal relationships between space–time interest points
have been encoded as “feature graphs” in Ref. [9]. A logic based
method is used to match spatio-temporal relationships between
STIP points in Ref. [22]. Complex activities were represented as
spatio-temporal graphs representing multi-scale video segments
and their hierarchical relationships in Ref. [4]. Stochastic and context
free grammars have been used to model complex activities in Ref.
[21]. Co-occurring activities and their dependencies have been stud-
ied using Dependent Dirichlet Process–Hidden Markov Models
(DDP–HMMs) in Ref. [14]. Our approach to complex activity model-
ing relies on using dense features, namely streaklines, which capture
the spatio-temporal information in a video. We compare activities in
one video to those in another by modeling and comparing motion
patterns in the videos.

Linear and non-linear dynamical models have been used in the
past to model activities. The authors in Ref. [27] model motion as a
non linear dynamical model of the changes in configurations of
point objects. However, they utilized hand-picked location data
with no observation noise in their experiments. Binet–Cauchy kernels
were used to model single person activities as a non-linear dynamical
system in [5]. Auto-regressive moving average (ARMA) models have
been used to model movements as a linear dynamical system. The
authors in Ref. [28] utilize ARMA models for single person gait recog-
nition using shape deformations of the silhouette. ARMAmodels have
been used for track based activity and gait recognition in Ref. [1].
Dynamic textures have been represented using ARMA models in
Ref. [6]. We utilize a combination of non-linear shape matching and
subspace analysis in our approach. We model the spatio-temporal
evolution in a motion pattern using linear subspaces which can be
matched using subspace angles. We also use shape matching on a
non-linear manifold to compute the distance between the average
shapes of two motion patterns.

Fig. 1. The figure shows sample frames of the VIRAT dataset used for recognition. The first figure shows a person loading a trunk, the second figure shows a person entering a vehicle
and the third figure shows a person closing a trunk. We notice other people in the scene adding to background clutter. Lighting changes and shadows add noise to the data.
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1.2. Some definitions

These are the definitions of some of the commonly used terminology
in the paper:

Motion pattern — a spatio-temporal region in a video in which all
pixels exhibit similar motion. Each motion pattern is considered
as an “event” in the video.
Activity— the actionwhich is to be recognized in a video. An activity
is composed of one or more events.
Streakline — the locus of all points in a video which have passed
through a particular pixel.
Particle — an abstraction of a point on a streakline.

1.3. Main contributions

1. Themain contribution of ourwork is to propose a unified framework
for analysis of activities. We provide an end-to-end system that can
perform a bottom-up analysis starting from pixel wise motion to
identifying motion regions in the volume to segmentation and
modeling of these regions. Some state-of-the-art methods like in
Refs. [9], which deal with similar datasets, explore spatio-temporal
information at a feature level. Our method on the other hand ex-
plores spatio-temporal information at a global level. This has the ad-
vantage that we can segment out different events occurring in the
video and thenmodel them in a single framework. Thus, we propose
a framework based on the analysis of flow that is able to handle the
entire image analysis pipeline— from the low level to the high level
processing.

2. Another contribution of this work lies in the use of optical flow for
multi-object behavior analysis. Unlike previous methods which
utilize optical flow in the form of motion statistics [5], we model
the actual dynamics of flow rather than using histograms which
do not retain the spatial and temporal information. Therefore,
we provide a framework for representation and comparison of
complex activities using optical flow.

3. Although we have built upon the work in Ref. [18] which uses
streaklines and Helmholtz decomposition for crowd segmentation,
there are several differences in our work as compared to theirs in
the modeling and in the application of streaklines. First, the objec-
tive of the proposed method in Ref. [18] is to segment a video into
different regions exhibiting similar motion, whereas our objective
is to explicitly model every motion pattern in a video for the pur-
pose of activity recognition. In Ref. [18], the authors propose a
method to perform a space segmentation of the streaklines at
every frame, whereas we deal with spatio-temporal segmentation
of the entire volume. We compute the distance between critical
points to identify time segments of motion patterns. In Ref. [18],
the Helmholtz decomposition is again used to compute a diver-
gence factor, which is then used to identify abnormal activities.
Here, we use the Helmholtz decomposition to identify the regions
which are of interest to us for the purpose of modeling and recog-
nizing activities. Therefore, we have extended the method in Ref.
[18] to work not just on crowded environments but also in videos
which contain sparse motion.

