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Abstract

Multi-resolution schemes for 3D modeling from an input video sequence are becoming very pop-

ular. However, multi-resolution techniques may not be the best solution strategy in many scenarios and

it is important to understand the characteristics of such algorithms. In this paper, we present a multi-

resolution structure from motion algorithm, using monocular video as input, that exploits the bilinear

relationship between depth and translation parameters to propagate the estimates through a coarse-

to-fine reconstruction framework. We present a detailed analysis of the deterministic and statistical

properties of such an algorithm. We show that our optimization procedure is guaranteed to converge to

the local minimum at each resolution. We also derive analytical expressions for the error covariances

of depth and motion estimates, obtained using a multi-resolution structure from motion reconstruction

algorithm, as a function of the error covariance of the feature tracks in the the input video. The method

is based on using the implicit function theorem for deriving the error covariance at each resolution, and

propagating the statistics from coarse to fine resolution, again taking advantage of the bilinear nature

of the problem. The statistical calculations do not require the assumptions of Gaussianity of the error

distributions and are valid for dense depth reconstruction estimates. Simulations have been carried out

using real-life video sequences. It is shown how multi-resolution techniques can either succeed or fail in

reconstructing the same scene depending on the quality of the input video of that scene, thus justifying

the need for a theoretical analysis of error propagation in the 3D modeling from video.

Index Terms

Multi-resolution, structure and motion estimation, error analysis, bilinear parameterization, face

modeling.

I. I NTRODUCTION

Extraction of 3D structure of a scene from a sequence of images, termed structure from motion

(SfM), has been the central problem in computer vision for the past two decades. Extensive

literature on the subject can be found in [1], [2] and [3], among others. Recent research on

SfM issues has concentrated on sensitivity, robustness and error characterization of existing

techniques [4], [5], [6], [7], etc. The errors that affect the quality of SfM algorithms can be

broadly classified into two groups — geometrical and statistical. The geometrical errors arise

because of the well-known ambiguities (e.g. the scale ambiguity) present in the mathematical

description of the problem (see [8] or [2]). They can usually be handled by imposing additional

constraints on the solution space. The statistical errors are a result of the poor quality of the
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video sequence. They are an inherent part of the input data and need to be compensated for, if

the final output solution is to be robust enough for engineering applications.

Multi-resolution techniques (e.g. [9], [10], [11]) have recently become popular in 3D struc-

ture recovery from a video sequence. In this paper, we concentrate on multi-resolution SfM

techniques from monocular video with a small baseline. We focus on the continuous (differen-

tial) version of the SfM equations [12]. We show that the locally optimal solution can be obtained

at each resolution of the multi-resolution reconstruction scheme by taking advantage of the bi-

linear parameterization of the structure and motion equations. Even though multi-resolution

techniques have many advantages, they may not always be effective or useful. We will show

later with an example (Figures 3, 4), that multi-resolution techniques may or may not succeed in

reconstructing the same scene, depending on the quality of the input video of the scene (which

will vary due to illumination conditions, imaging sensors, etc.). Thus, it is important to under-

stand the effect of the quality of the input video on the final 3D reconstruction. We show how

to estimate the quality of the 3D reconstruction as a function of statistics of the input video. We

start with reconstruction at a single resolution and derive a closed-form expression for the error

covariance of the reconstruction as a function of the error covariance of the feature tracks in

the video sequence. We then show that it is possible to extend the mathematical methods used

here to the multi-resolution reconstruction case and derive similar closed form expressions. The

derivation is based on the implicit function theorem of real analysis [13], and does not require

the assumption of Gaussianity of the error statistics. It has been used previously in vision for the

derivation of the uncertainty in the fundamental matrix [1] and for establishing partial results on

the uniqueness of the structure and motion parameters when a long sequence is used [14].1 We

show the effect of such an analysis on real-life 3D reconstruction problems.

