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ABSTRACT

We use a kinematic chain to model human body motion. We esti-

mate the kinematic chain motion parameters using pixel displace-

ments calculated from video sequences obtained from multiple

calibrated cameras to perform tracking. We derive a linear relation

between the 2D motion of pixels in terms of the 3D motion param-

eters of various body parts using a perspective projection model

for the cameras, a rigid body motion model for the base body, and

the kinematic chain model for the body parts. An error analysis

of the estimator is provided, leading to an iterative algorithm for

calculating the motion parameters from the pixel displacements.

We provide experimental results to demonstrate the accuracy of

our formulation. We also compare our iterative algorithm to the

non-iterative algorithm and discuss its robustness in the presence

of noise.

1. INTRODUCTION

Simultaneous 3D human shape estimation and motion tracking is a

very challenging problem. There are methods that use silhouettes

[1], edge information [2] or colour information [3] in order to track

human body movement. These methods typically provide infor-

mation only about the location of the body parts and not its exact

posture. Given the complicated nature of human shape and motion,

it can be very difficult to perform robust tracking of all body parts

without using a motion and shape model. There are several models

for human body shape modelling from stick figures and ellipsoids

to more complicated models that are deformable [4]. Modelling

the human body as rigid parts linked in a kinematic structure is a

simple yet accurate model for tracking purposes. Optical flow can

be exploited to provide dense information and obtain robust esti-

mates of the motion parameters. Several papers [5, 6, 7, 8] have

employed this set of motion parameters. However, [6] uses or-

thographic projection, while [7] uses a Bayesian formulation com-

bined with a particle filtering approach to determine the motion

parameters. Yamamoto, et al., [8] use a larger set of motion pa-

rameters to perform tracking using multiple views and perspec-

tive projection in an approximate formulation. We use kinematic

chains to model human motion and arrive at a precise formula-

tion for a tracker. We analyse the time-discretisation in a practical

system and provide an algorithm for accurate estimation.

We illustrate our model for human structure and motion in Fig-

ure 1(a). We model the movement of human beings using kine-

matic chains with the root of the kinematic tree being the torso

(base body). Each body part forearm, upper arm, torso, head, etc.,

∗The third author performed the work while at the Center for Automa-
tion Research, University of Maryland, College Park.

is modelled as a rigid body, whose shape is known and is expressed

in an object reference frame. At any given time we know the posi-

tions and orientations of the human body parts. We show that the

instantaneous 3D velocity of each point in the base body coordi-

nate system is a linear function of the vector [V T, θ̇
T

]T, where V
is the vector of base body motion parameters (rotation and trans-

lation), and θ is the vector of angles describing the pose of the

kinematic chain. In practice, however, we are able to measure only

the 2D image pixel displacements at each pixel for different cam-

eras. We show that, under perspective projection, the 2D velocities

are still linear in the 3D motion parameters and we can accurately

compute this linear relation. This enables us to accurately obtain

the 3D motion parameters of the kinematic chain, given only the

2D pixel velocities obtained from multiple cameras. It is easier to

obtain pixel displacement, ∆x, more accurately than pixel veloc-

ity u = ẋ.1 Substituting pixel displacements for pixel velocities,

we note that a bias is introduced in the estimation. We analyse the

error introduced by this bias and propose an iterative algorithm by

means of which we are able to decrease the bias.

The experimental section presents evaluation results of our

motion estimation performed on simulated data. We demonstrate

the superior performance of the iterative algorithm as compared to

the non-iterative algorithm in the absence of noise. We also present

experimental results of the performance of the iterative algorithm

in the presence of measurement noise.

2. OBTAINING THE 3D VELOCITY

We would like to estimate the motion parameters at time t0. We

define the base body reference frame, FRAME0, that is attached to

the base body (and moves with the base body) and a spatial refer-

ence frame, FRAMEa, that is static and coincides with FRAME0

at time t0 (see Figure 1(b)). We can, therefore, view the motion

of the base body as the motion of FRAME0. We consider a single

kinematic chain of J body parts connected to the base body. (The

equations that we derive can be trivially extended to multiple such

chains.) Each body part is indexed by a number i and attached

to a coordinate frame, FRAMEi. We parameterise the orientation

between two connected components which possess a single degree

of freedom in terms of the angle of rotation around the axis of the

object coordinate frame, θ. We deal with joints that have mul-

tiple degrees of freedom by considering them as multiple joints

with single degree of freedom. The transformation of a point from

FRAMEj coordinates to FRAMEi coordinates is given by gij(t).

1Since we have only a discrete set of images of the scene, estimation of
arbitrary instantaneous velocities will be affected by the time-discretisation
leading to an error in the estimates.



