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Abstract Maintaining the stability of tracks on multiple targets in video over ex-
tended time periods and wide areas remains a challenging problem. Basic trackers
like the Kalman filter or particle filter deteriorate in performance as the complexity
of the scene increases. A few methods have recently shown encouraging results in
these application domains. They rely on learning context models, the availability of
training data, or modeling the inter-relationships between the tracks. In this chapter,
we provide an overview of research in the area of long-term tracking in video. We
review some of the methods in the literature and analyze the common sources of
errors which cause trackers to fail. We also discuss the limits of performance of the
trackers as multiple objects come together to form groups and crowds. On multiple
real-life video sequences obtained for a single camera as well as a camera network,
we compare the performance of some of the methods.

1 Introduction

Tracking can be defined as a problem of locating a moving object (or multiple ob-
jects) over time in the image plane. In other words, the objective of a tracker is to
associate target objects in consecutive video frames so as to determine the identi-
ties and locations of objects in the video sequence. Multiple object tracking is the
most fundamental task for higher level automated video content analysis for its wide
application in human-computer interaction, security and surveillance, video com-
munication and compression, augmented reality, traffic control, and video editing.
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Some of the most basic tracking methods include the Kalman filter, particle filter
and mean shift tracker. However, by themselves, these methods are usually not able
to track over extended space-time horizons.

In addition to challenges in tracking a single object, like occlusion, appearance
variation, and image noise, the critical issue in multi-target tracking is data associ-
ation, i.e., the problem of linking a sequence of object observations together across
image frames. Although a large number of trackers exist, their reliability falls off
quickly with the length of the tracks. Stable, long-term tracking is still a challenging
problem. Moreover, for multiple targets, we have to consider the interaction between
the targets which may cause errors like switching between tracks, missed detections
and false detections. In addition, wide area tracking over a camera network intro-
duces certain challenges that are unique to this particular application scenario, like
handoff between cameras; often, errors are caused in this handoff stage. Therefore,
detection and correction of the errors in the tracks is the key to robust long term and
wide area tracking.

In this chapter, we start off with a review of current work in multi-target track-
ing. We briefly describe two most basic stochastic tracking methods – the Kalman
Filter and Particle Filter, as well as two representative data association methods –
Multi-Hypothesis Tracking (MHT) and Joint Probabilistic Data Association Filters
(JPDAF) methods. We then analyze two common sources of errors, which allow us
to identify tracklets (i.e., the short-term fragments with low probability of error).
The long-term tracking problem can now be defined as developing approaches on
how to associate the traklets based on their features. Similar ideas can be applied
to camera networks as tracking across non-overlapping camera networks is essen-
tially to find the association of the targets observed in different camera views, i.e.,
the handoff problem. We briefly describe a recent method that provides an opti-
mization framework and strategy for computing the associations between tracklets
as a stochastic graph evolution scheme. This can be used to obtain tracks of objects
that have been occluded or are difficult to disambiguate due to clutter or appearance
variations. For a non-overlapping camera network, by associating the tracks from
different cameras using this stochastic graph evolution framework, it will automat-
ically lead to a solution of the handoff problem. Finally, we provide a numerical
comparison of some of the approaches.

The remainder of this chapter is organized as follows: A review of tracking in
single cameras is provided in Sec. 2. Then in Sec. 3, we analyze the common sources
of errors in tracking. We review the issues in tracking across a camera network in
Sec. 4. In Sec. 5, we briefly describe a novel tracklet association strategy using
stochastic graph evolution. Sec. 6 shows how to identify groups and crowds where
the tracking method may perform poorly, which will allow a tracker to automatically
switch to a different strategy. We show comparison of different tracking methods
and experimental results on tracking in a camera network in Sec. 7. We conclude
our work in Sec. 8 with a description of future work.
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2 Review of Multi-Target Tracking Approaches

In this section, we review the literature on multi-target tracking. We start by de-
scribing two of the most basic methods - the Kalman Filter [19] and Particle filter
[15]. They are stochastic methods and solve tracking problems by taking the mea-
surement and model uncertainties into account during object state estimation. They
have been extensively used in the vision community for tracking, but these methods
are not powerful for tracking multiple objects by themselves, e.g., the Kalman filter
and particle filter assume a single measurement at each time instant. In [14], parti-
cle filters were used to track multiple objects by incorporating probabilistic MHT
[31] for data association. We describe the MHT [31] and JPDAF[4] strategies for
tracking multiple targets.

