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Context-Aware Activity Recognition and
Anomaly Detection in Video
Yingying Zhu, Nandita M. Nayak, and Amit K. Roy-Chowdhury

Abstract—In this paper, we propose a mathematical framework
to jointly model related activities with both motion and context in-
formation for activity recognition and anomaly detection. This is
motivated from observations that activities related in space and
time rarely occur independently and can serve as context for each
other. The spatial and temporal distribution of different activi-
ties provides useful cues for the understanding of these activities.
We denote the activities occurring with high frequencies in the
database as normal activities. Given training data which contains
labeled normal activities, our model aims to automatically cap-
ture frequent motion and context patterns for each activity class,
as well as each pair of classes, from sets of predefined patterns
during the learning process. Then, the learned model is used to
generate globally optimum labels for activities in the testing videos.
We show how to learn the model parameters via an unconstrained
convex optimization problem and how to predict the correct labels
for a testing instance consisting of multiple activities. The learned
model and generated labels are used to detect anomalies whosemo-
tion and context patterns deviate from the learned patterns. We
show promising results on the VIRATGroundDataset that demon-
strates the benefit of joint modeling and recognition of activities in
a wide-area scene and the effectiveness of the proposed method in
anomaly detection.

Index Terms—Context-aware activity recognition, con-
text-aware anomaly detection, structural model.

I. INTRODUCTION

V IDEO surveillance systems monitor people’s activi-
ties and generate alerts when anomalous activities are

detected. Usually, samples of anomalous activities are rare.
Given a set of normal samples, the system is trained to learn
frequent patterns of normal activities using methods of activity
recognition. Activities whose patterns deviate from the learned
frequent patterns are detected as anomalies.
Most methods developed in the literature on activity recogni-

tion have concentrated on analyzing individual motion patterns
of activities as evidenced by popular activity datasets like KTH
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Fig. 1. (i) Example images from a wide area video (interesting activities hap-
pening within about 2 minutes are shown). Activities in the same color in each
video happen in the same local spatio-temporal region. Activity classes are listed
in Fig. 1 in the supplementary material. (a). For the indices, the first index de-
notes the temporal order of the activity in the region, while the second number
denotes the activity class, e.g., 1–6 means the activity belongs to class 6 and is
the first activity that happens in this video volume. (ii) Example of context in
activity recognition. A person of interest is located by red bounding box, sur-
rounding objects are located by bounding boxes of other colors, and the circles
in purple indicate the motion regions of the activities. The existence of a car
nearby gives information about what the person of interest is doing, and the rel-
ative position of the person of interest and the car may denote that activities in
(a) and (c) are very different from activity in (b). However, it is hard to tell if
the person in (a) and (c) is getting out of the vehicle or getting into the vehicle.
If we knew that these activities occured around the same vehicle, we can infer
with high probability that in (a) the person is getting out of the vehicle and in
(c) the person is getting into the vehicle.

[1] and Weizmann [2]. These methods model activities individ-
ually and aim to learn discriminative patterns for each activity
class. However, activities in natural scenes rarely happen inde-
pendently as shown in Fig. 1(i). In the same local spatio-tem-
poral region, the activity of a person closing a vehicle trunk
often happens before, and not after, the activity of the person
getting into the vehicle. The interdependence between activity
classes provides important cues for activity recognition. Jointly
modeling and recognizing related activities in space and time
can improve recognition accuracy. This, in turn, will help de-
tect anomalous activities better.
It has been demonstrated in [3] that context is significant in

human visual systems. As there is no formal definition of con-
text in video analysis, we consider all the detected objects and
motion regions in a local neighborhood as providing contex-
tual information about each other. Human-object interaction has
been frequently used as context in many past works [4], [5]. An
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example of the relationships between various activities is shown
in Fig. 1(ii). Harnessing such spatial and temporal relationships
could be very beneficial for activity recognition. Motivated by
the above, we propose to learn the motion and context patterns
of normal activities. These learned motion and context patterns
are used for classifying between normal activities. Activities
whose motion and context patterns deviate from the normal mo-
tion and context patterns are considered as anomalies.

