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Abstract

In this paper, we show how to estimate, accurately and efficiently, the 3D motion of a rigid object

and time-varying lighting in a dynamic scene. This is achieved in an inverse compositional tracking

framework with a novel warping function that involves a 2D → 3D → 2D transformation. This also

allows us to extend traditional two-frame inverse compositional tracking to a sequence of frames, leading

to even higher computational savings. We prove the theoretical convergence of this method and show

that it leads to significant reduction in computational burden. Experimental analysis on multiple video

sequences shows impressive speed-up over existing methods while retaining a high level of accuracy.

Index Terms

inverse composition, tracking, 3D pose, illumination

I. INTRODUCTION

Numerous methods exist for estimating motion and shape of an object from video sequences.

Many of them can handle significant changes in the illumination conditions by compensating for

the variations [1], [2], [3]. However, there do not exist many methods that can recover the 3D

motion and time-varying global illumination conditions from video sequences of moving objects.

In this paper, we propose such a method whereby the parameters of an illumination model and

the 3D motion are recovered in continuous time from video sequences. The work has important

applications in a number of areas, most importantly object recognition and inverse rendering.

The goal is achieved by building upon a recently proposed framework for combining the

effects of motion, illumination, 3D shape, and camera parameters in a sequence of images

obtained by a perspective camera [4]. In one of the most important results on illumination

modeling, Basri and Jacobs [5] and Ramamoorthi and Hanrahan [6] independently derived

a 9D spherical harmonics based linear representation of the images produced by a Lambertian

object with attached shadows. Cast shadow and specular reflectance were not considered. The

projection onto this orthonormal basis provided a representation of the global illumination in

the image. However, when applied to image sequences, the model requires the knowledge of

the surface normals of the object imaged in each frame. Building upon this result, we recently

showed that the set of all Lambertian reflectance functions of a moving object lies close to a

bilinear subspace consisting of nine illumination variables and six motion variables [4].

This theory allowed us to develop a mathematical framework for estimating the 3D motion
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and illumination parameters from a video sequence with arbitrary lighting changes. A simple

method, derived directly from the bilinear space theory for estimating the rigid 3D motion, was

presented in [4]. However, this algorithm involved the computation of the bilinear basis in each

iteration, which is a huge computational burden. In this paper, we show that it is possible to

efficiently and accurately reconstruct the 3D motion and global lighting parameters from a video

sequence within the framework of the inverse compositional algorithm [7]. This, in turn, provides

a quantitative assessment of the accuracy of the theory.

Relation To Previous Work: A well-known approach for 2D motion estimation and registration

in monocular sequences is Lucas-Kanade tracking [8]. Building upon this framework, a very

efficient tracking algorithm was proposed in [1] by inverting the role of the target image and

the template. However, their algorithm can only be applied to restricted class of warps between

the target and template (see [7] for details). A forward compositional algorithm was proposed in

[9] by estimating an incremental warp for image alignment. Baker et al [7] proposed an inverse

compositional (IC) algorithm for efficient implementation of the Lucas-Kanade algorithm to save

computational cost in re-evaluation of the derivatives in each iteration. The inverse compositional

algorithm was then used for efficiently fitting Active Appearance Models [10] and the well-known

3D morphable model (3DMM) [11] to face images under large pose variations. A dual inverse

compositional algorithm was also proposed for dealing with both the geometric and photometric

transformations in image registration when lighting varies [12].

None of the above estimate the lighting conditions in the images. An earlier version of 3DMM

fitting [13] used a Phong illumination model, estimation of whose parameters in the presence of

extended light sources can be difficult. The method in [14] dealt with point sources and did not

consider the effect of attached shadows. Specular reflection was taken into consideration in [15],

but it dealt with tracking feature points. To handle cast shadows, a physical model incorporating

the visible spectrum was introduced for removing the shadows in [16]. Based upon this theory,

a shadow resistant image registration method was proposed using the Gauss-Newton method in

[17]. Neither of them used an IC approach for motion and lighting estimation.

Our lighting estimation can account for extended lighting sources and attached shadows. Also,

we estimate 3D motion, unlike 2D motion in [1], [2], [18], [9], [19]. The warping function in

this paper is different from [7], [11] as we explain in Section III. For applications on faces, our

approach can be combined with the 3DMM method. Since our inverse compositional approach
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estimates 3D motion, it allows us to perform the expensive computations only once every few

frames (unlike once for every frame as in the image alignment approaches of [7]). Specifically,

these computations are done only when there is a significant change of pose.

Contribution: The following are the major contributions of this paper.

1. We propose a novel 3D model-based warping function for estimating 3D motion and lighting

from a video sequence. This involves a 2D → 3D → 2D transformation, which is different

from the warping functions used in [7], [11]. This function can be used in future for developing

other IC-based tracking algorithms to estimate 3D motion from image sequences.

2. Due to this novel warping function, we are able to extend two-frame IC tracking methods to

multiple frames without any significant sacrifice in accuracy.