2.1 Kalman Filter Based Tracker

Consider a linear dynamical system with the following time propagation and obser-
vation models for a moving object in the scene:

x(t +1) = Ax(t)+Bw(t); x(0) (1)
z(t) = F(t)x(t)+v(t) (2)

where x is the state of the target, w(t) and v(t) are zero mean white Gaussian noise
(w(t)∼ N (0,Ql),v(t)∼ N (0,R)) and x(0)∼ N (x0,P0) is the initial state of the
target.

Kalman filtering is composed of two steps, prediction and correction. The pre-
diction step uses the state model to predict the new state of the variables:

P̄(t +1) = AP(t)AT +BQBT ,

x̄(t +1) = Ax̂(t). (3)

The correction step uses the current observations z(t) to update the objects state:

K(t +1) = P̄(t +1)FT (FP̄(t +1)FT +R)−1

x̂(t +1) = x̄(t +1)+K(t +1)(z(t +1)−Fx̄(t +1)),

P̂(t +1) = (I−K(t +1)F)P̄(t +1). (4)

Extensions to this basic approach dealing with non-linear models in video applica-
tions can be found in [41].
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2.2 Particle Filter Based Tracker

The particle filter is often used in tracking applications in video to deal with non-
linear and/or non-Gaussian models [2]. The following are the main steps typically
used in a particle filter based tracker with some variations.

Moving objects are often initialized using motion detection. The background
modeling algorithm in [40] can be used for its adaptability to illumination change,
and to learn the multimodal background through time. In addition, in many applica-
tions, by observing that most of the interested targets, like people and vehicles, are
on ground plane, the rough ground plane area can be estimated [11]. Based on the
ground plane information, false alarms can be removed significantly. The target re-
gions can then be represented by rectangles with the state vector Xt = [x,y, ẋ, ẏ, lx, ly],
where (x,y) and (ẋ, ẏ) are the position and velocity of a target in the x and y direc-
tions respectively, and (lx, ly) denote the size of the rectangle.

The observation process is defined by the likelihood distribution, p(It |Xt), where
Xt is the state vector and It is the image observation at t. The observation models
can be generated in many ways. Here we provide an example by combining an
appearance and a foreground response model, i.e.,

p(It |Xt) = p(Ia
t , I

f
t |Xt), (5)

where Ia
t is the appearance information of It and I f

t is the foreground response of It
using a learned background model. I f

t is a binary image with “1” for foreground and
“0” for background. It is reasonable to assume that Ia

t and I f
t are independent and

thus (5) becomes
p(It |Xt) = p(Ia

t |Xt)p(I f
t |Xt).

The appearance observation likelihood can be defined as

p(Ia
t |Xt) ∝ exp{−B(ch(Xt),ch0)

2},

where ch(Xt) is the color histogram associated with the rectangle region of Xt and
ch0 is color histogram of the initialized target. B(.) is the Bhattachayya distance
between two color histograms. The foreground response observation likelihood can
be defined as

p(I f
t |Xt) ∝ exp{−(1− #F(Xt)

#Xt
)2},

where #F(Xt) is the number of foreground pixels in the rectangular region of Xt and
#Xt is the total number of pixels in that rectangle. #F(Xt )

#Xt
represents the percentage of

the foreground in that rectangle. The observation likelihood would be higher if more
pixels in the rectangular region of Xt belong to the foreground. The reader should
note that these are representative examples only. Various models are possible, and
indeed, have been used in the literature.

The particle filter (PF) is a sequential Monte Carlo method (sequential impor-
tance sampling plus resampling) which provides at each t, an N sample Monte Carlo
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approximation to the prediction distribution, πt|t−1(dx) = Pr(Xt ∈ dx|I1:t−1), which
is used to search for newly observed targets. These are then used to update πt|t−1 to
get the filtering (posterior) distribution, πt|t(dx) = Pr(Xt ∈ dx|I1:t). A particle filter
is used because the system and observation models are nonlinear and the posterior
can temporarily become multi-model due to background clutter.