A. Overview and Main Contributions

The main contribution of this work is to show how context
can be exploited for activity recognition and anomaly detection
in video. We focus on the joint modeling and recognition of ac-
tivities in videos of a wide scene, using both motion and con-
text information. We build upon existing well-known low-level
motion and image feature descriptors and the spatio-temporal
context representations that, when combined together, provide
a powerful framework to model activities in continuous videos.
Activities within a spatio-temporal distance threshold are

considered related to one another and are grouped into the
same activity set as shown in Fig. 1(i). Activities in each set are
jointly modeled and recognized. Given a set of related activi-
ties, motion and context features are extracted. A label vector,
whose elements are the class labels of individual activities, is
to be assigned to it. The problem now is how to measure the
compatibility between its features and a candidate label of the
activity set. A potential function is introduced for this purpose.
The parameter of this function, which is called the joint weight
vector, captures the valid motion and context patterns. The
candidate label with the highest potential score is assigned to
the activity set as its label vector.
In the learning process, the parameter estimation is formu-

lated as a large-margin problem, which tries to maximize the
margins around the decision plane which separates the negative
and positive instances. We show how this problem can be modi-
fied to be an unconstrained convex optimization problem. Next,
the modified bundle method in [6] is used to solve the optimiza-
tion problem. This method iteratively searches for the increas-
ingly tight upper and lower bounds of the objective function
till convergence is reached. The learning process automatically
learns and weights motion and context patterns for each activity
class and each pair of classes from sets of predefined patterns.
Given a test video, spatio-temporal locations of activities are de-
tected using motion segmentation and the surrounding regions
identified. Activities in each region are jointly recognized using
the learned potential function through a greedy search algorithm
[7], which greatly decreases the computational complexity of
the inference process with negligible reduction to recognition
accuracy.
Thus, our method explicitly models the spatial and temporal

relationships of activities and captures useful spatio-temporal
patterns for each pair of interesting activity classes during the
learning process. It integrates motion features and various con-
text features into a unified model. With the learned pattern pa-
rameters, normality factors are introduced to measure the nor-
malcy of activities based on their motion and context features.
Activities with one or more normality factors lower than the
predefined thresholds (which can be learned a priori) are con-
sidered as anomalies.

II. RELATED WORK

In this section, we only review related works on activity
recognition exploring context and anomalous activity detec-
tion. For a more comprehensive review in activity recognition,
please refer to recent surveys like [8].
Many existing works exploring context focus on spatio-tem-

poral relationships of features [9], [10], interactions of objects
and actions/activities [5], [11], [12], environmental conditions
such as spatial locations of certain activities in the scene [13],
and temporal relationships of activities [4], [14]. There has
been a lot of recent interest in exploiting context-sensitive
information for activity recognition. One of the approaches that
has been popular for context modeling is the use of AND-OR
graphs which can provide a semantic representation of the
scene [15], [16]. They have been employed in applications like
sports videos [15] and office scenes [16]. Results on recog-
nizing atomic actions in such structured scenarios have also
been provided. However, the applicability of AND-OR graphs
for more unstructured scenarios has not been demonstrated.
Methods on the detection of anomalous activities can be

divided into two categories: low-level anomaly detection
and high-level anomaly detection. Approaches on low-level
anomaly detection identify local spatio-temporal regions that
probably contain anomalous patterns of low-level features,
before high-level analysis such as object tracking and activity
classification is done [17]–[19]. Some other works of this
category represent activities as local spatio-temporal regions.
Abnormal activities are discovered by modeling the dominant
motion patterns of these local regions. In [20], a probabilistic
framework was developed to detect local anomalies that have
infrequent patterns with respect to their neighbors. In [21], the
authors proposed an online algorithm to incrementally learn
a sparse dictionary of motion features of normal instances.
Spatial-temporal blocks whose motion features can not be re-
constructed sparsely from the learned dictionary were identified
as anomalies.
Several works have looked at the problem on high-level

anomaly detection. These approaches usually identify seman-
tically meaningful activities while detecting anomalies. In
[22] activities were represented as bags of event -grams.
Disjunctive sub-classes of an activity class were discovered
automatically. An information-theoretic method was used to
explain the detected anomalies. In [23], [24] activities were
represented by suffix trees over multiple temporal scales which
efficiently extract the structure of activities by analyzing their
constituent sub-events. An linear-time algorithm was proposed
to detect anomalous subsequences of activities which are
inconsistent with the learned Suffix Trees. In [25], attribute
grammars were built to describe constraints on attributes and
syntactic structure of normal events. Events which do not
follow the syntax of the learned grammars or whose attributes
do not satisfy these constraints were detected as anomalies.
Many other works [26], [27] were based on trajectories of
moving objects in videos. Dominant trajectory clusters were
identified and modeled as normal while trajectories which do
not fit into the learned models were detected as anomalies.
These approaches work well in identifying global anomalous
activities whose characteristics can be determined by under-
lying object trajectories.
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III. MODEL FORMULATION FOR CONTEXT-AWARE
ACTIVITY REPRESENTATION

In this section, a structural activity model that integrates mo-
tion features with various context features within and across ac-
tivities is proposed to jointly model related activities in videos.

