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Wide Baseline Image Registration With
Application to 3-D Face Modeling

Amit K. Roy-Chowdhury, Rama Chellappa, Fellow, IEEE, and Trish Keaton

Abstract—Establishing correspondence between features in
two images of the same scene taken from different viewing angles
is a challenging problem in image processing and computer vision.
However, its solution is an important step in many applications
like wide baseline stereo, three-dimensional (3-D) model align-
ment, creation of panoramic views, etc. In this paper, we propose
a technique for registration of two images of a face obtained from
different viewing angles. We show that prior information about
the general characteristics of a face obtained from video sequences
of different faces can be used to design a robust correspondence
algorithm. The method works by matching two-dimensional (2-D)
shapes of the different features of the face (e.g., eyes, nose etc.). A
doubly stochastic matrix, representing the probability of match
between the features, is derived using the Sinkhorn normalization
procedure. The final correspondence is obtained by minimizing
the probability of error of a match between the entire constellation
of features in the two sets, thus taking into account the global
spatial configuration of the features. The method is applied for
creating holistic 3-D models of a face from partial representations.
Although this paper focuses primarily on faces, the algorithm can
also be used for other objects with small modifications.

Index Terms— Biometrics, face modeling, feature correspon-
dence, image registration.

1. INTRODUCTION

STABLISHING correspondence between features in two

images of the same scene taken from different viewing
angles is a challenging problem in image processing and com-
puter vision. The difficulty of the problem is compounded by
the fact that the images may be obtained under different con-
ditions of lighting and camera settings. However, its solution
is an important step in many applications like wide baseline
stereo, three-dimensional (3-D) model alignment, creation of
panoramic views, etc. Numerous methods have been tried to
solve this problem, ranging from techniques which take advan-
tage of the knowledge of the geometry of the scene to ones
which use different information theoretic measures to compute
similarity.
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A. Literature Review

One of the well-known methods for registration is the iter-
ative closest point (ICP) algorithm [1] of Besl and McKay. It
uses a mean-square distance metric which converges monoton-
ically to the nearest local minimum. It was used for registering
3-D shapes by considering the full six degrees of freedom in the
motion parameters. It has been extended to include the Leven-
berg—Marquardt nonlinear optimization and robust estimation
techniques to minimize the registration error [2]. Another well-
known method for registering 3-D shapes is the work of Vemuri
and Aggarwal where they used range and intensity data for re-
constructing complete 3-D models from partial ones [3]. Reg-
istering range data for the purpose of building surface models
of 3-D objects was also the focus of the work in [4]. Matching
image tokens across triplets, rather than pairs, of images has
also been considered. In [5], the authors developed a robust es-
timator for the trifocal tensor based upon corresponding tokens
across an image triplet. This was then used to recover 3-D struc-
ture. Reconstructing 3-D structure was also considered in [6]
using stereo image pairs from an uncalibrated video sequence.
However, most of these algorithms work given good initial con-
ditions, e.g., for 3-D model alignment, the partial models have
to be brought into approximate positions. The problem of auto-
matic “crude” registration (in order to obtain good initial con-
ditions) was addressed in [7], where the authors used bitangent
curve pairs which could be found and matched efficiently.

In the above methods, geometric properties are used to align
3-D shapes. Another important area of interest for registration
schemes is two-dimensional (2-D) image matching, which can
be used for applications like image mosaicing, retrieval from
a database, medical imaging etc. Two-dimensional matching
methods rely on extracting features or interest points. In
[8], the authors show that interest points are stable under
different geometric transformations and define their quality
based on repeatability rate and information content. One of
the most widely used schemes for tracking feature points is
the KLT tracker [9], which combines feature selection and
tracking across a sequence of images by minimizing the sum
of squared intensity differences over windows in two frames.
A probabilistic technique for feature matching in a multireso-
lution Bayesian framework was developed in [10] and used in
uncalibrated image mosaicing. In [11], the authors introduced
the use of Zernike orthogonal polynomials to compute the
relative rigid transformations between images. It allows the
recovery of rotational and scaling parameters without the
need for extensive correlation and search algorithms. Precise
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TABLE 1
DESCRIPTION OF THE TEST DATABASE AND THE MEASURE OF QUALITY OF THE CORRESPONDENCE MATRIX