1.4. Overview of proposed approach

The overall algorithm is described in Fig. 2. The goal of our algorithm
is to model the activity in a video as a combination of motion patterns.
There are two components to the algorithm — identification of motion
patterns and modeling and comparison of motion patterns.

The identification of motion pattern involves identifying regions
in the video which correspond to useful motion and segmenting
these regions into individual motion patterns. These regions of inter-
est are termed as motion regions. We start by computing the optical
flow at each time instant. Optical flow is highly susceptible to noise
which can result in spurious patterns which are difficult to analyze.
Therefore, we work with streaklines which are obtained by integrat-
ing optical flow over time. Motion regions are then identified as the
streaklines which show a significant amount of motion. We demon-
strate a framework based on the Helmholtz decomposition of a vector
field to extract these regions.

Fig. 2. The figure shows the overall framework of the proposed method.
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Once we identify the streaklines which correspond to the motion
regions in a video, motion patterns are recognized by performing a
space–time clustering on these streaklines. We demonstrate a meth-
od of identifying time segments of streaklines using the Helmholtz
decomposition. We further perform a space segmentation by run-
ning a clustering algorithm. After the segmentation step, each
space–time segment is considered as an individual motion pattern
in the video.

After identifying the motion patterns, we need to model them and
define a distance measure to compare motion patterns across videos.
We compute the average preshape of the streaklines and a linear sub-
space representation for the spatio-temporal variation about the av-
erage preshape for each group of streaklines constituting a motion
pattern. Given a set of videos for training and a test video, we com-
pute the models for all the training data. The test data is matched to
each of the training data by a combination of shape matching and
subspace matching algorithm. The final match score is obtained by a
time warping over the time segments. The test video is classified
using an N-nearest neighbor classification.

1.5. Organization

The organization of the paper is as follows: We start by introducing
streaklines which are the input features to our algorithm in Section 2.
We define streaklines and explain how they can be computed from op-
tical flow. In Section 3, we explain the process of identifying regions of
the video which contain useful motion information using streaklines.
This is done using the Helmholtz decomposition. Next, in Section 4,
we demonstrate the extraction of motion patterns in video. These mo-
tion patterns are obtained by a process of time and space segmentation
on themotion regions. In Section 5, we explain themodeling of individ-
ual motion patterns and our framework for recognition of activities
using these models. In Section 6, we demonstrate the experiments we
conducted to validate our approach.

2. Streakline representation of motion patterns

The first step of our algorithm is to represent a video using
streaklines. Streaklines are a concept derived from fluid dynamics to
represent a time-varying flow field. Suppose we inject a set of parti-
cles in the flow field continuously at certain points in the field, the
path traced by these particles are called streaklines.

More formally, a streakline is defined as the locations of all parti-
cles that passed through a particular point over a period of time. It
can be computed by initializing a set of particles at every time instant
in the field and propagating them forward with time according to the
flow field at that instant. This results in a set of paths, each belonging
to one point of initialization. It can be shown that the streakline rep-
resentation has advantages over other representations like stream-
lines and pathlines in being able to capture changes in the field as
well as in smoothness of the resulting representation.

Given a video with n pixels per frame for a duration of N frames, we
compute streaklines s1,…,sn where si ¼ Xi; Yi½ �T , Xi ¼ xi;1; xi;2;…; xi;N

� �T ,
Yi ¼ yi;1; yi;2;…; yi;N

� �T , si∈R2N for i=1,2,…,n. Every point on the
streakline (xi,t,yi,t) corresponds to a particle p initialized at pixel i at time
instant t.

The particle p is initialized at the ith pixel of the frame at time in-
stant t. For the subsequent frames, the particle is propagated from its
old position (xi,told,yi,told) to its new position (xi,tnew,yi,tnew) using the parti-
cle advection.

xnewi;t ¼ xoldi;t þ u xoldi;t ; y
old
i;t

� �
ynewi;t ¼ yoldi;t þ v xoldi;t ; y

old
i;t

� � ð1Þ

where u(x,y) and v(x,y) are the X and Y components of the instanta-
neous optical flow at position (x,y).

Streaklines are ideally suited for motion analysis in video. Because
they are computed over a larger interval of time as compared to opti-
cal flow, they are more robust to noise and easier to analyze than

Fig. 3. The figure shows the streaklines for people opening a trunk in two videos. The circled region shows the similarity in the activity captured by the streaklines.
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optical flow. They capture the pixel-wise spatio-temporal information
in a video. Similar activities will result in similar streaklines, therefore
modeling and comparison of streaklines can be used for activity clas-
sification. Fig. 3 illustrates the streaklines for similar activities being
performed in different scenes. We notice that the streaklines look
similar in the circled region.