A. Preprocessing

Given a video, background subtraction [28] is used to locate
the motion regions. Moving persons and vehicles are identi-
fied using publicly available software [29]. Bounding boxes of
moving persons are obtained and used as the initialization of
the tracking method developed in [30] to obtain local trajecto-
ries. We use the Spatio-temporal interest point (STIP) detector
developed in [31] to generate concatenated histogram of ori-
ented gradients (HOG) and histogram of optical flow (HOF) fea-
tures for motion regions surrounding the bounding boxes of the
moving objects. Thus, STIPs generated by noise, such as slight
tree shaking, camera jitter and motion of shadows, are avoided.
An activity region is defined as a 3D video region with a start

time and an end time to be labeled. To locate the activity regions,
motion regions are first divided into temporal bins. Sliding win-
dows of different sizes are applied to the motion regions. In
the experiment, bag-of-words combined with multi-class sup-
port vector machine (BOW+SVM) [32] are used to label each
window as one of the normal activity classes. Then, weighted
average smoothing is applied to obtain the label of each tem-
poral bin. Objects that occur in the images that overlap with
motion regions are detected. These image features will be used
for the development of the context features within activities.

B. Motion and Context Feature Descriptor

The following definitions will be used for the development
of feature descriptors. An agent is a moving person of interest.
Motion region of an activity at frame denotes a circular re-
gion surrounding the objects of interest at the frame of the
activity. Activity region is the smallest rectangle region that en-
capsulates all the motion regions over all frames of the activity.
1) Intra-Activity Motion Feature: Features of an activity that

encode the motion information extracted from low-level mo-
tion features are defined as intra-activity motion features. As-
sume there are classes of normal activities (a class of normal
background activities may be introduced to handle other normal
activities that do not belong to the classes). Motion features
such as STIP histograms are often high-dimensional. We train
a multi-class classifier, which is called as the baseline classi-
fier, to generate the normalized confidence scores ,
where , of classifying an activity as belonging to
activity classes , and thus transforming the high-di-
mensional motion features to a low-dimensional space. Then, a
score histogram is developed as the intra-ac-
tivity motion feature of an activity. In the experiments, we use
BOW+SVM [32] and SFG in [10] as the baseline classifier.
2) Intra-Activity Context Feature: Features that capture the

context information about the agents and relationships between
the agents and the the interacting objects (e.g., the object classes,
interactions between agents and their surroundings) are defined
as intra-activity context features. We use common sense knowl-
edge about normal activity classes to guide the building of the

Fig. 2. Subsets of context attributes used for the development of intra-activity
context features.

context features of activities. We define a set of context at-
tributes related to the scene and involved objects in the normal
activities. consists of subsets of attributes that are exclu-
sively related to certain image-level features. Since we work on
the VIRAT dataset with individual person activities and person-
object interactions, we use subsets of attributes for the develop-
ment of intra-activity context features in Fig. 2.
For a given activity, whether the above attributes are true or

not are determined from image-level detection results (e.g., de-
tected objects). Let be the number of attributes in subset
for . For frame of an activity, we obtain

, where is the indicator vector of size
1 with element 1 if the corresponding attribute is true for

frame and 0 otherwise. is then normalized so that its el-
ements sum to 1. Note that the attribute in is determined once
for each activity. For instance, the agent (person) disappears at
the entrance of a facility is true, if opening entrance door is de-
tected around the agent and the detector could not find a good
match of the agent after the door is closed again. Fig. 3 shows
examples of for different activities.
Let , where is the total number

of frames associated with the activity. The -bin his-
togram is the intra-activity context
feature vector of the activity, where denotes the vector con-
catenation operator.
3) Inter-Activity Context Feature: Features that capture the

relative spatial and temporal relationships of activities are de-
fined as inter-activity context feature. We develop normalized
histograms and that bin the spatial and temporal relation-
ships (defined below) of two activities into pre-determined sets

and , respectively.
Spatial Context: Let and denote the center

and radius of the motion region of activity at its frame
and and denote the center and radius of the activity
region of activity . Let

(1)

where denotes the Euclidean distance.
captures the scaled spatial overlap of the activity with
the frame of . The attributes in set are obtained
by quantizing and grouping into a predefined
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Fig. 3. Examples of detected intra-activity context features. The example im-
ages are shown with detected high-level image features. Object in red bounding
box is a moving person; object in blue bounding box is a static vehicle; object in
orange bounding box is a moving object of other kind; object in black bounding
box is a bag/box on the agent.