Subject Index Data Quality KL Divergence Subject Index Data Quality KL Divergence

1 Training, Fig. 1(a) 6.47 2 Training, Fig. 1(b) 6.45

3 Training, Fig. 1(c) 6.77 4 Fig. 1(d) 9.58

5 Fig. 1(e) 9.49 6 Fig. 1(f) 9.53
7(1a) Good Data 10.23 8(1b) Glasses 11.23
9(1c) Good Data 9.62 10(1d) Glasses 11.43
11(le) Poor Lighting 10.74 12(1f) Poor Lighting 10.62
13(1h) Female, Glasses 12.24 14(11) Female 10.6
15(13) Glasses 11.28 16(1k) Eyes hidden by hair 11.05
17(11) Glasses 11.38 18(1m) Good Data 10.42
19(1n) Good Data 9.99 20(1p) Glasses and Beard 12.35
21(1q) Glasses and Beard 12.53 22(1r) Good Data 10.34
23(1s) Glasses 11.24 24(1t) Female 11.12

registration algorithms are required for medical imaging
applications also. A mutual information criterion, optimized
using the simulated annealing technique, was used in [12] for
aligning images of the retina.

Various probabilistic schemes have also been used for
solving registration problems. One of the most well-known
techniques is the work of Viola and Wells for aligning 2-D and
3-D objects by maximizing mutual information [13]. The tech-
nique is robust with respect to the surface properties of objects
and illumination changes. A stochastic optimization procedure
was proposed for maximizing the mutual information. A
probabilistic technique for matching the spatial arrangement of
features using shape statistics was proposed in [14]. Most of
these techniques in image registration work for rigid objects.
The constraints using intensity and shape usually break down
for nonrigid objects. The problem of registering a sequence
of images of a nonrigid observed scene was addressed in
[15]. The sequence of images were treated as samples from a
multidimensional stochastic time series (e.g., an autoregressive
model) which is learned. The stochastic model can then be
used to extend the video sequence arbitrarily in time.

B. Overview of Our Approach

The above methods for establishing correspondence rely, in
essence, on matching of image tokens across groups of images.
However, extraction of such image tokens (like the intensity or
shape of significant features) is an inherently noisy process and
most methods will be susceptible to error. In addition, it is ex-
tremely difficult to compute quantities which are invariant under
different imaging conditions; both intensity and shape, the two
most easily obtainable characteristics in an image, are depen-
dent on the viewing angle. In this paper, we show that the avail-
ability of prior data in the form of a video sequence can help
in developing robust correspondence schemes. In most appli-
cation domains, obtaining this prior data is not a problem; e.g.,
for faces, it involves learning some general facial characteristics
from a few video sequences of different faces.

The method presented here works with the edge image of
local features (which gives an approximate notion of the 2-D
shape of that feature), rather than their intensity. A doubly sto-
chastic matrix, representing the probability of match between
the features, is obtained using Sinkhorn normalization [16] and
the prior information. A statistically optimal technique is pro-

Fig. 1. Front and side views of the subjects 1-6 in our experiments.
(a)—(c) Three subjects in the training set, while (d)—(f) represent three of the
subjects of the test set.