2.3 Multi-Hypothesis Tracking (MHT)

This algorithm allows multiple hypotheses to be propagated in time as data is re-
ceived. MHT is an iterative algorithm and is initialized with a set of current track
hypotheses. Each hypothesis is a collection of disjoint tracks. For each hypothe-
sis, the position of each object at the next time step is predicted. On receiving new
data, each hypothesis is expanded into a set of new hypotheses by considering all
measurement-to-track assignments for the tracks within the hypothesis. The prob-
ability of each new hypothesis is calculated. Often, for reasons of finite computer
memory and computational power, the most unlikely hypotheses are deleted. The fi-
nal tracks of the objects are the most likely set of associations over the time period.
Note that MHT exhaustively enumerates all possible associations and is computa-
tionally exponential both in memory and time.

2.4 Joint Probabilistic Data Association Filters (JPDAF)

This method is specifically designed for cluttered measurement models. The idea is
to compute an expected state estimate over the various possibilities of measurement-
to-track associations. Assuming we have n tracks and m measurements at time t,
Z(t) = {z1(t), . . . ,zm(t)}, the state estimation of target i is

x̂i(t) = E[xi(t)|Z(t)] =
m

∑
j=1

E[xi(t)|χ t
i j,Z(t)]P(χ t

i j|Z(t))

where χi j denotes the event that measurement i associates to target j.
In order to overcome the large computational cost of MHT and JPDAF, vari-

ous optimization algorithms such as Linear Programming [17], Quadratic Boolean
Programming [23], and Hungarian algorithm [27] are used for data association. In
[45], data association was achieved through a MCMC sampling based framework.
In [34], a multiframe approach was proposed to preserve temporal coherency of the
speed and position. They formulate the correspondence as a graph theoretic problem
to finding the best path for each point across multiple frames. They use a window
of frames during point correspondence to handle occlusions whose durations are
shorter than the temporal window used to perform matching.
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3 Errors in Multi-Target Tracking

Tracking is a state estimation problem and errors are inevitable in even carefully
designed strategies. Therefore, it is important to understand the sources of the er-
rors and mitigate their effects as far as possible. There are two common errors: lost
track (when the track is no longer on any target, but on the background) and track
switching (when targets are close and the tracks are on the wrong target); this in-
cludes tracks merging and splitting. Identifying these situations can lead to the rules
for tracklet estimation, i.e., determining short track segments where the probability
of an error is low. An example is shown in Fig. 1. We describe these two common
sources of errors.
Detection of lost track: The tracking error (TE) [4] or prediction error is the dis-
tance between the current observation and its prediction based on past observations.
TE will increase when the tracker loses track and can be used to detect the unrelia-
bility of the track result. As an example, in the preceding observation model for the
particle filter, TE of tracked target X̂t is calculated by

T E(X̂t , It) = T Ea(X̂t , It)+T E f (X̂t , It), (6)

where T Ea(X̂t , It) =B(ch(Xt),ch0)
2 and T E f (X̂t , It) =

(
1− #F(Xt)

#Xt

)2

.

If a lost track is detected, it means the tracking result after this point is not reliable;
in the tracking procedure, we can stop doing tracking after this point and identify
a tracklet. In the case of false detection (i.e., the detected target is a part of back-
ground), or target passes through a region with similar color, or a target stops, the
background modeling algorithm will adapt to treat this as a part of the background,
and thus T E f will eventually increase. Then a lost track will be detected.
Track Switching: When targets are close to each other, a track switch can happen
with high probability especially if the appearances of targets are similar. Thus, we
can inspect the distances between targets, and break the tracks into tracklets at the
points where targets are getting close, as shown in Fig. 1.