Fig. 4. (a) The image shows one example of inter-activity spatial relationship.
The red circle indicates the motion region of at this frame while the purple
rectangle indicates the activity region of . Assume is defined by quan-
tizing and grouping into three bins: ( and is at the same
spatial position at the frame of ), ( is near at
the frame of ) and ( is far away from at the frame
of ). In the image, , so, . (b) The image
shows one example of inter-activity temporal relationship. The frame of
, denoted by , occurs before . So, . Note that

indicates the time of the corresponding frames(s) in the video.

number of bins as shown in Fig. 4(a). Then, the spatial
relationship of and at the frame can be
calculated as , where is a 1 vector
with 1 for an element if belongs to the corre-
sponding bin in , and 0 otherwise. The -bin histogram

is the inter-activity spatial
feature of activity and .

Temporal Context: The temporal context feature is defined
by the following temporal relationships: frame of is be-
fore , frame of is during and frame of is
after . is the temporal relationship of and at
the frame of as shown in Fig. 4(b). The 3-bin histogram

is the inter-activity temporal con-
text feature of activity with respect to activity .

C. Structural Activity Model

Suppose we are interested in activity classes. Activity set
is associated with a label vector

, where is the label
of . We model the activity set by the combination of motion
features of individual activities and various context features dis-
cussed above. A potential function that measures the compati-
bility between features of and label is defined as :

(2)

where and are the motion feature and
intra-activity context feature of instance , and are
the dimension of and respectively. and

are the weights that capture the valid motion and
intra-activity context patterns of activity class .
and are the inter-activity context features associ-
ated and . and are the dimension of and
respectively. and are the
weights that capture the valid spatial and temporal relationships
of activity classes and . In general, dimensions of the same
kind of feature can be different for each activity class/class pairs.
In order to form a linear function with a single parameter, we

rewrite (2) as:

(3)

where , , and are weight vectors defined as

and and have non-zero entries at the po-
sition corresponding to class index . and

have none-zero entries at the position corre-
sponding to class pair .
Define the joint weight vector and joint feature vector

as

where . Then, the optimum label of is
obtained as

(4)
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IV. MODEL LEARNING AND INFERENCE

A. Learning Model Parameters

We will now describe our method for learning the model
parameters from training sets. Suppose there are collections
of activities in the training videos. Let the training set be

, where each
is an activity set and is its label vector. Suppose

there are elements in . We use the following loss
function to measure the correctness of labeling instance
with the candidate label :

The model learning problem is formulated as an unconstrained
convex optimization problem (derivation is shown in Section III
in the supplementary material):

(5)

1) Optimization Algorithm: The problem in (5) can be solved
by the modified bundle method in [6]. It iteratively searches for
the increasingly tight quadratic upper and lower cutting planes
of the objective function until the gap between the two bounds
reaches a predefined threshold. A cutting plane of a convex
function is defined by its first-order Taylor approximation and
can be calculated as [6]

The algorithm is effective because of its very high conver-
gence rate [6]. The bundle method specified for problem (5) is
summarized in Algorithm 1:

Algorithm 1 Learning the model parameter in 5 through
bundle method [6].

Input: , ,
Output: Optimum model parameter
1) Initialize as using empirical values, (cutting plane
set) .
2) for to do
3) for do
find the most violated label vector for each training

instance using (the value of at the iteration);
4) end for
5) find the cutting plane of at :

,

where ;
6) ;
7) update :

8) ;
9) if , then return ;
10) end for

2) Efficient Implementation: We call the label vector of
the instance that maximizes the most-violated label
of the instance in the iteration, if . If

for all , the constraints on instance will
not be violated in the iteration. In each iteration, we
need to check and find the most-violated label for each instance.
Finding the most violated label is NP hard (we need to enu-
merate all the possible label vectors). A greedy forward search
is proposed in [33] to balance the computation efficiency and
algorithm accuracy.
The computation of cutting planes requires knowledge of

the most violated labels for all the training instances in each
iteration. When the number of training instances is large,
finding violated label for each instances in each iteration is
inefficient. Like other online optimization techniques, we try
to shrink the working space in order to improve efficiency.
During the learning process, it is often revealed early that the
constraints in (5) of certain instances are unlikely to be violated.
Let us consider the history of violated instances over the last
iterations. If the constraints of an instance are not violated

at each of the last iterations, it is likely that they will not be
violated before the optimum solution is reached. Considering
that cutting planes do not depend on these instances in the
subsequent iterations. Such instances are excluded from the
working space and the solution space is stored. Since this
heuristic can fail, the constraints for the eliminated instances
are checked after convergence. If necessary, the optimization
process is restarted from the solution stored previously. Also,
to ensure the algorithm does not restart frequently, we maintain
a minimum number of training instances in the working
space.