posed, which relies on minimizing the probability of error of
a mismatch or equivalently maximizing the posterior density
of the match given one of the features. The method works by
matching the entire constellation of features in the two sets. The
search space is no longer the set of features, but all their per-
mutations (N! for N features). The motivation for this global
strategy (as opposed to the correspondence of individual fea-
tures, that are local to that region) is that it emphasizes the
“structural description of the pattern” [17] of the features. Use of
prior information of the shape is an essential part of the scheme.
The prior information is extracted from the video sequence in
the form of an average representation of the features. The in-
corporation of prior information into the design of the detection
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strategy leads to a robust algorithm. The prior information can
be collected once for different classes of objects and used across
different objects in that class, e.g., in our application, the prior
information can be collected once from video sequences of one
or more faces and used across a large number of faces with sim-
ilar characteristics. For 3-D face model generation, we learn the
mean shape of a few significant features located on the face. The
general shapes of eyes, nose, and lip features vary little from
person to person, and thus a sufficient average shape may be
obtained using data extracted from a few images of people over
arange of viewing angles. Also, since the shapes of the different
features are very different, considering their spatial arrangement
in the face reduces any errors even further. A two-step optimiza-
tion process is adopted, which consists of identifying occlusions
followed by a probabilistic matching for each permutation of the
two sets of features. It is also shown that, in practice, the search
set can be made less than N!.

The above principles are used to obtain holistic 3-D models
of a face from its video sequence by first creating partial models.
The generation of 3-D face models is of particular importance
to applications in multimedia, computer graphics and surveil-
lance. In multimedia, 3-D face models can be used in video con-
ferencing applications for efficient transmission. In computer
graphics applications, 3-D face models form the basic building
block on which facial movements and expressions can be added.
Being able to build these models automatically from video data
would greatly simplify such animation tasks where models are
now built painstakingly with significant human intervention. In
surveillance applications, 3-D models can be used for recogni-
tion across wide changes in viewing angles.

This paper is organized as follows. In Section II, we present
our method to compute the probabilities for matching the indi-
vidual features. Section III explains how to incorporate the spa-
tial confguration of the features into the matching scheme. The
correspondence algorithm is described in Section IV. The results
of our algorithm applied to the problem of creating holistic 3-D
models from partial ones is presented in Section V.

II. REGISTRATION USING PRIOR MODELS

A. Formulation of the Registration Problem

Our aim is to obtain correspondences between two sets of
features extracted from images taken from different viewing
directions and represented as sets of random variables, X =
[X1,...,Xp]and Y = [Y3,...,Yas]. Each of the elements of
the sets represents an image which is a collection of corners in a
local region around the feature of interest, thus giving an idea of
the 2-D shape of the region; hence, we use the term shape cues.
Examples of these images can be seen in Fig. 5. Though the
shapes of different features are usually significantly different,
and therefore easier to match, they are often dependent on the
viewing angle and their extraction process is extremely sensitive
to noise. To overcome this, we use priors, which are the mean
shape of each feature (“mean feature”) collected from the video
sequence over a range of viewing angles. Since the shapes of the
features do not vary drastically for different people, the prior in-
formation can be collected only once and used across different
video sequences.
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Fig. 2. Result of the corner finder algorithm on two images is represented by
the small dots.
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Fig. 3. Features identified in the front and side view images by applying a
k-means clustering to the output of the corner-finder.

B. Computing the Feature Correspondence Probabilities

Let p = pq,..., g represent the prior information of K
features. Let H; be the hypothesis that Y; matches X ; we wish
to compute the a posteriori probability P(H;|X). Defining the
event £x,; = {X matches s}, we hypothesize that the prob-
ability of X matching p; is directly proportional to the inner
product of X with y; (since the inner product gives a measure
of similarity). Since X and p; are images with nonnegative pixel
values, the inner product will always be nonnegative. Then
(Xn7 :u’i>

M=

=1

where (-) denotes inner product. For two images of size P x @,

P . .
(X, p15) = (1/PQ) S0y Yoy Xou(p, @)pa(p, q). Similarly,
the probability that Y; matches X given the event £x,; is pro-
portional to the inner product of Y; and 1,

1

P(H;| X, Exy,) = Vi, 13). )

(Y, pei)

M=

k=1

Then, from the theorem of total probability [18], the a posteriori
probability (which is the probability of X,, matching Y;) is

K
P(H;|X = X,) =Y P(Hi|X,Exp, ) P(Exp, | X = X,).

k=1
3
The probabilities are represented in the form of a posterior prob-
ability matrix P(X,Y). Our method works by maximizing the
posterior probabilities. Viewed from a Bayesian perspective,
this is equivalent to minimizing the Bayes risk, which is the
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Fig. 5.

probability of error under the condition that incorrect decisions
incur equal costs [19].