(a) Structure of Chain (b) Base body motion at time t (c) Projection onto Multiple Cameras

Fig. 1. Kinematic Chain Schematic

Consider a point on body part i in FRAMEi coordinates, q
(i)
i . The

superscript denotes the index of the body part to which the point

belongs and the subscript denotes the coordinate reference frame.

We, therefore, have the relation q(i)
a (t) = ga0(t)q

(i)
0 (t) and

q̇
(i)
a (t) = ġa0(t)q

(i)
0 (t) + ga0(t)q̇

(i)
0 (t) , vB(t) + vK(t). (1)

The instantaneous velocity of this point, as given in (1), has two

components: vB(t) , ġa0(t)q
(i)
0 (t), due to the motion of the base

body itself, and vK(t) , ga0(t)q̇
(i)
0 (t) due to the motion of the

kinematic chain. We model these two motions differently in the

following two subsections.

2.1. Velocity due to motion of base body

We consider the velocity component due to base body motion in

this section. The motion of the base body is given by a rotation

and a translation. From (1), dropping the point index i, we have

the following, where qa(t) = [Xa(t), Ya(t), Za(t), 1]T.

vB(t) = ġa0(t)q0(t) = ġa0(t)g
−1
a0 (t)qa(t)

= V̂ s
a0(t)qa(t) (2)

where V̂ s
a0(t) , ġa0(t)g

−1
a0 (t). We note that ga0(t) represents a

rigid transformation and is given by ga0(t) =

»

Ra0(t) pa0(t)
0 1

–

.

For simplicity, we drop the dependence on time. V̂ s
a0 is called the

spatial velocity. It is described by the translational velocity, vs
a0 =

[v1, v2, v3]
T

, and the rotational velocity, ωs
a0 = [ω1, ω2, ω3]

T
. We

can show that V̂ s
a0 = ġa0ga0

−1

=

»

Ṙa0R
T

a0 −Ṙa0R
T

a0pa0 + ṗa0

0 0

–

. We define V s
a0 =

»

vs
a0

ωs
a0

–

=

»

−Ṙa0R
T

a0pa0 + ṗa0

(Ṙa0R
T

a0)
∨

–

, where ω̂ ,

2

4

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

3

5

and (ω̂)∨ ,

2

4

ω1

ω2

ω3

3

5 = ω. We can then reformulate V̂ s
a0qa as

V̂ s
a0qa =

2

6

4
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ω3 0 −ω1 v2

−ω2 ω1 0 v3

0 0 0 0

3
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5
V s

a0

= W(qa)V s
a0. (3)

Thus we see that the vector V s
a0 describes the motion of the base

body. The instantaneous velocity of a point qa due to base body

motion is given by vB = V̂ s
a0qa = W(qa)V s

a0.

2.2. Velocity due to motion of kinematic chain

Consider a point on body part i, q
(i)
i in FRAMEi coordinates. The

transformation of a point from FRAMEi to FRAME0 is repre-

sented by g0i(t). Then the relation between q
(i)
0 (t) and q

(i)
i (t)

is given by q
(i)
0 (t) = g0i(t)q

(i)
i (t). Since the point is attached

to FRAMEi, q̇
(i)
i (t) = 0. Then the instantaneous velocity of the

point q
(i)
0 can be obtained as

q̇
(i)
0 (t) = ġ0i(t)q

(i)
i (t) = V̂ s

0iq
(i)
0 (t), (4)

where V̂ s
0i is the spatial velocity and is equal to ġ0i(t)g

−1
0i (t).

In the case of kinematic chains [9] g(i−1)i(t) has the form,

g(i−1)i(t) = ḡ(i−1)ie
ξ̂iθi(t), where ḡ(i−1)i = g(i−1)i(0) and ξ̂i

is a constant matrix that depends on which axis body part i rotates

around. We therefore have ġ(i−1)i(t) = ḡ(i−1)iξ̂iθ̇i(t)e
ξ̂iθi(t) and

V̂ s
(i−1)i(t) = ġ(i−1)i(t)g

−1
(i−1)i(t) = ḡ(i−1)i(t)ξ̂iθ̇i(t)ḡ

−1
(i−1)i(t).

We drop the dependence on t in the following equations. Consider

a kinematic chain with K links, where the motion of the kth link

is represented by θk. The reference frame (indexed by subscript 0)

is attached to the base body, and FRAMEk, is attached to the kth

body part, for k ∈ {1, 2, . . . , K}. Note that if a joint has multiple

degrees of freedom, then the number of body parts (J) is less than

the number of frames (K). We have g0i = g01g12 . . . g(i−1)i and

the spatial velocity is expanded as

V̂ s
0i = ġ0ig

−1
0i =

i−1
X

j=0

g0j

“

ġj(j+1)g
−1
j(j+1)

”

g−1
0j

=

i−1
X

j=0

g0j V̂
s

j(j+1)g
−1
0j .