II. RELATED WORK

Pioneered by the seminal work of Longuet-Higgins [16] and the eight-point algorithm devel-

oped independently by Tsai and Huang [17], SfM has been one of the most vibrant research areas

in computer vision. Most of the earlier work concentrated on developing efficient algorithms for

reconstructing 3D structure from multiple frames. The use of multiple frames was motivated by
1We have recently come to know that a somewhat similar method was applied for error calculations in medical imaging

applications [15].
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the hope that the extra information would help correct the flaws that are inevitably present in

two-frame reconstructions. The problem of tracking an object across multiple frames was ad-

dressed in [18] where a known object and its past position and velocity were used to predict its

new location. Broida and Chellappa investigated the use of the extended Kalman filter [19] for

estimating motion and structure from a sequence of monocular images [20]. Azarbayejani and

Pentland extended this work to include the estimation of the focal length of the camera, along

with motion and structure [21]. Tomasi and Kanade developed an algorithm for shape and mo-

tion estimation under orthographic projection using the factorization theorem [22]. Szeliski and

Kang proposed a non-linear least squares optimization scheme using the Levinburg-Marquardt

method for solving the problem [23]. Oliensis developed a multi-frame algorithm under per-

spective projection in [24], which was extended recently in [25]. Most of these multi-frame

methods can be characterized as batch processing (but not necessarily recursive), which means

that the problem of estimating the motion and structure is formulated as one of minimizing an

objective function defined as a sum of squares of the differences between the actual observed

images and the projections of their estimated 3D locations, over all tracked positions and images

(bundle adjustment). In contrast, Thomas and Oliensis proposed a fusion algorithm that com-

putes the final reconstruction from intermediate reconstructions by analyzing the uncertainties

in them, rather than from image data directly [26].

In spite of the existence of numerous algorithms for SfM [2], [3], [8], constructing accurate

3D models reliably from images is still a challenging problem. Many researchers have analyzed

the sensitivity and robustness of many of the existing algorithms. The work of Weng et al. [27]

is one of the earliest instances of estimating the standard deviation of the error in reconstruction

using first-order perturbations in the input. The Cramer-Rao lower bounds on the estimation

error variance of the structure and motion parameters from a sequence of monocular images was

derived in [28]. Young and Chellappa derived bounds on the estimation error for structure and

motion parameters from two images under perspective projection as well as from a sequence of

stereo images [29]. Similar results were derived by Daniilidis and Nagel in [30] and the cou-

pling of the translation and rotation for a small field of view was studied. They also proved that

many algorithms for three-dimensional motion estimation, that work by minimizing an objective

function, suffer from instabilities, and examined the error sensitivity in terms of translation di-
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rection, viewing angle and distance of the moving object from the camera. Zhang’s work [8] on

determining the uncertainty in estimation of the fundamental matrix is another important con-

tribution in this area. Chiuso and Soatto [31] and Soatto and Brockett [32] have analyzed SfM

in order to obtain provably convergent and optimal algorithms. Oliensis emphasized the need to

understand algorithm behavior and the characteristics of the natural phenomenon that is being

modeled [3]. Ma, Kosecka and Sastry [6] also addressed the issues of sensitivity and robustness

in their motion recovery algorithm. Sun, Ramesh and Tekalp [7] proposed an error characteriza-

tion of the factorization method for 3D shape and motion recovery from image sequences using

matrix perturbation theory. Morris, Kanatani and Kanade [33] analyzed the non-trivial effects

of unknown scale factor, referred to in the literature asgaugefreedom, on the covariance calcu-

lations in SfM. In [34], Roy Chowdhury and Chellappa showed that it is possible to analytically

compute the error covariance of 3D reconstruction as a function of the error covariance of the

optical flow estimates, using the implicit function theorem [13]. Recently, Fermulleret. al. [35]

have shown that the bias in optical flow estimates can be used to explain certain geometrical

optical illusions. We have extended their work to prove that the 3D estimate from SfM using

optical flow is also significantly statistically biased [36], [37].

III. PROBLEM FORMULATION

Consider a coordinate frameO-XY Z attached rigidly to a camera with the origin at the center

of perspective projection and theZ-axis perpendicular to the image planeo-xy. Assume that the

camera is in motion with respect to a single rigid body imaged scene with translational velocity