3.1 Solution Strategies

Many state-of-the-art tracking algorithms focus on how to avoid errors. In [46],
the authors proposed a min-cost flow framework for global optimal data associa-
tion. A tracklet association based tracking method was presented in [8], which fixed
the affinity model heuristically and focused on searching for optimal associations.
A HybridBoosted affinity model was learned in [25]. The method is built on the
availability of training data under a similar environment, which may not be always
feasible. The authors in [3] addressed the problem of learning an adaptive appear-
ance model for object tracking. Context information was considered in [44] to help
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Fig. 1 An example of tracklet identification. The ground truth trajectories are represented by brown
dotted lines. The estimated tracklets due to detection of a lost track (track of the person in lower
left corner due to occlusion) and targets’ close proximity (the persons moving around the cars) are
clearly shown in different colors.

in tracking, by integrating a set of auxiliary objects which are learned online. It can
be a powerful method in applictions where it is easy to find these auxiliary objects.
A joint probabilistic relation graph approach was presented in [42] to simultane-
ously detect and track a large number of vehicles in low frame rate aerial videos.
The authors explored vehicle behavior model from road structure and generated a
set of constraints to regulate both object based vertex matching and pairwise edge
matching schemes. These two matching schemes were unified into a single cost
minimization framework to produce a quadratic optimized association result. In [5],
an inference graph was built to represent merge-split relations between the tracked
blobs, so as to handle fragmentation and grouping ambiguity in tracking. In [35], an
adaptive tracklet association was proposed and is explained later in 5.

3.2 Tracklet Affinity Modeling

Computing long-term associations between tracklets requires evaluating similarities
between them. The estimated tracklets need to be associated based on their affinities
to come up with longer tracks. The affinities between tracklets are often modeled by
exploring their appearance and motion attributes. Here we provide some examples
for achieving this.
Appearance model: The appearance affinity between a pair of tracklets, (Ti,Tj),
can be defined based on their color histograms. Let Chi and Ch j be the mean color
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histograms learned within Ti and Tj. Then the appearance affinity can be defined as

Aa(Ti,Tj) ∝ exp(−B(Chi,Ch j)), (7)

where B(.) represents the Bhattacharya distance between two histograms.
Motion model: As described in [43], the motion affinity can be modeled based on
both the forward and backward velocities of the tracklets. The forward and back-
ward velocities are estimated within each tracklet. Assume tracklet Ti occurs earlier
in time, and tracklet Ti begins after the Ti ended, the motion affinity between Ti and
Tj is defined as

Am(Ti,Tj) ∝ exp(−(ptail
i + vF

i ∆ t − phead
j )2)exp(−(phead

j + vB
j ∆ t − ptail

i )2), (8)

where ptail
i and phead

j are the tail and head positions of Ti and Tj, vF
i and vB

j are their
forward and backward velocities, and ∆ t is the time gap between Ti and Tj.

Since it is reasonable to assume that the appearance and motion are independent,
the affinity of a pair of tracklets can be modeled as

A(Ti,Tj) = Aa(Ti,Tj) ·Am(Ti,Tj). (9)

4 Tracking in Camera Networks

Some of the existing methods on tracking in a camera network include [13, 16, 21].
The authors in [30] used location and velocity of objects moving across multiple
non-overlapping cameras to estimate the calibration parameters of the cameras and
the target’s trajectory. In [24], a particle filter was used to switch between track
prediction between non-overlapping cameras and tracking within a camera. In [20],
the authors presented a method for tracking in overlapping stationary and pan-tilt-
zoom cameras by maximizing a joint motion and appearance probability model. A
Bayesian formulation of the problem of reconstructing the path of objects across
multiple non-overlapping cameras was presented in [21] using color histograms
for object appearance. A graph-theoretic framework for addressing the problem of
tracking in a network of cameras was presented in [16]. An on-line learned discrim-
inative appearance affinity model by adopting Multiple Instance Learning boosting
algorithm was proposed in [22] for associating multi-target tracks across multiple
non-overlapping cameras.

A related work that deals with tracking targets in a camera network with PTZ
cameras is [29]. Here, the authors proposed a mixture between a distributed and a
centralized scheme using both static and PTZ cameras in a virtual camera network
environment. A framework for distributed tracking and control in camera network
using Kalman-consensus filter was presented in [39, 36].