3. Identification of motion regions

Motion in a video is often sparse. In most natural videos, motion is
confined to small regions in the video. Since we compute streaklines
at every pixel in each time frame, the size of the computed data is
the same as the number of pixels in the video. To reduce the compu-
tational space and increase efficiency, we first need to reduce the size
of the data. This can be done by identifying regions of meaningful mo-
tion in the video. We refer to such regions as “motion regions”.

There are severalways bywhichwe could identify themotion regions
in a video. For example, in Ref. [18], the authors perform segmentation on
thewhole volume and then eliminate small insignificant segments. How-
ever, thismay not be computationally efficient, especially if themeaning-
ful regions are small compared to the whole volume. Also, for our
purpose, we do not need to identify every single streakline which repre-
sents motion. We are interested in those regions in the spatio-temporal
volume which are most distinctive for the purpose of recognition. The
Helmholtz decomposition has widely been used in the past to recognize
distinctive points in a vector field. We utilize this concept derived from
fluid dynamics to recognize motion regions.

The Helmholtz decomposition is a concept derived from physics,
which states that any smooth field can be uniquely decomposed
into an irrotational component and a solenoidal component. The ex-
trema of these components are termed as critical points. In particular,
the extrema of the irrotational field occur at regions of high diver-
gence and convergence. Therefore, these would be the distinctive re-
gions of the flow field that we are interested in modeling. Since
optical flow is highly transient, we propose to use a flow field,
which we call the “motion field” derived from the streaklines to com-
pute the Helmholtz decomposition. We compute an aggregate flow

by averaging the value of flow over a set of k frames. This aggregate
flow represents the average motion which each pixel has undergone.
Next, we apply a smoothing function over this field to make it differ-
entiable. The resultant field is known as the motion field F.

In this section, we will explain in detail, the computation of motion
regions from the motion field using the Helmholtz decomposition.

3.1. Helmholtz decomposition of flow field

The Helmholtz decomposition theorem states that any arbitrary
vector field which is assumed to be differentiable can be decom-
posed into a curl free (irrotational) component and a divergence free
(solenoidal) component [10], i.e.,

F ¼ Fsol þ Firr ; ð2Þ

where F is the overall field, Fsol represents the solenoidal component
and Firr represents the irrotational component, F∈Rm�n where m×n
is the video frame size.

Since Fsol is divergence free, we have∇Fsol=0. Similarly, since Firr
is curl free, we have ∇×Firr=0. We can also define a scalar potential
ϕ and a vector potential A such that

F ¼ −∇ϕþ∇� A: ð3Þ

We see an illustration of the Helmholtz decomposition of a vector
field in Fig. 4. We notice that the first component is purely a rotational
field whereas the second component is purely divergent. Below, we
will illustrate the extraction of regions of interest from the motion
field using this decomposition.

3.1.1. Computing the flow field components
According to the Helmholtz decomposition, the motion field is

composed of an irrotational and solenoidal component. We also men-
tioned that the motion field can be expressed in terms of a scalar po-
tential (ϕ) and a vector potential (A). We can obtain the irrotational
and solenoidal components of the motion field from the scalar and
vector potentials respectively. We will follow the technique described

Fig. 4. Decomposition of a flow field: The figure shows a sample flow field and its decomposition into the irrotational and solenoidal components. The critical points are marked in
red on each image. Figure a) shows the original flow field; Figure b) is the original flow field marked with regions containing critical points. We notice that the critical point in
region 3 is an attracting focus and the critical points in regions 1 and 2 are repelling nodes; Figure c) represents the solenoidal component of original flow; and d) represents
the irrotational component of original flow. We can see that the irrotational field has no rotational component and the solenoidal field is divergence free (purely rotational).
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in Ref. [10] to solve for the scalar and vector potentials. The scalar po-
tential can be obtained by projecting onto the curl-free component
and solving the following variational problem:

arg min
ϕ

∫Λ Fþ∇ϕk k2dA;Λ⊂R
2 ð4Þ

where Λ is the image domain under consideration and A is the area. It
can be shown that the solution to ϕ is obtained by solving the follow-
ing Poisson equation [10]:

∇:F ¼ ∇2ϕ ð5Þ

Fþ∇ϕ:n̂ ¼ 0 in∂Λ ð6Þ

where n̂ is the unit outward normal to the boundary ∂Λ.
A similar formulation can be derived for the vector potential. The

solenoidal component can be solved using the following variational
problem.

arg min
A

∫Ω F− ∇� Að Þk k2dA;Ω⊂R
3
; ð7Þ

the optimum solution of which is obtained by the following PDE
formulation:

∇� F ¼ ∇�∇� A ¼ ∇ ∇:Að Þ−∇2A ð8Þ

F− ∇� Að Þ � n̂ ¼ 0 in∂Ω: ð9Þ

Here n̂ is the unit outward normal to the boundary ∂Ω. Since we
have the curl (∇×) to be an operator in three dimensions, for an arbi-
trary Awe need to extend the two dimensional field F to 3D by setting
the z-component to zero.

On solving the above equations, we obtain the scalar potential ϕ
and the vector potential A. The irrotational and solenoidal compo-
nents of the flow field are accordingly obtained as

Firr ¼ ∇ϕ ð10Þ

Fsol ¼ ∇� A: ð11Þ

3.2. Motion regions using the Helmholtz decomposition

The irrotational component of the Helmholtz decomposition
carries useful information about the sources and sinks of the motion
field. These sources and sinks are a result of motion in a video, there-
fore they can be used to identify regions of motion in the video. The

sources and sinks are also known as critical points. A point C(x0,y0)
is defined as a singular/critical point of the vector field if C(x0,y0)=
(0,0)T=0 and C1(x,y)≠0 for any other point C1 with coordinates
x≠x0,y≠y0 in the neighborhood of (x0,y0).

Consider a point v(x,y)in the irrotational field in 2D given by

v x; yð Þ ¼ u x; yð Þ
v x; yð Þ

� �
:

The Jacobian matrix of the irrotational field at a point (x,y) on the
field denoted by Jv is given by

Jv ¼ ux uy
vx vy

� �

where ux and vx are the partial derivatives of u and v with respect to
x and uy and vy are the partial derivatives of u and v with respect to y.
The determinant of the Jacobian at (x,y) is denoted as |Jv|. The critical
points are identified by finding those points in the field where u and v
are zero, but |Jv|≠0. The critical points of the vector field and its com-
ponents from Helmholtz decomposition are marked in Fig. 4.

As mentioned before, the critical points of the irrotational field occur
in regions of high convergence and divergence in the field. Intuitively,
thesewould be themost distinctive regions of themotionfield, and there-
fore, we would want to model the streaklines which correspond to these
regions. Therefore, we define amotion region as a set of streaklineswhich
passwithin a small distance of a critical point. Here, we set the distance as
5 pixels for a frame size of 150×200, however, this distance can be mod-
ified based on the resolution of the video. An example of the motion re-
gions identified using critical points is shown in Fig. 5.

4. Segmentation of motion patterns

The motion information in a video is contained in the form of mo-
tion patterns. Each video could contain multiple motion patterns,
each said to correspond to an “event”. These motion patterns vary
in time durations as well as in space. Activity recognition in such
videos requires modeling of the motion patterns as well as studying
the spatio-temporal relationships between them.We perform activity
recognition in two steps — identification of motion patterns and
modeling of motion patterns.

An activity in a video can be composed of one or more motion pat-
terns. Since we are dealing with complex, real-world scenarios, there
could also be motion patterns which are introduced by background
clutter or noise. To make our algorithm robust to these factors, we
do not place any assumptions on the number or locations of motion
patterns in the scene. Our next task therefore, is to identify motion

Fig. 5. The figure shows the extraction of motion regions from streaklines. Figure a) shows the streaklines of the action “open trunk”. Figure b) shows the corresponding motion
field. The critical points of the motion field are marked in red. The streaklines extracted using these critical points are shown in Figure c) and constitute the motion regions of
the video.
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patterns. Because we represent a video as a group of streaklines, the
task of identification of motion pattern is performed by a segmenta-
tion of streaklines. We segment the streaklines both in time and
space domain.

4.1. Time segmentation of streaklines

We propose that the critical points extracted using Helmholtz
decomposition can also be used for time segmentation of streaklines.
This is based on the observation that whenever there is not much
change in the motion pattern from one time instant to another, the
location of the critical points and their characteristics do not change
much. On the other hand, when a new motion pattern originates, a
new critical point emerges, or when an existing motion pattern
ends, a critical point disappears. Therefore, by associating the critical
points from one frame to the next, we can identify the start and end
points of motion patterns. Each critical point is associated with a
motion region. Therefore, a motion region exists in the duration in
which the corresponding critical point is observed. To associate criti-
cal points from one frame to the next, we use the following distance
measure as described in Ref. [25].