We note that q0 = [X0, Y0, Z0, 1]T. We express the instantaneous

velocity in terms of the kinematic chain motion parameters as

ga0q̇0 = ga0V̂
s
0ig

−1
a0 qa

= ga0V̂
s
01g

−1
a0 qa + ga0

K−1
X

i=1

g0iV̂
s

i(i+1)g
−1
0i g−1

a0 qa

=
ˆ

ξ̂′1 ξ̂′2 · · · ξ̂′i 0 · · · 0
˜

θ̇

= E(qa, θ)θ̇, (5)



where E(qa, θ) ,
ˆ

ξ̂′1 ξ̂′2 · · · ξ̂′i 0 · · · 0
˜

, and θ̇ =
ˆ

θ̇1 θ̇2 · · · θ̇K

˜T

and

ξ̂′j =



ga0g0(j−1)ḡ(j−1)j ξ̂j ḡ
−1
(j−1)jg

−1
0(j−1)g

−1
a0 qa if j ≤ i

0 if j > i.

2.3. Combined 3D velocity

We see that the complete 3D motion parameters are given by vec-

tors Va0 and θ̇. Combining equations (1), (2), and (5), we get

q̇a(t) = M(qa, θ)ϕ, (6)

where M(qa, θ) ,
ˆ

W(qa) E(qa, θ)
˜

and ϕ =

»

Va0

θ̇

–

.

3. MULTIPLE CAMERA EQUATIONS

In section 2 we showed that the instantaneous 3D velocity at a

point is a linear function of the motion parameters. In a practi-

cal setup we can only measure the motion of a point in the im-

age coordinates of the camera. In this section, we show that the

instantaneous image velocity of a pixel, under perspective projec-

tion, is also linear in the motion parameters. Assume there are C
cameras, numbered from 1 through C. We use the superscript c
to denote the camera index. Let P

ca = [pca
1 , pca

2 , pca
3 ]T map a

point in FRAMEa, qa = [Xa, Ya, Za, 1]T to the homogeneous

image coordinates, q̃c = [x̃c, ỹc, z̃c]
T, of the cth camera(see Fig-

ure 1(c)). We then have q̃c = P
caqa. The inhomogeneous image

coordinates are given by

»

xc

yc

–

= 1

p
caT

3
qa

»

pcaT

1

pcaT

2

–

qa. ẋc, the

image coordinate velocities can be derived as follows.

»

ẋc

ẏc

–

=
1

pcaT

3 qa

»

pcaT

1

pcaT

2

–

q̇a −
pcaT

3 q̇a

(pcaT

3 qa)2

»

pcaT

1

pcaT

2

–

qa

=
1

z̃c

»

pcaT

1 − (x̃c/z̃c)p
caT

3

pcaT

2 − (ỹc/z̃c)p
caT

3

–

q̇a

, C
c(qa, Pca)q̇a (7)

Combining (6) and (7), we get the following comprehensive equa-

tion.

ẋc = C
c(qa, Pca)M(qa, θ)ϕ (8)

We see that the number of unknowns is fixed, irrespective of the

number of points and the number of cameras, and is equal to 6+K,

where K is the number of degrees of freedom of the kinematic

chain. If we can use N(c) points from the cth camera, then we

have a total of 2
PC

c=1 N(c) equations. Note that we need pixels

on the kth body part to estimate θ̇1, · · · , θ̇k.

4. ESTIMATOR AND ERROR ANALYSIS

We have shown that the 2D velocity of a pixel is a linear function of

our motion parameter vector. For the purpose of error analysis, we

can simplify (dropping the camera subscript) the form of equation

(8) to ẋ = A(t)ϕ, where A(t) = C
c(qa, Pca)M(qa, θ). If there

are a total of N points and K degrees of freedom in the kinematic

chain, then ẋ is 2N × 1, A is 2N × M , and ϕ is M × 1, where

M = K + 6. Since we work with pixel displacements (∆x)

instead of velocities, we formulate our estimator accordingly and

analyse the error introduced due to the approximation. We can

expand the pixel position in terms of the Taylor series and thus

obtain ∆x as

∆x , x(t + ∆t) − x(t) = ẋ(t)∆t + O(∆t2).

We drop the dependence on time in the following equations. There

is also some measurement noise in the pixel displacement and we

model the measured pixel displacement, ∆x̃, as ∆x̃ = ∆x + η,

where η is zero-mean measurement noise with variance Σ. We

therefore have the following equations.

∆x̃ = ẋ(t)∆t + O(∆t2) + η = Aϕ∆t + O(∆t2) + η (9)

If we ignore second and higher order terms, then we have

∆x̃ = Aϕ∆t + η. (10)

Assuming ∆t = 1, an unbiased estimator for ϕ in (10), ϕ̂ =
(AT

A)−1
A

T∆x̃, is obtained by minimising the cost function C(ϕ̂) =
1
2
||∆x̃ − A

Tϕ̂||. The higher order terms can be interpreted as a

bias that affects the estimator. We propose an iterative algorithm

to eliminate this bias. In our iterative algorithm, we first estimate

the parameters using the linear equation. We then compute the

2D motion (pixel displacements) for the estimated motion. The

computation of 2D motion, given the motion parameters is exact.