Tracking in camera networks is closely related to person re-identification in cam-
era networks. In [10], a machine learning algorithm was used to find the best fea-
ture representation of objects, where many different kinds of simple features to be
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combined into a single similarity function for matching objects. In [28], the per-
son re-identify across disjoint camera views was reformulated as a ranking prob-
lem. By learning a subspace where the potential true match is given highest ranking
rather than any direct distance measure, the problem was solved using a Ensemble
RankSVM. A Cross Canonical Correlation Analysis framework was formulated in
[26] to detect and quantify temporal and causal relationships between regional ac-
tivities within and across camera views. In [7], the authors presented an appearance-
based method for person re-identification. It consists in the extraction and fusion of
features that model three complementary aspects of the human appearance: the over-
all chromatic content, the spatial arrangement of colors into stable regions, and the
presence of recurrent local motifs with high entropy. A spatiotemporal segmentation
algorithm was employed in [9] to generate salient edgels and the invariant signatures
were generated by combining normalized color and salient edgel histograms for es-
tablishing the correspondence across camera views. In [37, 38], it was shown that
tracking in a camera network can be solved using a stochastic adaptive strategy.
Adapting the feature correspondence computations by modeling the long-term de-
pendencies between them and then obtaining the statistically optimal paths for each
person differentiates this approach from existing ones. It provides a solution that is
robust to errors in feature extraction, correspondence and environmental conditions.

The main new (compared to single camera tracking) challenge in the problem
of tracking across non-overlapping camera networks is to find the correspondences
between the targets observed in different camera views. This is often referred to
as the handoff problem in camera networks. Thus, we can think of tracking over a
camera network as being equivalent to finding the associations between the track-
lets obtained in different single cameras. Then, the problem boils down to finding
the affinities between the tracklets so as to have tracks across cameras. Depending
on the applications, various features can be used like appearance, motion, calibra-
tion, travel time, 3D models, etc. As an example, we show how the travel time
between entry/exit nodes of different cameras can be used in the affinity modeling.
The affinity between two tracks T m

i and T n
j that are observed at camera Cm and Cn

respectively, can be estimated as the product of the similarity in appearance features
and the travel time based similarity value, i.e.,

A(T m
i ,T n

j ) = Aa(T m
i ,T n

j )Aτ(τT m
i ,T n

j
), (10)

where Aa(.) is the appearance affinity model as in (7) and Aτ(.) represents the tran-
sition pattern between two camera nodes [16].

5 A Stochastic Graph Evolution Framework for Tracklet
Association

In this section, we show how the affinity models between tracklets (for single or
multiple cameras) can be used to find associations between them so as to obtain
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Fig. 2 Overview of stochastic graph evolution framework.

stable, robust long-term tracks. This is a brief review of a recent approach that is
described in more detail in [35]. The method can deal with some of the most press-
ing challenges in multi-target tracking, e.g., occlusion within a view and hand-off
between cameras.

Fig. 2 shows an overview of the scheme. The method begins by identifying track-
lets, i.e., the short-term fragments with low probability of error, which are estimated
from the initial tracks by evaluating the tracking performance as described in Sec-
tion 3. The tracklets are then associated based on their affinities. Using the affinity
model, a tracklet association graph (TAG) is created with the tracklets as nodes and
affinity scores as weights. The association of the tracklets can be found by com-
puting the optimal paths in the graph. The optimal path computation is based on
the principles of dynamic programming and gives the maximum a posteriori (MAP)
estimate of tracklets’ connections as the long-term tracks for each target.

The tracking problem could be solved optimally by the above tracklet association
method if the affinity scores were known exactly and assumed to be independent.
However, this can be a big assumption due to well known low-level image process-
ing challenges, like poor lighting conditions or unexpected motion of the targets. As
shown in Fig. 3, if the similarity estimation is incorrect for one pair of tracklets, the
overall inferred long track may be wrong even if all the other tracklets are connected
correctly. This leads to a graph evolution scheme. The affinities (i.e., the weights on
the edges of TAG) are stochastically adapted by considering the distribution of the
features along possible paths in the association graph to search for the global op-
timum. A Tracklet Association Cost (TAC) function and an efficient optimization
strategy are designed for this process. As shown in Fig. 3, the TAC values can be
used to indicate the incorrect associations. The overall approach is able to track
stably over minutes of video in challenging domains with no learning and context
information.
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Fig. 3 (a) Tracklets of two targets obtained from Videoweb courtyard dataset of Section ??: ground
truth track of the person in green T-shirt is shown with orange line, and the association results
before adaptation are shown with blue line. (b)-(c): TAC values along the incorrect and correct
association results respectively, (note that the range of the y-axis in (c) is much smaller than (b)).
It is clear that TAC has a peak at the wrong link; thus the variance of TAC along the wrongly
associated tracklets is higher than the correct one.