B. Inference

With the learned model parameter vector , we now describe
how to identify the optimum label vector for an input in-
stance . Suppose the testing instance has activity-based
segments . The greedy forward
search [33] is used to find the optimum labels of the targeted ac-
tivities. We greedily instantiate the segment that, when labeled
as an activity class of interest, can increase the value of com-
patibility function by the largest amount. The algorithm stops
when all the regions are labeled or labeling any other segments
decreases the value of compatibility function . Algorithm 2
gives the overview of the inference process. While this greedy
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search algorithm cannot guarantee a globally optimum solution,
in practice it works well to find good solutions as demonstrated
in the experimental results. The papers [7], [33] give theoretical
explanation of the effectiveness of the method in finding the op-
timum solution to the problems of the kind.

Algorithm 2 Greedy Search Algorithm

Input: Testing instance
Output: Interested activities and label vector
1) initialize and .
2) repeat

;

;

;
3) end if all activities are labeled.

V. ANOMALY DETECTION

For anomaly detection, we assume that we have instances of
all the normal activities. Test instances whose patterns deviate
from the learned model are anomalies. Once the activity label is
assigned to a test instance, we focus on the analysis of whether
this activity is anomalous.
For discriminative models such as the proposed one, the

separating hyperplane between two classes can be obtained
by subtracting the associated weight vectors as discussed
in [34]. For normal instances belonging to a certain class,
the distances to their associated separating hyperplanes are
expected to follow certain distributions [34], which can be
estimated through kernel density estimation from the training
data. An instance with infrequent distances can be considered
as anomaly. For this reason, four kinds of distances, which can
be used to evaluate the normality of an activity and pair of
activities, are developed based on the weight vectors learned
for the proposed structural model.
With weight vectors , , and for

, and , we define
the unbiased motion hyperplane and intra-context
hyperplane by their normal vectors as

(6)

where an unbiased hyperplane means a hyperplane that
passes through the origin. Thus, hyperplanes and

, translated along the directions of their normal
vectors by a constant, can separate classes and based
on motion and intra-context features respectively. With
weight vectors , , and for

and , define unbiased
hyperplanes and by
their normal vectors as

(7)

Similarly, and , trans-
lated along the directions of their normal vectors by a constant,

can separate class pairs and based on inter-context
spatial and temporal features respectively.
Consider an activity with motion feature , intra-activity

context feature and class label generated by the struc-
tural model. Define the distance of motion feature to hy-
perplane , as and distance of intra-ac-
tivity context feature , for to hyperplane

as , where , .
These distances can be calculated as

where is the Euclidean norm. Assume activity
collection with member activities re-
lated to each other in space and time with class labels

.
and are their inter-activity con-
text features. The distance of inter-activity context
feature to hyperplane
is defined as (denoted as

for simplicity), and distance of to
hyperplane is defined as

(denoted as ), where
, . These distances can

be calculated as

The probability density distributions of distances
, ,

and can be estimated from
training instances using kernel density estimation [34] for

, and .
Abnormal activities are expected to have one or more
infrequent potential distance scores.

A. Anomaly Definitions

Analogous to outlier detection in data mining [35], we intro-
duce the concepts of point anomaly, contextual anomaly, and
collective anomaly, whose definitions are given in the subsec-
tions below.
1) Point Anomaly: Point anomalies are detected without any

contextual information [36]. Typically, for an atomic event in
a video, the motion information captured from its local motion
features follow certain patterns, which have been demonstrated
by the popular activity classification method – BOW+SVM [31]
upon STIP features. In our case, motion pattern of each activity
class is reflected in the distributions of their distances to the
hyperplanes . Denote the learned structural model as .
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Fig. 5. Example of probability density functions of , 1, 2 and
3 for normal activities and the corresponding distances of a point anomaly (in-
dicated by red circle). The first ten activities in Fig. 1 in the supplementary ma-
terial are considered as normal activities, and used to train the structural model.
For the point anomaly detected .