We then compute the difference between the observed pixel dis-

placements and the computed pixel displacements (using our cur-

rent estimated motion parameters) and try to estimate a new set

of motion parameters using the error in the displacements. As we

thus get closer to the true solution, the linear estimation becomes

more accurate (O(∆t2) tends to zero) and we ultimately arrive at a

fairly accurate estimate of the true motion parameters. In the case

of Gaussian noise (η), we can show that ϕ̂ = (AT
A)−1

A
T∆x̃

is the Minimum Variance Unbiased Estimator (MVUE). Since we

minimise the cost function 1
2
||∆x̃ − A

Tϕ̂||, we can obtain an ex-

pression for the error covariance Rϕ̂ as (page 34 of [10])

Rϕ̂ = H−1

 

2N
X

i=1

aia
T

i r∆x̃

i

!

H−T,

where H =
P2N

i=1 aia
T

i , R∆x̃ = diag(r∆x̃

1 , r∆x̃

2 , · · · , r∆x̃

2N ) and

a
T
i is the ith row of A.

5. EXPERIMENTAL RESULTS

Fig. 2. Comparison of Iterative and Non-Iterative Algorithms.



(a) Base body velocity estimation (b) Base body angular velocity estimation (c) Kinematic chain angle estimation

Fig. 3. Estimation of Motion Parameters using iterative algorithm in the presence of measurement noise.

In our experiments we determine how our estimator for 3D

motion parameters performs on simulated data. We have built a

kinematic chain composed of a base body with three articulated

objects attached in a kinematic chain as in Figure 1 (a). The base

body moves with translational and rotational motion and the ob-

jects are constrained to rotate about their joints. There are 3 joints

with 3, 2, and 2 degrees of freedom respectively. We project the

3D model onto C = 3 static cameras and record the pixel dis-

placement for pixels on each of the four body parts in the C cam-

eras. We can project the current pose onto the image to associate

each pixel with the body part and thus handle occlusions. We first

evaluate the performance of the tracker in the iterative and non-

iterative modes on data that does not contain any noise. In our

formulation for the non-iterative estimator, we do not account for

the substitution of ∆xc for uc. This is an oft-used approximation

and is valid for small motions. However, in a tracking problem

errors accumulate and this can lead to the object ultimately losing

track of the object. Indeed, in our experiments, we find that in the

non-iterative tracker, the errors accumulate quickly despite the ab-

sence of any noise. This is because the non-iterative formulation

is not exact. Figure 2 compares the output of the non-iterative and

the iterative algorithms. The “∗” markers are the outputs of the

the iterative algorithm and “◦” markers are the outputs of the the

non-iterative algorithm. Our experiments show that our iterative

algorithm results in a near perfect tracker while the non-iterative

algorithm deteriorates with time. Error1 is the tracking error of

the iterative algorithm and Error2 is the error of the non-iterative

algorithm in this and subsequent figures. Only some of the mo-

tion parameters are plotted in some of the figures for clarity. We

also note that the iterative estimator converges faster if we estimate

the parameters sequentially starting from the root of the kinematic

chain.

In Figure 3, we present the performance of the tracker in the

iterative mode on data that contains measurement noise. We add

uncorrelated zero mean Gaussian noise with σ = 0.0006 (note

that in the system the average pixel displacement is 0.0034) to

the pixel displacement values. We see that the tracker follows the

actual parameter value for most parameters. We see that the base

body motion parameter estimates are the poorest. This is to be

expected because the ratio of the number of parameters estimated

to the number of equations available is the least for the base body.

One would expect that the estimates will be more robust when

there are are more pixels on the target. We find that the estimates

of the kinematic chain motion parameters are very robust for the

same reason.

6. CONCLUSION

We have outlined an algorithm for estimating 3D motion param-

eters of a kinematic chain model from 2D image pixel displace-

ments. We use a kinematic chain model for human motion and

use the perspective projection model and multiple cameras in our

formulation. We estimate the 3D motion parameters from pixel

displacements. We show that the estimation of 3D motion param-

eters is biased and propose an iterative algorithm that results in

a very accurate tracker when applied on simulated data. We also

report results on simulated data that contains measurement noise

and find that the iterative algorithm to be robust and successfully

tracks the motion parameters. The compact form of the 3D mo-

tion parameter vector, and the linear formulation make it easy to

extend it into a stochastic formulation (Kalman filter) which will

provide robustness when applied to real data and will also exploit

the temporal correlation of the motion parameters.
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