V = [vX , vY , vZ ]T and rotational velocityΩ = [ωX , ωY , ωZ ]T . We assume that the camera

motion between two consecutive frames in a video sequence is small, and use optical flow for

motion field analysis. Ifp(x, y) andq(x, y) are the horizontal and vertical velocity fields of a

point (x, y) in the image plane, they are related to the 3D object motion and scene depth by [12]

p = (x− fxf )h +
1

f
xyωX − (f +

1

f
x2)ωY + yωZ (1)

q = (y − fyf )h + (f +
1

f
y2)ωX − 1

f
xyωY − xωZ , (2)

whereh(x, y) = vZ/z(x, y) is the scaled inverse scene depth,f is the focal length of the cam-

era, and(xf , yf ) = (vX

vZ
, vY

vZ
) is known as thefocus of expansion(FOE). ForN such points,
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normalizing linear distances with respect to the focal length and defining2,

h = [h1, h2, ..., hN ]TN×1 (3)

u = [p1, q1, p2, q2, ..., pN , qN ]T2N×1 , [ui]
T
i=1,2,·,2N (4)

ri = [xiyi,−(1 + x2
i ), yi]

T
3×1 (5)

si = [1 + y2
i ,−xiyi,−xi]

T
3×1 (6)

Ω = (ωX , ωY , ωZ)T
3×1, (7)

Q = [r1, s1, r2, s2, ..., rN , sN ]T2N×3 , (8)

P = diag[xi − xf yi − yf ]
T
2N×N,i=1,...,N , (9)

B = [P Q]2N×(N+3) (10)

z = [h Ω]T(N+3)×1 , (11)

it can be shown that

u = Ph + QΩ =
[

P Q
]

 h

Ω


 ∆

=Bz. (12)

We want to computez from u.

Consider the cost function which minimizes the re-projection error (i.e. bundle adjustment)

C =
1

2

2N∑
i=1

(ui − ûi)
2 =

1

2

2N∑
i=1

C2
i (13)

Ci = ui − ûi (14)

where(p̂i, q̂i) are the projections of the depth and motion estimates,z, onto the image plane and

are obtained from the right hand side of the equations (2).

IV. M ULTI -RESOLUTIONALGORITHM

We now show how to solve the above problem optimally in a multi-resolution framework.For

each pixelat resolution levell (represented by a superscript), equation (2) can be re-written in a

hierarchical way [10].

ul = hlGlV + KlΩ (15)

2Theith point is represented by the subscripti.

Diagonal matrices will be very frequently used in the calculations. A diagonal matrix of sizeN ×N consisting of the diagonal

termsa1, ..., aN will be represented as diag[a1, ..., aN ] or diag[ai]i=1,...,N .
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where

ul = [
p

2l
,

q

2l
]T , hl =

1(
Z
2l

) , xl =
x

2l
, yl =

y

2l
, (16)

Gl =


 − f

22l 0 xl

2l

0 − f
22l

yl

2l


 , (17)

Kl =




2lxlyl

f
−

(
f
2l + 2lxl2

f

)
yl

(
f
2l + 2lyl2

f

)
−2lxlyl

f
−xl


 . (18)

It can be observed that (15) is a bilinear system. That is, the unknown parametersΘl =

[mT hl]T can be naturally split up into motion vectorm = [VT ΩT ]T and structure parameter

hl such that the system is linear inm for fixedhl and linear inhl for fixedm:

• Motion subsystem:

Slm = ul (19)

whereSl =
[
hlGl Kl

]
andul are known, and the motionm = [VT ΩT ]T is unknown.

• Structure subsystem:

vlhl = wl (20)

wherevl = GlV andwl = ul −KlΩ are known, and the inverse depthhl is unknown.

Denote estimated structure byĥl, estimated motion bŷm, and the corresponding optical flow

computed from (15) bŷul. The cost function (13) can be rewritten as:

C(Θl) =
1

N l

N l∑
i=1

||ul
i − ûl

i||22 (21)

whereN l is the total number of pixels at levell. The SfM problem is then formulated as finding

both structure and motion so that (21) is minimized. A natural way of solving such a bilinear

system is to treat it as a sequence of least-squares problems. First, the structure propagated

from the previous coarser level is fixed and the motion is solved using the motion subsystem.

Then, the computed motion is fixed and the structure is solved using the structure subsystem.

Mathematically,

m(j) = arg min
m

C
(
m, hl(j − 1)

)
(22)

hl(j) = arg min
hl

C
(
hl,m(j)

)
, (23)
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Fig. 1. Hierarchical iterative algorithm.

wherej is the iteration index. When the motion at the current level converges, the structure is

propagated to the next level. It is illustrated in the appendix that this is indeed a descent method

that will converge to a local minimum (see also [38], Chapter 10).