6 Identifying Transitions to Groups and Crowds

When a large number of targets are in close proximity, tracking each individual tar-
get becomes very difficult and sometimes it is more desirable to treat them as a group
or a crowd, which can then be tracked as a single entity. As techniques designed for
non-crowded scenes usually cannot be straightforwardly extended for dealing with
crowded situations, crowd analysis has attracted more and more interest in recent
years. A survey on crowd analysis using computer vision techniques can be found
in [18]. There are also a number of research papers on tracking in crowded scenes.
In [1], an approach for people tracking in structured high-density scenarios was pro-
posed. In their work, each frame of a video sequence is divided into cells, each cell
presenting one particle. A person consists of a set of particles, and each person is af-
fected by the layout of the scene as well as the motion of other people. The method
described in [12] detects global motion patterns by constructing super tracks us-
ing flow vectors for tracking high-density crowd flows in low-resolution videos. A
tracking method to deal with unstructured environments was proposed in [32], in
which the motion of a crowd appears to be random with different participants mov-
ing in different directions over time (e.g., a crossway). They employ the correlated
topic model (CTM), which allows each location of the scene to have various crowd
behaviors.

The methods on crowd analysis assume that it is known that the scene consists of
a crowd. Often, we have situations where individuals merge together form a group
and cannot be tracked separately any more. This detection of transitions from indi-
viduals to groups and crowds has received lesser attention. One such transitions are
identified, pre-existing group/crowd analysis approaches, such as [12, 1, 32], can be
employed to examine the group/crowd’s dynamics.

An idea that is being currently being explored by the authors [33] involves a
physics-inspired methodology to model the transition of Individuals to Groups to
Crowds analogous to the transition of Individual Particles to N-Body to Fluids in
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fluid dynamics, as shown in Figure 4, where the Group Transition Ratio (Gtr) cate-
gorizes the collection as individual people or groups. Gtr is defined based on com-
paring the distance between objects and their sizes. It utilizes the ideas in fluid dy-
namics for analysis of multi-object activities and, in a similar fashion, when Gtr ≪ 1
for a collection of objects, we label them as a crowd; when Gtr ≫ 1, we label them
as individual objects; finally, when Gtr ∼ 1 (empirically between 0.1 and 10), the
objects are identified to be in a transition region and labeled as a group.

Group Transition Ratio (Gtr)

Gtr>>1 0.1 < Gtr < 10

Fig. 4 Physics-inspired model of transitions from individuals to groups: we model individuals as
free particles and groups as an n-body. In these two examples, the average Gtr for the sequence of
individuals is 23.83 while the average Gtr for the sequence of groups is 0.18.

7 Performance Analysis

In this section, we provide comparison of some methods on multi-target tracking
in single camera view and show tracking results in a camera network using the
stochastic data association strategy in [37, 38].

7.1 Single Camera Tracking Performance

We compare the performance of several methods on the CAVIAR dataset. The
CAVIAR (http:// homepages.inf.ed.ac.uk/rbf/CAVIARDATA1) is captured in a shop-
ping mall corridor with heavy inter-object occlusion. To evaluate the performance
quantitatively, we adopt the evaluation metrics for tracking defined in [25] and [46].
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Table 1 Evaluation metrics
Name Definition
GT Num of ground truth trajectories
MT% Mostly tracked: Percentage of GT trajectories which are covered by tracker output more

than 80% in time
ML% Mostly lost: Percentage of GT trajectories which are covered by tracker output less than

20% in time
FG Fragments: The total Num of times that the ID of a target changed along a GT trajectory
IDS ID switches: The total Num of times that a tracked target changes its ID with another target
RS% Recover from short term occlusion
RL% Recover from long term occlusion

In addition, we define RS and RL to evaluate the ability of recovering from occlu-
sion (see Table 1).