3. We show that IC approaches can be used not only for estimating 3D motion, but also the

time-varying lighting conditions in the scene, including the effects of attached shadows. Existing

inverse compositional methods have focused on 2D motion or fitting a 3D model to an image.

4. We rigorously prove the accuracy of the motion and lighting estimates from first principles,

analyze the computational savings, and provide results on the numerical correctness of the

estimates.

II. ESTIMATING LIGHTING AND MOTION IN DYNAMIC SCENES - DIRECT APPROACH

In this section, we will briefly review the main results in [4] helping to lay the background

and notation for this paper. Let p = (TT,ΩT)T,p ∈ R6, denote the pose of the object. It was

proved that if the motion of the object (defined as the translation of the object centroid ∆T ∈ R3

and the rotation vector ∆Ω ∈ R3 about the centroid in the camera frame) from time t1 to new

time instance t2 = t1 + δt is small, then upto a first order approximation, the reflectance image

I(x, y) at t2 can be expressed as

It2(v) =
9∑

i=1

li|t2bi|t2(v), where bi|t2(v) = bi|t1(v) + At1(v,n)∆T + Bt1(v,n)∆Ω. (1)

In the above equations, v represents the image point projected from the 3D surface with surface

normal n, and bi|t1(v) are the original basis images before motion (precise expression of bi|t1(v)

is defined in [4]). At1 and Bt1 contain the structure and camera intrinsic parameters, and are

functions of v and the 3D surface normal n. For each pixel v, both At1 and Bt1 are Nl × 3

matrices, where Nl ≈ 9 for Lambertian objects with attached shadows. Please refer to [4] for the
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derivation of (1) and explicit expression for At1 and Bt1 . For the purposes of this paper, we only

need to know the form of the equations. From (1), we see that the new image spans a bilinear

space of six motion and approximately nine illumination variables (for Lambertian objects with

attached shadows). The basic result is valid for general illumination conditions, but require

consideration of higher order spherical harmonics (certain situations will create singularities,

which were discussed in [4] but are not important for this paper).

We can express the result in (1) succinctly using tensor notation as

It2 =


Bt1 + Ct1 ×2


 ∆Tt2

∆Ωt2





×1 lt2 , (2)

where ×n is called the mode-n product 1 [20] and lt2 ∈ RNl , is the vector of li|t2 components.

Thus, the image at t2 can be represented using the parameters computed at t1. For each pixel

(p, q) in the image, Cklpq|t1 = [ At1 Bt1
] of size Nl × 6. Thus for an image of size M × N ,

C is Nl × 6×M ×N , Bt1 is a sub-tensor of dimension Nl × 1×M ×N , comprising the basis

images bi|t1(u), and It2 is a sub-tensor of dimension 1× 1×M ×N , representing the image.

Equation (2) provides us an expression relating the reflectance image It2 with the illumination

coefficients lt2 and motion variables ∆T, ∆Ω. Letting m , ∆p = [∆TT,∆ΩT]T, we can

estimate 3D motion and illumination as

(̂lt2 , m̂t2) = arg min
lt2 ,mt2

‖It2 − (Bt1 + Ct1 ×2 mt2)×1 lt2‖2 + α||mt2||2 (3)

where x̂ denotes an estimate of x. Since the motion between consecutive frames is small, but

illumination can change suddenly, we add a regularization term to the above cost function with

the form of α||mt2||2.

Since the image It2 lies approximately in a bilinear space of illumination and motion variables

(ignoring the regularization term for now), such a minimization problem can be achieved by

alternately estimating the motion and illumination parameters. Assuming that we have tracked

the sequence upto some frame at t1 for which we can estimate the motion (hence, pose) and

illumination, we calculate the basis images, bi|t1 , at the current pose, and write it in tensor form

1The mode-n product of a tensor A ∈ RI1×I2×...×In×...×IN by a vector V ∈ R1×In , denoted by A×n V, is the I1 × I2 ×
. . .× 1× . . .× IN tensor

(A×n V)i1...in−11in+1...iN =
∑
in

ai1...in−1inin+1...iN vin .
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Bt1 . Similarly, we can compute Ct1 at this pose. Unfolding2 [20] Bt1 and the image It2 along

the first dimension, which is the illumination dimension, the illumination can be estimated as
l̂t2 = (Bt1(1)BT

t1(1))
−1Bt1(1)IT

t2(1). (4)

Keeping the illumination coefficients fixed, the bilinear space in equation (2) becomes a linear

subspace, i.e., It2 = Bt1 ×1 lt2 + G ×2 mt2 , where G = Ct1 ×1 lt2 , (5)

and motion can be estimated as
m̂t2 =

(G(2)GT
(2) + αI

)−1 G(2)(It2 − Bt1 ×1 lt2)
T
(2), (6)

where I is an identity matrix of dimension 6 × 6. When we apply the Levenberg-Marquardt

method [21] to minimize the difference between the input frame and the rendered frame in (2),

we will have exactly the same expression as in (6) with α being the corresponding damping

factor. When the regularization term is ignored, the result becomes that of the Gauss-Newton

method.