C. Prior Information

Assume that a feature X,,(I)! is corrupted by independent,
zero-mean, additive noise v. Let

Xn(l) = Sp(D) +vu(l), 1=1,...,L 4)

where S, (1) is the true unknown value of the feature. Then

fn = E[X,] = E[S.] = (1/L(n)) 214 X, (1), since the

noise is zero-mean and independent of the parameter, and the

mean is computed over a range of viewing angles L(n) (L(n)
can be different for different features). Thus we can compute the

IThe notation X, (!) represents the image within a bounding box around the
nth feature from the Ith viewing position.
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(76.8)

(120,16)

(63,35)

(99,81)

(96,100) (67.135)

Intensity blocks around the features to be matched in the front and side view. The numbers represent the position of the corresponding feature in the image.

Shape of the significant image attributes in the front and side views around the feature point whose position in the original image is indicated on top.

Fig. 6. Prior information (the shape representation averaged over a large
number of viewing angles) which was precomputed.

probability of a feature X, in one image matching another fea-
ture Y,,, in another image from (3). The probability is maximum
when both X, and Y,,, match a particular prior feature ;.
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Fig. 7. Posterior density matrix.

D. Identifying Unpaired Features

In matching features from two different views, it is important
to identify features present in one view but not in the other. If a
particular feature X,, does not correspond to any feature in the
set Y, then P(H;|X = X,,),7 = 1,..., M will not have any
distinct peak (defined as the maximum whose difference with
the second largest value exceeds a predefined threshold) and
X,, can be identified. Similarly, if H is the hypothesis that X;
matches Y, P(H!|Y =Y,,),i =1,..., N will have arelatively
flat profile if Y,,, does not have a corresponding match in X.

E. Correspondence Matrix

From the posterior probabilities, we would like to obtain a
single doubly-stochastic matrix C(X,Y), each row of which
denotes the probability of matching the elements of Y given a
particular X, and each column the probability of matching the
elements of X given a particular Y. This is done by using the
Sinkhorn normalization procedure to obtain a doubly-stochastic
matrix by alternating row and column normalizations [16].

The advantage of using the Sinkhorn normalization procedure
is that it allows us to use either X or Y as the reference fea-
ture set. It requires a-priori identification of unpaired features.
This reduces the number of features that need to be matched
and hence the combinatorics of the problem. As explained previ-
ously, the unmatched features are identified from their relatively
flat probability profile. This is perfectly feasible since, as shown
in the experiments in Fig. 9, the posterior probabilities always
have a relatively flat trend for the case of unmatched features.

III. MATCHING THE SPATIAL ARRANGEMENT OF FEATURES

Rather than computing a probability of match for individual
features, a more reliable correspondence can be obtained if we
consider the entire set of features, taking into account their rel-
ative spatial arrangement in the object, i.e., the constraints on
the relative configuration of the features. Consider, for the pur-
poses of this analysis, two sets of features X and Y having the
same cardinality, say N (after identifying the unpaired features).
We want to assign a probability of match of X against all pos-
sible permutations of Y. Let the permutations of Y be repre-
sented by Y, ..., YN with Y = [V(y),...,Y{n)], where
[Ya), ..., Y()] represents an ordering of [Y1, ..., Yn]. Let H
represent the hypothesis that Y* matches X (note the super-
script used to distinguish the hypothesis for individual features).
Then

P(H'|X) = II}L, P(H )| X;), ®)

where H ;) is the hypothesis that Y(;) matches X; for a par-
ticular permutation Y*. This assumes the conditional indepen-
dence of each hypotheses H ;. This is a valid assumption for fa-
cial features when the change in expression is small; however,
for other examples such as matching human body parts while in
motion, this assumption would not hold since some body parts
usually move together. Computing each of the probabilities in
(5), we see that P(H'| X ) is maximum when the permutation Y
matches the set X, element to element. In spite of considering
all the permutations of one of the feature sets, the combinatorics
of the problem is not high. This is because we are matching the
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Fig. 8. A posteriori probabilities for each of the features in the front image and the side image, obtained respectively from each of the rows and columns of the

correspondence matrix.

image in a region around a feature point of interest, and for the
face there are usually only a few significant regions (e.g., eyes,
nose, lips, etc.). In our experiments, we performed the matching
using less than ten facial regions.