In CAVIAR dataset, the inter-object occlusion is high and includes long term
partial occlusion and full occlusion. Moreover, frequent interactions between targets
such as multiple people talking and walking in a group make tracking more chal-
lenging. The results of [35] are shown on the relatively more challenging part of
the dataset which contains 7 videos (TwoEnterShop3, TwoEnterShop2, ThreePast-
Shop2, ThreePastShop1, TwoEnterShop1, OneShopOneWait1, OneStopMoveEn-
ter1). Table 2 shows the comparison among the stochastic graph evolution frame-
work [35], the min-cost flow approach in [46], HybridBoosted affinity modeling ap-
proach in [25] and a basic particle filter. It should also be noted that [25, 46] are built
on the availability of training data under similar environments (e.g. 6 sequences in
CAVIAR are used for training in [46]), while the stochastic graph evolution method
[35] does not rely on any training. Some sample frames with results from [35] are
shown in Fig. 5.

Table 2 Tracking Results on CAVIAR data set. Results of [25] and [46] are reported on 20 se-
quences; basic particle filter and [35] are reported on 7 most challenging sequences of the dataset.
Test data used in [35] and basic particle filter has totally 12308 frames for about 500 sec.

GT MT ML FG IDS RS RL
Zhang et al.[46] 140 85.7% 3.6% 20 15 - -

Li et al.[25] 143 84.6% 1.4% 17 11 - -
Basic particle filter 75 53.3% 10.7% 15 19 18/42 0/8

Song et al.[35] 75 84.0% 4.0% 6 8 36/42 6/8

7.2 Camera Network Tracking

We now show some results on tracking in a camera network using the stochastic
graph evolution framework as described in detail in [38]. The network consists of
7 cameras and 26 entry/exist nodes. The cameras are installed in both indoor and
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(a)

(b)

Fig. 5 Sample tracking results on CAVIAR dataset using [35].

outdoor environments which consist of large illumination and appearance changes.
We considered 9 people moving across the network for about 7 minutes. Examples
of some of the images of the people and entry/exit nodes are shown in Fig. 6. Note
the significant changes of appearance. We also show some example tracking results
on 3 targets in different colors, thus demonstrating the ability to track with handoffs.
Tracking in large camera networks is still in the process of maturing and there do
not exist standard datasets to compare performance of various methods. The recently
released camera network dataset [6] can provide such an evaluation benchmark in
the future.

8 Conclusions and Thoughts on Future Work

In this chapter, we reviewed existing methods in robust long-term tracking in single
and multiple views, identified their strengthes and weaknesses, analyzed the sources
of errors and discussed solution strategies. We also looked at the issue of transitions
between individual tracking and group tracking. Performance comparison was pro-
vided on the well-known CAVIAR dataset.

Although tracking is one of the most studied problems in computer vision, there
is still some way to go before the methods are able to work in real-world situa-
tions that involve large numbers of objects in close proximity or maintain the tracks
over extended space-time horizons. Technically, this requires the methods to be ro-
bust to data association errors in cluttered scenarios, when there are large variations
in appearance, or when objects are not visible due to occlusions. A promising ap-
proach is to consider contextual information, i.e., not only to look at the track of
each individual object but also the collection of other nearby objects. This needs to
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Fig. 6 Example of some of the images of the people in the network. The horizontal axis is the time
when these images were observed, while the vertical axis is the index of the cameras. Some of the
entry/exit nodes are marked on the images. The tracks of 3 of the targets are shown in different
colors and clearly demonstrate the ability to deal with hand off in non-overlapping cameras.

be done carefully since too much emphasis on context can be misleading. Tracking
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in non-overlapping camera networks has received much less attention and should
be a focus area in future work. The methods should be able to scale over a large
number of cameras. Standard datasets for evaluating camera network tracking need
to be adopted by the tracking community. Another interesting area that has recently
received interest is the development of distributed tracking frameworks, i.e., cam-
era network tracking methods where processing is distributed over the sensor nodes
[36].
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