Every critical point C(x,y)=(u(x,y),v(x,y))T is mapped to a circu-
lar coordinate system (γ(x,y),r(x,y)) given by

cosγ ¼ ux þ vy

sqrt ux þ vy
� �2 þ vx−uy

� �2 ð12Þ

sinγ ¼ vx−uy

sqrt ux þ vy
� �2 þ vx−uy

� �2 ð13Þ

r ¼ 1
2
þ uxvy−vxuy

u2
x þ u2

y þ v2x þ v2y
ð14Þ

where ux,uy,vx,vy are elements of the Jacobian of the critical point C
denoted by JC. The similarity measure between two critical points is
given by the Euclidean distance between them in the (γ,r) plane as
defined in Eq. (15):

dc Ci;Cj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22−2r1r2cos γ1−γ2ð Þ

q
: ð15Þ

Therefore, we compute the critical points in every frame and com-
pute the distance between critical points from one frame to the next
using Eq. (15). It is seen that the critical points that arise due to the
same event in adjacent frames have a very small distance and can
therefore be associated. Whenever a new critical point arises, a new
event is said to begin and when the critical point disappears, an
event ends. The streaklines that belong to the motion region associat-
ed with the critical point in the time interval in which a critical point
is observed is said to constitute the time segment. Fig. 6 shows some
examples of time segmentation using our algorithm.

4.2. Segmentation of streaklines in space

Each video segment could bemade up ofmore than onemotion pat-
tern. Eachmotion pattern could correspond to one object in a scene, or a
part of an object in the scene. We therefore, perform a clustering of
streaklines in space such that the streaklines in each individual cluster
exhibit similar motion. Each cluster is said to belong to onemotion pat-
tern or event in the video. To perform a segmentation of the motion

Fig. 6. Examples of time segmentation of streaklines using the Helmholtz decomposition. The first row shows a sample frame and the second row displays the time segmented
streaklines. Each segment is marked in a different color. The critical points are marked in blue.
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patterns, we will first transform the streaklines into a shape space. The
shape representation of streaklines is given below.

4.2.1. Shape representation of streaklines
Consider a streakline s∈R2k in a time segment of length k.

s ¼ x1 x2 : : xk y1 y2 : : yk½ �T :

Next, we remove the scaling and translation from s to obtain a
normalized vector c. This is done by subtracting the mean from s
and scaling to unit norm.

c ¼ Ps
Psk k ; ð16Þ

whereP ¼ I2k−1
kID2k

, I2k being the 2k×2k identity matrix and ID2k
is the

2k×2k matrix given by ID2k
¼ 1k�k 0k�k

0k�k 1k�k

� �
, where 1k×k is a k×k

matrix of ones. This normalized vector is independent of translation
and scale and is called a preshape vector of a collection of points [7].

4.2.2. Extraction of motion patterns
Suppose a video is made up of p underlying motion patterns [M1,,

M2,,…,,Mp]. Let each motion pattern Mi, i {1,,2,,..,,p} contain ni

pre-shape vectors [c1i ,,c2i ,,s3i ,,…,,cni
i], where cij∈R2k�1. Let

˜M1; ; ˜M2;…; ; ˜Mp
h i

be our estimates of the motion pattern. Estima-

tion of the motion patterns can be performed in a clustering frame-
work. Here, we use the average preshape of the motion pattern as
the representative model for clustering. The average preshape of a
motion pattern Mi is given by

�ci ¼
Xni

j¼1

cij: ð17Þ

The projection error between a preshape c and an average
preshape �ci of motion pattern Mi is calculated as the square of the

Euclidean norm of their distance, c−�ci
			 			2. Therefore, a preshape

c∈Mi if

‖c−�ci‖2≤ c−�ci
′			 			2;∀i′≠i ð18Þ

where we are using the Euclidean norm as an approximation of the
actual pre-shape vector norm (Procrustes distance). The above clus-
tering problem can be solved using a standard k-means clustering
framework.

Because we do not want to assume the number of motion patterns
in the video, we set a threshold on the model residue εthresh and com-
pute p such that

Xp
i¼1

Xni
j¼1

cij−�ci
			 			2≤εthresh: ð19Þ

Some examples of space segmentation are shown in Fig. 7.