IV. THE CORRESPONDENCE ALGORITHM

We are given two images Z; and 7, and the precomputed
prior information 1, ..., K.

1) Feature Extraction: Compute the set of features X =
[X1,...,Xp]land Y = [Y1,...,Y)] using a suitable
feature extraction method (in our case, a corner-finder
algorithm).

2) Compute Probability of Match: Compute the match prob-
abilities from (3) using the prior information p1, . .., ux.

3) Identify Unpaired Features: ldentify those features
present in one view, but not in the other as explained
above. At the end of this process, we are left with two
sets with the same cardinality (denoting the paired
features) which have to be matched. Denote them by
X = [Xl,XN] and Y = [Y1YN]

4) Sinkhorn Normalization: Compute the correspondence
matrix C(X,Y) by applying the Sinkhorn normalization
procedure to the match probabilities after removing the
unpaired features.

5) Compute the Probability of the Spatial Arrangement
of the Features: Compute the posterior probability for
matching X with all permutations of Y, i.e., P(H!|X),
1 =1,...,N! from (5).

6) Search for Best Match: Obtain i = arg max; P(H'|X).
Assign Y’ = [V(1), ..., Y(x)] as the match to X.
Reducing the Search Space: The search space in the last step
of the above algorithm is of size N!. In practice, the search space
can be reduced. Foreach X = X,,,n» = 1,..., N for the paired
sets of features, identify the set Y,, = {Y; : P(H;|X = X,,) >
p}, where p is an appropriately chosen threshold. Alternatively,

we can choose the {Y;} that have the largest [ values of the
posterior densities. This smaller set identifies those features in
Y which are the closest to a particular feature in X. We can then
compute the probability of match for the permutations of Y in
this reduced set. The actual number of elements contained in the
search space will depend on the exact values of the probabilities
ofY,,n=1,...,N.

V. EXPERIMENTAL ANALYSIS AND APPLICATIONS

We present the results of our algorithm applied to the problem
of registering two images of a face taken from two different
viewing directions. We use a database consisting of 24 people
whose images have been obtained under different imaging con-
ditions and who bear widely varying facial features. We present
the results of the probabilistic correspondence algorithm for
each of these subjects and the result of the global alignment
strategy for a few of them. Finally, we show how our registra-
tion algorithm can be used for building holistic 3-D models from
partial ones.

The database of test subjects is explained in Table I. The im-
ages of the first six subjects are shown in Fig. 1, with both front
and side views. The images of the other subjects are not shown
in the paper on their personal request. The images were obtained
from a database available on the World Wide Web at http://im-
ages.ee.umist.ac.uk/danny/database.html. Details can be found
in [20] and the data can be viewed by the interested reader at the
website.

The prior information was precomputed from the video
sequences of the first three subjects (1, 2, and 3) in Table I
[Fig. 1(a)—(c)]. We will refer to these subjects as the training
set. The remaining subjects will be referred to as the test set.
Before we proceed to present the results on this entire dataset,
we will present the details of our algorithm on Subject 4 (the
first in the test set). The details will be similar for the other
subjects, and hence we present only the final results.
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Fig. 9. Probability matrices obtained for subjects 1-24 in our experiment. The subjects are arranged in row-major order, i.e., the numbering of the subjects

increases sequentially across each row.