The motivation for formulating the structure from motion problem in a hierarchical way is

that (xl, yl, Z l) and(pl, ql) define a hierarchical “scene”, in which the sizes of all objects and

the optical flow are reduced by half when the levell increases by one. Thus in the coarsest

level, the structure tends to be flat. This can be exploited to generate an initial guess at each

resolution that, hopefully, leads to the global minimum. Our experiments show that compared to

single-resolution, the multi-resolution method reduces the error variance in structure estimation.

It is well known that (2) alone only yields structure and translation up to a scale transformation

[12]. Therefore, it is convenient to initialize inverse depthhl at the coarsest level to an arbitrary

constant. Then the motion(V,Ω) is estimated from (19). The resultingm =
[
VT ΩT

]T
is then

passed to (20) andhl is re-computed. This estimation procedure is repeated at each resolution

level (intra-level iteration) until the changes in the motion(V,Ω) is below a threshold.hl is

then propagated to the next finer level and refined (inter-level iteration), untilh0 is solved. The

algorithm is listed as follows. Its flow chart is shown in Figure 1.

1) Setl = coarsest level.

2) Assume thathl(0) is flat, i.e.hl(0) ← c, wherec is a positive constant.

3) Seti ← 0.

4) Seti ← i + 1.
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5) Whenhl(i− 1) is known from previous levell − 1, we have the motion subsystem:

Sl(i− 1)m(i) = ul (24)

whereSl(i−1) =
[
hl(i− 1) Gl Kl

]
andm(i) =

[
V(i)T Ω(i)T

]T
. Solve the linear sub-

system using the method of least squares, and obtain the estimate ofm(i) = (V(i),Ω(i))

at levell.

6) WhenV(i) andΩ(i) are computed from the previous step, we have the structure subsys-

tem:

vl(i)hl(i) = wl(i) (25)

wherevl(i) = GlV(i) andwl = ul − KlΩ(i). Solve the linear subsystem using the

method of least squares for each pixel, and refine the estimation ofhl(i) at the levell.

7) Go to 4, until‖m(i)−m(i− 1)‖ < ε, whereε is a small positive number; or a maximum

number of iterations is reached if not convergent yet.

8) Setl ← l − 1.

9) Propagate the structureZ l = 1
hl from levell + 1 by

xl ← 2xl−1, yl ← 2yl−1, Z l ← 2Z l−1 (26)

and interpolateZ l at (2xl−1 + 1, 2yl−1 + 1).

10) Go to step 3, untill = 0, i.e. the original image level.

11) SetZ ← 1
h0 .

V. ERRORANALYSIS

We now analyze the statistical characteristics of the above algorithm. Our aim is to derive an

analytical expression relating the statistics of depth and motion estimates to a function of the

statistics of the feature tracks in the input video sequence. For ease of understanding, we first

derive the result for the single resolution case, and these show how it can be extended to the

multi-resolution scenario.

A. Single Resolution Error Analysis

We state a result which gives a precise relationship between the error in image correspon-

dencesRu and the error in depth and motion estimateRz (see equation (12)), for the single
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resolution case. The cost function in (13) requires a non-linear optimization, which rarely gives

a good solution unless a very good initial condition is available. Different methods have been

proposed to deal with this. These involve estimating the camera motion first followed by the

depth, recursively updating the camera motion and depth one at a time using the previously

available estimate of the other, etc. [2]. For the case of reconstruction from a monocular video

that we deal with, it is often possible to estimate the FOE from the first two/three frames and as-

sume it to be constant over the next few which are used to reconstruct the structure. Knowledge

of the FOE makes the system of equations in (12) linear, because of the bilinear parameterization

in (2). We will derive the error covariance expression for this special case, because it is simple

and enough to prove the main result on multi-resolution error analysis. For the corresponding

result in the more general scenario, refer to [34].