Given a test activity with motion score histogram and
class label , define probability as

(8)

for and . We use the p-test to deter-
mine whether an anomaly exists or not [37]. The (one-sided)
-value measures the prob-
ability that the normal distribution of generates a
value at least as extreme as . The lower the -value
is, the more safe to say that the observed value does not be-
long to the normal distribution. So, we define the Motion-based
Normality Factor of as the geometric mean of the as-
sociated -values as

(9)

Geometric mean is used here to measure the typical value of
the set of -values. As normal activities, which are known to
us follow certain motion patterns captured by the distances,
anomalous activities whose motion patterns deviate from the
learned motion patterns significantly will have infrequent dis-
tances and thus a lower than a threshold . Fig. 5
shows an example of distances of point anomaly.
2) Contextual Anomaly: Two kinds of attributes are gener-

ally involved with events: contextual attributes of the event,
such as the location and surrounding objects; behavioral at-
tributes include the motion of objects involved in the event.
Contextual anomaly has normal behavioral attributes but ab-
normal contextual attributes. Given the intra-activity context
feature of the test activity with class label , define
as

(10)

for , and . The
probability that belongs to class based on of and

is . We define
the Context-based Normality Factor of as the geo-
metric mean of the associated -values as

(11)

Fig. 6. Example of probability density functions of , , 2,
3 and 4, for normal activities and the corresponding distances of a contextual
anomaly (indicated by red circle). The first ten activities in Fig. 1 in the sup-
plementary material are considered as normal activities and used to train the
structural model. For the contextual anomaly detected . Intra-activity
context subset is defined in Section III-B.

If has a high and any of for
, where is the number of intra-activity context

subsets, is lower than a threshold , is considered as
contextual anomaly. Fig. 6 shows an example of distances for
contextual anomaly.
3) Collective Anomaly: A collection of activities forms a

collective anomaly if the events as a whole deviate significantly
from the entire training set. The collective anomaly can be
further divided into sequential anomaly and co-occurrence
anomaly. In our case, collective anomaly can also be consid-
ered as contextual anomaly since the detection of it utilizes the
inter-activity context features – spatial and temporal relation-
ships of activities. Assume activity collection with member
activities related to each other in space and time
are represented with class labels ,
and and are
their inter-activity context features. Define

Let

Define the Spatial Normality Factor and Temporal Nor-
mality Factor of as

(12)

(13)

In (12) and (13), the condition – – for the
product is omitted for compactness of expression. If all member
activities in have high and values, but at
least one of is lower than a threshold , it
is considered as a collective spatial anomaly. If at least one of

is lower than a threshold it is considered
as a collective temporal anomaly. Fig. 7(a) shows an example
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Fig. 7. (a): Example of probability density functions of
for normal activities and the corre-

sponding distances of a collective spatial anomaly (indicated by red circle).
For the detected collective anomaly and , . (b):
Example of probability density functions of for
normal activities and the corresponding distances of a collective temporal
anomaly (indicated by red circle). For the detected collective anomaly and

, (In both cases, the first ten activities in Fig. 1 in the
supplementary material are considered as normal activities and used to train
the structural model).

of distances of collective spatial anomaly and Fig. 7(b) shows
an example of distances of collective temporal anomaly.

VI. EXPERIMENTAL EVALUATION

To assess the effectiveness of our structural model in ac-
tivity-based video modeling, we first perform experiments on
the public VIRAT Ground Dataset Release 1 [38], and com-
pare our results with two baseline methods: BOW+SVM [32]
and SFG-classifier [10]. We use the SFG since it considers fea-
ture-level context and we demonstrate the effectiveness of ac-
tivity-level context on top of it. Then, we work on Release 2 for
anomaly detection using BOW+SVM as the baseline classifier.

A. Dataset

VIRAT Ground dataset is a state-of-the-art activity dataset
with many challenging characteristics, such as wide variation
in the activities and clutter in the scene. The dataset consists of
surveillance videos of realistic scenes with different scales and
resolution, each lasting 2 to 15 minutes and containing up to
30 events. The activities defined in the whole dataset is shown
in Fig. 1 in the supplementary material. In the first set of ex-
periments, we use Release 1 to evaluate the performance of the
proposed method and assess the significance of context features
in activity recognition. We examine the first six activity classes
defined in release 1 as shown in Fig. 1 in the supplementary
material. We randomly select half of the data for training and
the rest for testing. In the second set of experiments for activity
recognition and anomaly detection, we use VIRAT release 2, in
which the eleven activity classes are defined as shown in Fig. 1
in the supplementary material.