A. Feature Selection and Prior Extraction

To select the features that need to be registered, we use a
corner finder algorithm based on an interest operator? [21].
Fig. 2 shows the output of the corner finder algorithm rep-
resented by the small dots. Given this output defining the
corners of the image, a clustering algorithm, like k-means,
was used to identify feature points. The k-means algorithm
computes the centroids of these dots and identifies them as the
important features on the face. The local images, formed by
the dots around the features, need to be matched. The k-means
algorithm is thus used to filter out spurious points in the output
of the corner finder algorithm; a few important clusters are
identified and then only the points around these clusters are
retained. It is very important to understand that we match entire
local regions around these feature points, not just the points.
Hence only a few such regions (less than ten) are enough, since
there are only a few distinct aspects of a face. Fig. 3 plots
two sets of features identified using this strategy. However, in
order to avoid the feature matching problems that can arise
due to the symmetry of a face, we only considered features
located in the right 70% of the original images. In addition,
features lying in the region near the image boundaries were
neglected. We will present our results on this smaller set of
features. Fig. 4 plots the intensities in the local regions around
the features and Fig. 5 plots the output of the corner-finder
algorithm representing the 2-D shape around these features.
Fig. 6 represents the precomputed prior information in the form

2The interest operator computes the matrix of second moments of the local
gradient and determines corners in the image based on the eigenvalues of this
matrix.

of the mean features. The prior was collected by tracking a
set of features across multiple frames of the video sequences
of subjects 1, 2, and 3 and then integrating them out. These
subjects were chosen because they had significantly different
facial characteristics and thus covered a large class of features.

B. Estimation of Posterior Probabilities

Fig. 7 gives a graphical representation of the posterior prob-
ability matrix P(X,Y) obtained before the Sinkhorn normal-
ization procedure. It can be seen that there is a distinct peak for
each row and column of the matrix, corresponding to matching
of a pair of features. A distinct peak is defined as the maximum
of the probability values in that row or column and whose differ-
ence with the second largest value is above a certain threshold.
The valleys of this surface plot, representing rows or columns
with no peaks, correspond to unmatched pairs of features. Fig. 8
plots the rows and columns of P(X,Y) respectively. The true
values (as obtained manually) are marked by a * on the hori-
zontal axis, except for those which are unmatched (the unpaired
features).

C. Matching the Spatial Arrangement of Features

Fig. 11(a) plots the probabilities for matching X against all
possible permutations of Y. Comparison with Fig. 8 shows that
there is a very distinct peak in this case, justifying our earlier
assertion that taking into account the spatial arrangement of the
features leads to a more robust algorithm. Since there are only a
few regions to match in the two views, the combinatorics of the
problem of matching all arrangements is not a problem.
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Fig. 10. KL divergence between the obtained probability distribution and the ideal one for all the subjects in the experiments.

D. Results on Complete Dataset

Having explained the details of our algorithm on one partic-
ular example, we present the result of applying our method to the
dataset of 24 individuals described above. Analysis of the im-
ages in the dataset suggests that they have widely different char-
acteristics, e.g., different ethnic backgrounds, different gender,
with or without eyeglasses, with or without beard or moustache,
different imaging conditions etc. Thus it is to be expected that
the results of the probabilistic matching technique would be dif-
ferent. The probability matrices for each of the subjects is shown
in Fig. 9. For easy comparison between the different matrices,
we tried to keep the numbering of the features the same (e.g.,
eye in always number 5 in the front view). This is done man-
ually and is not an essential part of the algorithm. However, in
some cases it was not possible because of the kind of features
identified. Comparison of these plots with Table I shows that
the distinctness of the peaks in the probability matrices does in-
deed decrease as the features of the test set move farther away
from those of the training set. In order to get a quantitative feel
of the deviation of the probability matrix from the ideal one, we
compute the Kulback-Leibler (KL) divergence [22]. The ideal
matrix is the one that would be obtained if the match was per-
fect. It contains a 1 for the correct match in each row and zeros
elsewhere and is defined manually. The values of the KL diver-
gence are tabulated in Table I and plotted in Fig. 10. Analysis
of the KL divergence reveals how the performance of our algo-
rithm degrades as a function of the facial characteristics.