Theorem 1:Define

Aīp = [−(xī − xf )Iī(N)| − rī] = [Aīph|Aīpm]

Aīq = [−(yī − yf )Iī(N)| − sī] = [Aīqh|Aīqm] (27)

whereī = di/2e is the upper ceiling ofi (̄i will then represent the number of feature pointsN

andi = 1, ..., n = 2N ) andIn(N) denotes a 1 in thenth position of the array of lengthN and

zeros elsewhere. The subscriptp in Aīp andq in Aīq denotes that the elements of the respective

vectors are derived from thepth andqth components of the motion in (2). Then

Rz = H−1

(∑
ij

∂CT
i

∂z

∂Ci

∂u
Ru

∂CT
j

∂u

∂Cj

∂z

)
H−T (28)

= H−1

(
N∑

ī=1

(
Aīp

TAīpRīp + Aīq
TAīqRīq

)
)

H−T , (29)

and H =
N∑

ī=1

(
Aīp

TAīp + Aīq
TAīq

)
, (30)

where Ru = diag[Rīp, Rīq ]̄i=1,...N . (31)

B. Proof of Error Covariance Result

We use the implicit function theorem [13] to prove the above result. The detailed proof of the

above result can be found in [34].
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C. Multi-Resolution Error Analysis

The method described above can now be applied in order to derive an exact expression for the

error covariance of the 3D model obtained using the multi-resolution reconstruction scheme in

Section IV. It relies upon the bilinear parameterization explained before. Since the algorithm

guarantees convergence to a local minimum (the best that bundle adjustment can do), the error

calculations are relevant and can be useful in practical situations. Moreover, the multi-resolution

scheme provides a good initial condition of each resolution, and thus we can reasonably expect

to reach the global optimum, or close to it. The error is first computed for the motion subsystem

in Section IV, using the method described above for the single resolution case, and passed on to

the structure subsystem of equations. The error computed for this subsystem is propagated to the

next higher level of resolution. For multiple iterations within a level (intra-level), the procedure

can be repeated before propagating the error covariance to the next higher level. However,

for simplicity, we will derive the result for a single iteration within each level. Note that the

assumption that the FOE is known is not required for the multi-resolution error calculations, and

hence this error analysis is valid for the most general scenario.

At resolutionl+1, we know the inverse depth and camera motion,hl+1 andml+1 respectively,

and are interested in computing these quantities at the next higher resolutionl. We also know

the error covariance of these quantities,Rl+1
m andRl+1

h and our aim is to estimate them for the

next higher resolution. At the first stage of the algorithm, we use the depth values from the lower

resolution to update the camera motion parameters at this higher resolution. Thus, in equation

(2), we knowpl, ql andhl+1. The cost function that minimizes the square of the re-projection

error is (see Section III for notational details)

C l =
N l∑

ī=1

[(
(pl

ī
− xīh

l+1

ī
)− (p̂l

ī
− xīĥ

l+1

ī
)
)2

+
(
(ql

ī
− ȳih

l+1

ī
)− (q̂l

ī
− ȳiĥ

l+1

ī
)
)2

]
. (32)

Thus the vector of unknownsz = [xl
f , y

l
f , ω

l
X , ωl

Y , ωl
Z ]. Then,

∂C l
i

∂z
=





Bīp
l, i odd

Bīq
l, i even

, (33)

whereBīp
l = [hl+1

ī
, 0,−rl

ī
] andBīq

l = [0, hl+1

ī
,−sl

ī
]. The Hessian matrix of the camera motion
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parameters can be obtained similar to (30) as

Hl
m =

N l∑

ī=1

(
Bīp

lT Bīp
l + Bīq

lT Bīq
l
)

. (34)

From (2), we see that sincehl+1 is used to update the motion component, the input at this stage

of the reconstruction isul
ī = [p̃l

ī
, q̃l

ī
] = [pl

ī
− xīh

l+1

ī
, ql

ī
− ȳih

l+1

ī
]. Thus the input covariance

Rl

ūi
= [Rl

uīp, R
l
uīq] = [Rl

īp
+ x2

ī
Rl+1

h
ī

, Rl

īq
+ y2

ī
Rl+1

h
ī

], (35)

whereRni is theith component ofRn. The partial with respect to the input, at any resolution

level l, is
∂C l

i

∂ul
=

[
∂C l

i

∂p̃l
1

∂C l
i

∂q̃l
1

· · · ∂C l
i

∂p̃l
N

∂C l
i

∂q̃l
N

]
= Ii(2N

l), (36)

which is a 1× 2N dimensional array. Therefore, the error covariance of the estimates of the

camera motion parameters at resolutionl is

Rl
m = Hl−1

m




N l∑

ī=1

(
Bīp

lT Bīp
lRl

uīp + Bīq
lT Bīq

lRl
uīq

)

Hl−T

m . (37)

The next step in the algorithm is to update the depth values depending on the camera motion

parameters estimated in the previous step. Givenml andRl
m, we want to estimatehl andRl

h.