5. Activity modeling and recognition

In the previous section, we computed a set of motion patterns as
well as the average preshape of each motion pattern. This average
preshape provides us with the mean path traced by the object or
part of the object which is involved in the event. The average

preshape �ci of motion pattern Mi therefore, can be used to model
the motion pattern. Apart from the average preshape, the streaklines
can be characterized by their spatio-temporal evolution. To make this
evolution independent of its location, we model the evolution as the
variation of the preshapes of a motion pattern about the average
preshape. Each motion pattern Mi contains ni preshapes of length ki.
The spatio-temporal evolution of preshapes can be modeled by exam-
ining the linear subspaces along which there is maximum variation in
the data. This can be achieved by a subspace analysis of the data. The
task of activity classification requires a comparison between the aver-
age preshape as well as the similarity between their subspaces. In this
section, we will explain these steps in detail.

5.1. Comparison of average preshapes

Consider two preshape vectors ci and cj of motion patterns Mi and
Mj. To compare ci and cj, we first need to ensure that they are of the
same length. This is done by resampling the preshape vectors to a
length l. Here, l can be a constant or a function of the duration of the
time segment. The distance between the resampled preshape vectors
can bemeasured by the full Procrustes distance [7] which is the Euclid-
ean distance betweenthe Procrustes fit of the preshapes �ci and �cj. The
Procrustes fit (β,θ,(a+ jb) is chosen to minimize the distance given by

d i1 ;i2ð Þ
s ¼ �ci−�cjβexpjθ− aþ jbð Þ1l

			 			; ð20Þ

where β is the scale, θ is the rotation and (a+ jb) is the translation, 1l is
the l dimensional column vector of ones. Since the preshapes have al-
ready been normalized, the estimated scale β≈1 and the estimated
translation (a+ jb)≈0. The rotation will be obtained as θ=arg(ciTcj).

5.2. Subspace analysis

Let the preshapes constituting a motion pattern Mi be Ci=cj
i, j=

1..ni, where ni is the number of streaklines in Mi. Since the average
preshape captures the average motion in Mi, we wish to model the
spatio-temporal variation in the motion pattern Mi using subspace
analysis. We use the preshape vector ci to compute a linear subspace
representation for Mi.

A linear subspace representation for Ci can be computed by a prin-
cipal component analysis of the covariance matrix of Ci given by

Ri ¼ 1
ni

Xni
j¼1

cij−�ci
� �

cij−�ci
� �T ð21Þ

where Ri is the covariance matrix. We choose the first r eigenvectors
V1
i ,V2

i …Vr
i of Ri as the orthogonal vectors for the low dimensional rep-

resentation of Ci. The value of r is chosen experimentally.
The similarity between the subspace representation of motion

patterns Mi and Mj is given as the sum of the r principal angles be-
tween the corresponding subspaces [11], i.e.

d i;jð Þ
θ ¼

Xni
j¼1

arccos ViT
mV

j
m

� �
: ð22Þ

5.3. Overall distance computation

The total distance between a training and test video is computed
as follows: For the training sequences, it is assumed that the motion
patterns pertaining to the training activity have been identified and
modeled. For the test sequence, there could be a different number
of motion patterns. For every motion pattern in the training data,
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we find the closest motion pattern in the test data. This distance is
computed as follows:

Consider a training video with nr motion patterns and a test video
with nT motion patterns. The distance between a motion patternMi in
the training video and Mj in the test video is given by the weighted
average

d i; jð Þ ¼ w1d
i;jð Þ
s þw2d

i;jð Þ
θ ; ð23Þ

where ds and dθ are the shape and subspace distances given in
Eqs. (20) and (21). w1 and w2 are the weights which are set such
that the overall distance lies in the range of 0–1. These weights are
determined using the training data. For each motion pattern Mi, we
choose the best match as that motion pattern in the test video
which has the least distance Di. The total distance between a training

and a test video is given by the sum of the best match distances for all
motion patterns, i.e.,

D ¼
Xnr
i¼1

Di
: ð24Þ

We use a k-nearest neighbor classifier for recognition of activities.
i.e. considering the k closest training clips, the activity is classified as
that category to which most of the k neighbors correspond.

Therefore, the steps in recognition of activities using our algorithm
are as follows:

1. For each training video v, compute the motion patterns
M1;M2…Mpv . Model each motion pattern Mi using the average
preshape ci and r eigenvectors V1

i ,V2
i ,…Vr

i.