Surely, by themselves, the probability matrices are not
enough to identify all the corresponding features. It is in these

cases that the global matching scheme using the spatial arrange-
ment of all the features is most important. In Fig. 11(b)-(d),
we present the result of the spatial arrangement for the three
subjects having the highest KL divergence values, namely 13,
20, and 21. It can be seen that there is a distinct peak in the
probabilities in all three cases, thus proving that our method is
indeed robust and can be applied to a large number of examples.

E. Importance of Prior Information

We now demonstrate the importance of the prior informa-
tion, again resorting to our special example of subject 4. In
Fig. 12, we plot the probabilities of match of each feature in
X against the different features in Y, where we do not have
the precomputed prior information. The probabilities were esti-
mated using the shape similarity between the two features. This
was done using the standard technique of computing the ratios
of the eigenvalues of the first and second central moments of the
coordinates of the set of points representing the features [21].
This was extended to consider the permutations of the features
so as to take advantage of the global arrangement. Fig. 13 plots
the probability of matching the spatial arrangement of the fea-
tures without the advantage of the prior information. In both
these cases, we see that the peaks of the probabilities do not
correspond to the true match, as indicated in the plots. This em-
phasizes the importance of the prior information and shows how
a simple correlation based matching technique can be modified
to provide a very robust solution by incorporating suitable in-
formation gathered from the video data.
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Fig. 11.
20, and 21, arranged in a row major order.

F. Application to 3-D Model Alignment

We now demonstrate the application of our correspondence
algorithm for aligning two partial models of a human face ob-
tained from different views. The models were obtained from a
video sequence of a person moving his head in front of a static
camera using structure from motion (SfM) [23], [24]. The video
sequence was split into two portions, corresponding to the front
and side views of the face. The two partial models were obtained
from these two portions of the video sequence. In order to ob-
tain the 3-D models from video, a set of features were tracked
and the depth and camera motion at these points were computed
using a multiframe structure from motion (SfM) algorithm [25].

(d)

Probability of matching X against all permutations of Y. The true value is marked with a 1} below the horizontal axis. The plots are for subjects 4, 13,

The SfM algorithm worked by fusing the depth estimates ob-
tained from two images using optical flow techniques. The fu-
sion was done using robust statistics and a generic model of a
face. The error in the reconstruction was estimated and compen-
sated for. Details of the 3-D modeling algorithm are available in
[26]. Fig. 14 depicts the two models, one from the front, the
other from the side, which we aim to integrate into one holistic
model.

In order to align these two partial models, one image, ob-
tained from each of the views, is considered and our algorithm
is used to obtain correspondence between the features automat-
ically selected in these images. Prior information for important
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features in a human face was precomputed, and used for this tween the two models for each of the features separately, i.e.,
application (as explained earlier). Our algorithm presented in y; = R;x; + T; where x; and y; are the 3-D coordinates of a
Section IV was then used to obtain the correspondences be- matching pair of points and R; and T; the rotation and transla-
tween tefhe different features. Having obtained the feature cor- tion for a local region around the feature :. Fig. 14 also shows
respondence, we compute the local affine transformation be- two views of the complete model after alignment. Our feature
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Side View

View 2 After Alignment

Fig. 14. The 3-D partial models from the front and side which are used as input to the algorithm are shown in the top row and two views of the 3-D model obtained

after the alignment are shown in the bottom row.

correspondence algorithm can also be used to obtain good ini-
tial conditions for precise registration methods described in [1]
and [13].

VI. CONCLUSION

In this paper, we have presented a probabilistic framework
for matching two sets of features, extracted automatically from
images, which takes into consideration the global structure of
the feature sets. The Sinkhorn normalization procedure is used
to obtain a doubly stochastic matrix denoting the probabilities of
match for the two feature sets. The method works by minimizing
the probability of a mismatch (using the Bayes error criterion)
between the shapes of the features, after taking into account
their spatial arrangement. Robustness is achieved by including
prior information regarding these feature sets. We emphasize
that the prior can be easily obtained from video, and needs to
be computed only once for a class of objects. An application
of this method to 3-D model alignment of a human face was
demonstrated.
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