The unknown parameter vector isz = [hl
1, ...,h

l
N l ] and the input isul

ī = [pl

ī
−rlT

ī Ωl, ql

ī
−slT

ī Ωl].

The cost function, representing the re-projection errors that we want to minimize, is

C l =
N l∑

ī=1

[(
(pl

ī
− rlT

ī Ωl)− (p̂l

ī
− rlT

ī Ω̂l)
)2

+
(
(ql

ī
− slT

ī Ωl)− (q̂l

ī
− slT

ī Ω̂l)
)2

]
. (38)

Then, from (2),

∂C l
i

∂z
=





Dīp
l, i odd

Dīq
l, i even

, (39)

whereDīp
l = [−(xl

ī
− xl

f )Iī(N
l)] andDīq

l = [−(yl
ī
− yl

f )Iī(N
l)]. The partial with respect to

the input is the same as in (36). The input covariance

Rl

ūi
= [Rl

uīp, Rl
uīq]

= [Rl

īp
+ xl2

ī
yl2

ī
Rl

ωx
+ (1 + xl2

ī
)2Rl

ωy
+ yl2

ī
Rl

ωz
,

Rl

īq
+ (1 + yl2

ī
)2Rl

ωx
+ xl2

ī
yl2

ī
Rl

ωy
+ xl2

ī
Rl

ωz
], (40)
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where the components of the motion are assumed uncorrelated andRl
ωx

, Rl
ωy

, Rl
ωz

are the vari-

ances for each of the components. The Hessian matrix of the inverse depth can be obtained as

in (30) as

Hl
h =

N l∑

ī=1

(
Dīp

lT Dīp
l + Dīq

lT Dīq
l
)

. (41)

Then, from Theorem 1, the error covariance of the estimates of the inverse depth at resolutionl

is

Rl
h = Hl−1

h




N l∑

ī=1

(
Dīp

lT Dīp
lRl

uīp + Dīq
lT Dīq

lRl
uīq

)

Hl−T

h . (42)

Summarizing the above result, we have shown that starting with a solution for motion and

structure,ml+1 andhl+1 with error covariancesRl+1
m andRl+1

h , we can obtain the error co-

variance for the solution at the next higher level of resolution,Rl
m andRl

h, by studying the

propagation of the errors through the multi-resolution 3D modeling strategy. Thus, starting with

the coarsest resolution, it is possible to analyze the quality of the reconstruction at any higher

level of resolution.

Equation (42) is derived under the condition thatml is known. If this condition is imposed in

the derivation of Theorem 1 andl = 1, (Aīp,Aīq) would be redefined as(Aīph,Aīqh) and this

would be exactly the same as(Dīp
1,Dīq

1). Hence forl = 1, (42) is equal to the single resolution

case (29).

VI. EXPERIMENTAL EVALUATIONS

In this section, both computer-rendered image sequences and real video sequences are used

to present results of the algorithm and numerically simulate the statistical result derived above.

A. Computer rendered image sequences

The source data were downloaded from http://sampl.eng.ohio-state.edu/˜ sampl/ data/ 3DDB/

RID/minolta/ faces-hands.1299/ index.html. The data include face/hand texture images, range

images, and corresponding masks for the valid data. Two frames of each image sequence were

generated from a virtual camera with the ground truth focal length and motion parameters shown

in Table I, and the optical flow is computed accordingly. All frames are200× 200 pixels. This
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TABLE I

MOTION PARAMETERS OF FACES. (VX , VY , VZ) IS IN PIXELS AND CAN ONLY BE COMPUTED UP TO SCALE.

(ΩX , ΩY , ΩZ ) IS IN RADIANS. f = 1000 PIXELS.

Motion VX VY VZ ΩX ΩY ΩZ

Face 1 85.022 88.363 −2.631 −0.0853 0.0819 0.0010

Face 2 87.329 88.003 −1.836 −0.0847 0.0840 0.0008

Actual 120 120 0 −0.084 0.084 0

database was used in order to analyze the accuracy of the 3D reconstruction against the ground

truth, i.e. true depth and motion values.