Fig. 7. The figure shows the streaklines and the clusters for activities in the VIRAT dataset. The clusters are marked with different colors.
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2. For the given test video t, compute the motion patterns and the
model for each motion pattern. The distance between every mo-
tion pattern Mi in the training video and Mj in the test video is
computed using Eq. (23).

3. For each motion patternMi, the least distance Di with a test motion
pattern is chosen as the best match.

4. The total distance between two videos is given by the sum of dis-
tances of the best match between their motion patterns.

5. The distance between every training video and the test video is
computed. The activity in the test video is classified using a
k-nearest neighbor classifier.

6. Experiments

To validate our approach, we perform experiments on two public-
ly available complex datasets. Each of these datasets involves outdoor
scenes and multiple actors interacting in the presence of noise and
background clutter.

6.1. Dataset

The first set of experiments was conducted on the UT Interaction
dataset [23]. This dataset consists of high resolution video of two ac-
tors performing actions such as handshake, kicking, hugging, pushing,
punching and pointing. Each task is performed by 10 actors in out-
door environments. Each video is of a duration of approximately 3 s.
Often there are people walking or performing other activities in the
background, causing background clutter. We test our method on
this dataset to validate the use of our method for analysis of articulat-
ed motion. We demonstrate and compare our results with three pre-
vious methods which use the same dataset.

The second set of experiments was conducted on the VIRAT
dataset. The VIRAT public dataset [19] contains activities involving
people–people and people–vehicle interactions. The people–vehicle
activities include person opening and closing the trunk, person enter-
ing and exiting a vehicle and person loading and unloading objects
from the vehicle. Often, there are other people moving in the scene
causing background clutter. There is variation in the scale as well as
orientation of objects in the dataset. Often, there are shadows or oc-
clusions leading to a high amount of noise in the scene.

As mentioned before, the critical points of the irrotational field occur
in regions of high convergence and divergence in the field. Intuitively,
thesewould be themost distinctive regions of themotionfield, and there-
fore, we would want to model the streaklines which correspond to these
regions. Therefore, we define amotion region as a set of streaklineswhich
pass within a small distance of a critical point. Motion patterns are identi-
fiedby time and space segmentation.Weuse a simple heuristic to identify
motions that belong to "other" categories. If the distance between a mo-
tion pattern in the test video and every motion pattern in the training
data as computed using Eq. (23) exceeds a pre-defined minimum, the
pattern is marked as belonging to some "other" category and removed
from consideration for total distance computation.

6.2. Results on UT Interaction data

Ourmethod performedwell on theUT Interaction data. The videos are
of different lengths and the activities are performed from two different
viewpoints. We computed streaklines over the entire video. The motion
regions were found to be concentrated around the limbs of the persons
involved due to the nature of the activities. It was found that most of
the activities were composed of two to three events. For example, the
“pointing” action is composed of the person raising his hand and then
lowering it. Similarly, “shaking hands” is composed of two people

Fig. 8. Examples of retrieved results for the UT Interaction dataset.
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approaching each other, shaking their hands and dispersing. The spatial
segmentation separated out the articulatedmotion in the video. Some ex-
amples of retrieved results are shown in Fig. 8.

We use a leave one out strategy for activity recognition. 9 out of 10
sequences were used for training and the remaining for testing. It was
found that the performance of our method on the UT Interaction
dataset was similar to the other state of the art methods like in Ref.
[22]. We achieved an overall recognition accuracy of 72.0%, while

Ref. [22] achieves an accuracy of 70.8% and Ref. [9] achieves an accu-
racy of 70.6%. The method worked well on activities like hug and
shake hands where the motion patterns were highly distinguishable.
The performance for activities like punch and kick were slightly lower
since the events were similar to each other. The comparison of our
method to other previous STIP-based approaches is shown in Fig. 9. It
can be seen that on an average, our method performs as well as other
previous STIP-based methods and better than Bag of Features. The ad-
vantage of our method as compared to these previous methods is that
the spatio-temporal relationships in a STIP-basedmethodhave to be ex-
plicitlymodeled using graphs or other complex structures. Therefore, as
the activities get more complex, the graph gets more complex and the
computation increases exponentially. Whereas in our method, the
spatio-temporal relationships are embedded in the streaklines, there-
fore the computational cost is linear with respect to the number of
streaklines in a motion pattern. Moreover, we provided a unified
bottom-up analysis framework starting from the low-level features
(streaklines), segmenting them into individual regions of interest, iden-
tifying events andmodeling activities as a combination of events. This is
unlike other competingmethodswhich consider the entire volume as a
set of features andmodels them, or requires different tools to do the low
level processing (which are not dealt with in detail in those papers).
This has been given in more detail in Section 6.4.