B. Preprocessing

Motion regions that involve only vehicles moving are ex-
cluded from the experiments since we are only interested
in person related normal and anomalous activities. For the

Fig. 8. Average precision (a) and recall (b) of each activity class using different
methods. For each set of bars, from left to right, the associated methods are
BOW+SVM (baseline classifier), our method using BOW+SVM, SFG (baseline
classifier) and our method using SFG. The six activity classes considered are the
first six activity classes listed in Fig. 1 in the supplementary material.

BOW+SVM classifier, visual words and a 9-nearest
neighbor soft-weighting scheme are used. For the SFG-based
classifier, the size of each temporal bin used is 5 frames while
other settings are the same as in [10]. For the SFG method [10],
activity localization is implicitly included in the recognition
process. The method generates similarity scores
between two activities. In the training process of the baseline
classifier, we calculate the intra-class similarity (the average
similarity score between a given activity instance and other in-
stances of the same class) and inter-class similarity (the average
similarity score between a given instance and other instances of
different classes). We define the representative instances as the
ones with maximum difference in their intra-class similarity
and inter-class similarity. A fixed number of representative
instances for each activity class are selected during the training
of the baseline classifier (5 are used in the experiments).
Persons and vehicles are detected using the publicly available

software [29]. Opening/closing of doors of facilities, boxes and
bags are detected using method in [39] with Histogram of Gra-
dient as the low-level feature and binary linear-SVM as the clas-
sifier. Motion score histograms described in Section III-B are
generated for each activity. The score histogram of an activity
contains the average similarity scores between the activity and
the representative examples. For experiment 1, the intra-activity
context features are built based on first two cues in Fig. 2, and
all cues are used for experiment 2.

C. Recognition Results on VIRAT Release 1

We show our results on VIRAT release 1 using precision
and recall scores in Fig. 8. The average recognition accura-
cies, measured by average precision are 40%, 59%, 51% and
68% respectively for the four methods – BOW+SVM [32],
BOW+SVM+Context model, SFG [10] and SFG+Context
model. The implementation using SFG based classifier outper-
forms those using BOW + SVM baseline classifier. However,
our model increases the recognition performance uniformly
by a large amount over all baseline classifiers. The results are
expected since the intra-activity and inter-activity context gives
the model additional information about the activities other than
the motion information encoded in low-level features.
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Fig. 9. Recognition Results on VIRAT Release 1. (a): Confusion matrix for
BOW+SVM classifier; (b): Confusion matrix for our approach using motion
and intra-activity context feature (using BOW+SVM as the baseline classifier);
(c): Confusion matrix for our approach using motion and intra- and inter-ac-
tivity context feature (use BOW+SVM as the baseline classifier); (d): Confusion
matrix for SFG-based classifier; (e): Confusion matrix for our approach using
motion and intra- and inter-activity context feature (using SFG as the baseline
classifier); (f): Confusion matrix for our approach using motion and intra- and
inter-activity context feature (using SFG as the baseline classifier).

Fig. 9 shows the confusion matrix for baseline classifiers
and our method. The baseline classifiers often misclassify
“unloading from a vehicle” as “getting out of a vehicle”. How-
ever, common sense tells us that “unloading from a vehicle”
often happens in the rear of the vehicle while “getting out of a
vehicle” happens near the side of the vehicle. Also, the baseline
classifiers often confuse “open a vehicle trunk” and “close a
vehicle trunk” with each other. However, if the two activities
happen closely in time in the same place, the first activity in
time is probably “open a vehicle trunk”. These spatio-temporal
relationships within and across activity classes are captured by
our model and used to improve upon the recognition perfor-
mance. Although the SFG method in [10] models the spatial
and temporal relationships between the features, it does not
consider the relationships between various activities and thus
our method outperforms the SFGs.
Finally, we show some example activities recognized using

baseline classifier and examples corrected by intra-activity and
inter-activity context features in Fig. 10.

D. Anomaly Detection on VIRAT Release 2

In order to access the performance of the proposed model
on anomaly detection, we work on VIRAT Release 2, in which
eleven activity classes are defined as shown in Fig. 1 in the sup-
plementary material. We follow the method defined above to get
the recognition results on this dataset. Fig. 11 shows the confu-
sion matrix for VIRAT Release 2.
1) Point Anomaly: For the detection of point anomaly, we

randomly selected one of the eleven activity classes as ab-
normal, and treated other activities as normal. Cross-validation
is used to assess the performance of anomaly detection. For
each run, we assume that we do not have training instances
for abnormal activities, so, the activities of abnormal class are
excluded from the learning process. We use BOW+SVM as the
baseline classifier.