Figure 3(a) shows one frame of the ”Face 1” sequence. The invalid range data is filtered

out when generating the sequence. An artificial checkerboard background is generated for each

frame as a reference plane. Arbitrarily guessed flat depth is used at the coarsest levell = 3.

Figures 3(c)-(d) show the face structure recovered at the end of the iteration process at level

l = 2 and 0. Note that the axis scales are different in the figures. Figures 3(e) shows the

recovered ”Face 1” structure with skin texture from one viewing angle. It can be observed that

the face pops up from the flat surface at the coarsest level, and the structure is well propagated

and refined through the hierarchical “scene” from coarse to fine.

Figure 4(a) shows the structure error statistics when adding noise of zero mean and variance

of one pixel to the optical flow. It can be observed that the error variance decreases with the

intra- and inter- levels of iterations. As a comparison, the result from a single level iteration is

also shown in the same plot. Although the total number of iterations is twice as many as the

hierarchical one, it still ends up with higher error variance for the structure estimates. When

error variance of optical flow is too high due to the image noise (Figure 3(b) shows the image

with noise and Figure 3(f) shows the noise distribution), the multi-resolution algorithm does not

improve the structure estimate. Figure 4(b) shows the failure of a multi-resolution scheme in

reconstructing the same sequence as the quality of the input data gets worse. The error variance

decreases from level 3 to level 2. After that, it begins fluctuating and increases during inter-level

propagation.
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B. Real video sequences

We also used video sequences captured using a hand-held video camera to qualitatively test

the robustness of our method. Figure 5(a) shows one frame of face from a real video sequence.

The subject was moving his head left and right. The optical flow was calculated using the

algorithm proposed in [39]. The frame are320×240 pixels. Figure 5(b) shows that the structure

of the face is recovered reasonably well. The structure and motion parameters were recovered

using the algorithm designed in Section IV of this paper. The number of levels of resolution

used for this experiment are three. The background is removed for clarity.

VII. C ONCLUSION

In this paper, we have presented a multi-resolution SfM algorithm, analyzed its convergence

properties, and derived a result on the statistical error characteristics of our algorithm. The

algorithm exploits the bilinear parameterization of the depth and motion parameters in order to

obtain a solution which is locally optimal at each level of the reconstruction. The accuracy of

a multi-resolution modeling scheme depends upon the quality of the input video; therefore it is

important to understand when to apply such a method. One of the main results of this paper

is an analytical expression for the error covariance of the structure and motion estimates as a

function of the error covariance of the feature tracks in the multi-resolution framework. The

derivation is based on the implicit function theorem and does not require assumptions such as

Gaussianity of the error statistics. Experiments with real video data demonstrate the accuracy

of the reconstruction. The significance of the statistical calculations is demonstrated through

numerical simulations.

APPENDIX

We now illustrate that the above algorithm converges to the local minimum of depth and

motion estimates at each resolution levell.

A nonlinear systemy(Θ) is calledbilinear systemwhen its parameter vectorΘd×1 can be

split up into two partsΘ = [ρm×1 ηn×1]
T , d = m + n, such thaty(Θ) is linear inρ for fixed η

and linear inη for fixedρ.

In our case,ρ = m, η = hl in Section IV.
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Initial point
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Fig. 2. Illustration of convergence.

Figure 2 illustrates the convergence process in a two dimensional case. Essentially, the algo-

rithm splits the searching routine in spaceRd into two searches in spaceRm andRn correspond-

ing toρ andη respectively. Since inRm andRn, y(ρ, η(i− 1)) andy(ρ(i), η) are linear, the two

sub-searches converge to the local minimum.
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Fig. 4. Error statistics. Optical flow contains noise of zero mean and variance of 1. Solid line: Multi-scale (four

levels with totally 10 iterations). Dotted lines: Level transitions. Dash dot line: Single scale (one level with totally

20 iterations). (a) Face 1. (b) Failed example of Face 1 when noise variance is high.
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Fig. 5. Real sequence (320× 240, with noisy optical flow) (a) One frame of face image from real video sequences

1 and 2. (b) Recovered face structures 1 and 2 with skin texture.