6.3. Results on the VIRAT data

The experiments conducted on the VIRAT data test the robustness
of our approach to the presence of clutter and variations in scale. The
generation of normalized preshape vectors from streaklines handles

Our method
Gaur et. al
Ryoo et al
Bag of Features
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Fig. 9. The figure shows the accuracy of recognition using the UT Interaction data and com-
parison with previous methods. The activities are: — 1 — shake hands, 2 — hug, 3 — point,
4— punch, 5— kick, 6— push.

Fig. 10. Example of results for the VIRAT dataset showing some true positives and false negatives for actions close trunk, enter vehicle and unloading. The false negatives are marked
in red.
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the difference in scale. The rotation invariant shape comparison han-
dles the changes in viewpoint to some extent. Activities like closing
and opening trunk consisted of one event, while the other activities
often consisted of two or three events. For example, entering a vehi-
cle is composed of opening the door, sitting inside the vehicle and
closing the door. The space segmentation separated individual ob-
jects in the scene and helped in the elimination of background
clutter.

A leave one out strategy in conjunction with the N-nearest neigh-
bor was used for classification. The results were compared to that
using Ref. [9]. The results are shown in Fig. 11. It can be seen that
our results are comparable to other state of the art methods here
also. However, as mentioned before, our system presents an entire
end-to-end pipeline for image analysis and is computationally effi-
cient as discussed in Section 6.4. The method performed well in rec-
ognizing multi-person activities like people walking together and
people approaching each other. The accuracy of recognition for load-
ing and unloading was lower since the events are similar to those in
entering and exiting vehicles. Some examples of videos retrieved
are show in Fig. 10. The erroneous results are marked in red. In the
first row, it is seen that the second example contains a person carrying
an object, and was confused with unloading. This example failed to be
retrieved. Similarly, shadows and occlusions have caused false negatives
in the second and third rows.

6.4. Analysis of the results

As seen from Figs. 9 and 11, the performance of our method is
comparable to that of other state of the art methods. However, the ad-
vantage of our method is that, unlike previous methods which try to
analyze activities at the feature level, we propose a global approach
to activity recognition. This facilitates a bottom-up analysis of a
video, where we begin with the streaklines over the entire video,
then compute individual motion patterns, and finally model and com-
pare these motion patterns. Therefore, our method provides an
end-to-end system which computes a set of features, segments out
different events and defines a distance measure over them. This is un-
like other methods like in Ref. [22], where segmentation is not an in-
tegral part of the method and has to be performed separately before
the activity modeling and recognition can be done.

There is also the advantage of computational efficiency in the
modeling and comparison using our algorithm. For a STIP-based
method, for example in Ref. [9], a graph is matched for every time

segment in the test video to every time segment in the training
video. The time complexity for matching a graph with V nodes and
E edges is known to be O(V2E). Since the number of edges for a
completely connected graph with V nodes is of the order of V2, we
can expect the time complexity of algorithms like Ref. [9] to increase
exponentially with the number of feature points/nodes. In compari-
son, consider a motion pattern with N streaklines. Our method com-
putes the mean shape vector for each motion pattern. This requires
O(N) operations. Comparison of mean shape vectors using the Pro-
crustes distance is a O(1) operation. It can be shown that the sub-
space analysis to compute the first k eigenvectors of N streaklines
of length p is O(Nkp). Therefore, for a motion pattern with N
streaklines, the overall computational cost of modeling and compar-
ison is proportional to O(N), i.e. the complexity increases linearly
with the number of streaklines in a motion pattern.

7. Conclusion

In this work, we proposed a flow-based end-to-end system for ac-
tivity recognition. We modeled activities as a collection of motion
patterns. We demonstrated the use of streaklines to represent and
model these motion patterns. The Helmholtz decomposition was
used to identify regions of useful motion which were analyzed fur-
ther. The segmentation of streaklines can be used to separate motion
patterns and model them individually. We also showed a method for
computing the similarity between two videos using these models. Ex-
periments were conducted on multi-object scenes with a high
amount of noise and clutter. In future, we wish to extend the scheme
to the analysis of activities which span a wider area and contain more
complex interactions.
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