Fig. 10. Examples show the effect of context features in recognizing activities
that were incorrectly labeled by the SFG classifier.

Fig. 11. Recognition Results for VIRAT Release 2. (a): Confusion matrix for
BOW+SVM baseline classifier; (b): Confusion matrix for our approach using
BOW+SVM as the baseline classifier. The activities considered are listed in
Fig. 1 in the supplementary material.

Fig. 12. ROC curves for point anomaly detection.

One-class SVM is often used for point anomaly detection
[40]. To access the effectiveness of our model in detecting point
anomalies, we compare our results with those using one-class
SVM. For fair comparison, we also apply the proposed frame-
work on video clips, each containing one activity of the eleven
classes. Fig. 12 shows the ROC curves of BOW+SVM and our
method. The areas under curve are 79.8% for our method on
video clips, 72% for one-class svm on video clips and 68.5%
for our method working on continuous videos.
2) Contextual Anomaly: For the detection of contextual

anomalies, we consider activities that are normal in terms of
motion features but with abnormal or infrequent intra-activity
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Fig. 13. (a, c, e): Examples of normal activities; (b, d, f): Examples of detected
contextual anomalies. First row: Person getting into a vehicle usually occurs in
the parking area (a), and the anomaly is detected when it happen in an area not
for parking (b). Second row: Person exiting a facility happens at a normal exit
(c), whereas an anomaly is detected when the person exits from a door that is
rarely used (d). Third row: A person gesturing far from a vehicle is normal in our
dataset (e), whereas in (f) the ‘gesturing’ occurs near the trunk of the vehicle,
which is identified as a contextual anomaly.

context features as discussed in Section V-A2. The normality
threshold in the experiment. Fig. 13 shows
examples of detected contextual anomalies. In the first example,
person getting into a vehicle usually occurs in the parking area,
and the anomaly is detected when it happens in an area not for
parking. In the second example, the anomaly of ‘person exiting
a facility’ is detected when the person exits from a door of a
facility that is rarely used. In the third example, the anomaly
of ‘gesturing’ occurs near the trunk of the vehicle while others
in our dataset usually occur faraway from the vehicle. None
of these could have been detected without the modeling of the
intra-activity context feature.
3) Collective Anomaly: Collective anomaly can be detected

based on the learned inter-activity context patterns and the inter-
activity contextual features of the test instances. The normality
thresholds and are used. For
the first example, we consider two activities – ‘person getting
into a vehicle’ and ‘person unloading an object from a vehicle’.
For most of the examples in the dataset, when these two activ-
ities happen together, the unloading happens from the trunk of
the car while the person enters through the driver’s door. Thus,
as shown in Fig. 14(a),(b), a collective spatial anomaly is de-
tected when the unloading and entering happen near the same
part of the vehicle. An example of a collective temporal anomaly
is shown in Fig. 14(c),(d). The example of a ‘person getting out
of a vehicle’ usually occurs before ‘person getting into a ve-
hicle’, however, in the detected anomaly, ‘person getting out of
a vehicle’ occurs after ‘person getting into a vehicle’.

VII. CONCLUSION

In this paper, we present a novel approach to jointly model
a variable number of activities in videos, and detect abnormal

Fig. 14. Example of collective spatial anomaly and collective temporal anom-
alies. (a, b): we consider two activities – ‘person getting into a vehicle’ and
‘person unloading an object from a vehicle’. For most of the examples in the
dataset, when these two activities happen together, the unloading happens from
the trunk of the car while the person enters the driver’s door. Thus, a collec-
tive spatial anomaly is detected when the unloading and entering happen near
the same part of the vehicle. (c, d): The example of a ‘person getting out of a
vehicle’ usually occurs before ‘person getting into a vehicle’, however, in the
detected anomaly, ‘person getting out of a vehicle’ occurs after ‘person getting
into a vehicle’.

activities. We represent a video of a wide area by sets of activi-
ties that are spatially and temporally related. A structural model
is proposed to learn the motion patterns and context patterns
within and across activity classes from training sets of activi-
ties. The inference process tries to generate the correct labels for
testing instances using the learned parameters through a greedy
search method. Our experiments have shown that encapsulating
object interactions and spatial and temporal relationships of ac-
tivity classes can be used to significantly improve the recog-
nition accuracy. The proposed model can detect point anoma-
lies, contextual anomalies, and collective anomalies based on
the motion and various context features.
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