III. INVERSE COMPOSITIONAL ESTIMATION OF 3D MOTION AND ILLUMINATION

The method described in Section II requires iteration between equations (4) and (6). In each

iteration, as pose is updated, the tensors Bt and Gt need to be recomputed, which is very expensive

computationally (since they require finding the point of intersection of the ray through each

point with the 3D surface). In this section, we will derive an inverse compositional approach

for efficient and accurate estimation of 3D motion and illumination. We start by showing that

(3) is equivalent to a Lucas-Kanade algorithm for estimation of 3D motion and lighting which

leads to the inverse compositional approach. Finally, we show how to extend it to a sequence

of frames. In keeping the standard notation used in tracking, we assume δt = 1, and consider

two frames at t and t− 1.

A. Lucas-Kanade Estimation of 3D Motion and Lighting

Let us initially start with the condition that illumination does not change between two frames.

We will then consider the varying illumination condition. Also, we ignore the regularization term

in (3), which can be easily added back later. The image synthesis process can be considered as

2Assume an Nth-order tensor A ∈ RI1×I2×...×IN . The matrix unfolding A(n) ∈ RIn×(In+1In+2...IN I1I2...In−1) contains the

element ai1i2...iN at the position with row number in and column number equal to (in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 +

(in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + · · ·+ (iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + · · ·+ in−1.
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a rendering function of the object at pose p in the camera frame to the pixel coordinates v in

the image plane as f(v,pt). Using the bilinear model described above, it can be implemented

with (5). Given an input image It(v), we want to align the synthesized image with it to obtain

p̂t = arg min
pt

∑
v

(f(v,pt)− It(v))2, (7)

where p̂t denotes the estimated pose for this input image It(v). This is the cost function of

Lucas-Kanade tracking in [7] modified for 3D motion estimation.

Let us now consider the problem of estimating the pose change, 4pt = mt, between two

consecutive frames, It(v) and It−1(v) as

m̂t = arg min
mt

∑
v

(
f(v, p̂t−1 + mt)− It(v)

)2
, and p̂t = p̂t−1 + m̂t. (8)

The optimization of the above equation can be achieved by assuming a current estimate of m̂t is

known and iteratively solve for increments 4m (4m are the increments between two iterations,

where multiple iterations will be needed to get mt) such that∑
v

(
f(v, p̂t−1 + mt +4m)− It(v)

)2 (9)

is minimized. Applying the first order Taylor expansion on (9), we can rewrite it as
∑
v

(
f(v, p̂t−1 + mt) +

∂f(v,p)

∂p

T

|p=p̂t−1+mt4m− It(v)

)2

. (10)

Recall that equation (5) linearizes the image intensity I with respect to the motion parameter

m when illumination parameter l is fixed. Thus, from equation (5), we have

∂f(v,p(mt))
mt

|p(mt)=p̂t−1+mt
=

∂f(v,p)
∂p

∂p(mt)
∂mt

|p(mt)=p̂t−1+mt
=

∂f(v,p)
∂p

|p=p̂t−1+mt
= Gv|p̂t−1+mt

, (11)

where Gv|p̂t−1+mt denotes the components of G at the pixel coordinate v computed at the pose

p̂t−1+mt, and p(mt) is used to clearly show that pose p depends on the mt (see (8)). Physically,

Gv contains the information of the object structure and the camera model. Since C is a tensor

of size Nl × 6×M ×N and G = C ×1 l, therefore G is of size 1× 6×M ×N . At a specific

pixel v, Gv degenerates to a 6× 1 vector. Substituting (11) into (10), taking the derivative with

respect to 4m and setting it to be zero, we get∑
v

(
f(v, p̂t−1 + mt) + GT

v|p̂t−1+mt
4m− It(v)

)Gv|p̂t−1+mt = 0. (12)

Then solving for 4m, we have

4m = H
∑
v

Gv|p̂t−1+mt

(
It(v)− f(v, p̂t−1 + mt)

)
, where H =

[∑
v

(Gv|p̂t−1+mtGT
v|p̂t−1+mt

)

]−1

.(13)
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Let us now reintroduce the illumination variation which was ignored for simplicity of expla-

nation. The image synthesis function f can be replaced with the analytical expression in (2).

Although G•|p̂t−1+mt varies with the illumination condition lt according to (5), C•|p̂t−1+mt is not

a function of lt. Thus, given lt, (13) becomes:

4m = H
∑
v

(Cv|p̂t−1+mt
×1 lt)

(
It(v)− Bv|p̂t−1+mt ×1 lt

)
,

where H =

[∑
v

(Cv|p̂t−1+mt
×1 lt)(Cv|p̂t−1+mt

×1 lt)
T

]−1

, (14)

which is effectively equation (6) when α is zero. Once motion is known, lighting can be easily

estimated by computing B in (4). Thus, the direct method we described in Section II is equivalent

to Lucas-Kanade 3D tracking and illumination estimation algorithm.

B. Inverse Compositional Estimation of 3D Motion and Lighting

In the above method, the motion m is updated in each iteration and Gv|p̂t−1+mt needs to

be reevaluated. This requires exhaustively visiting every intersection point of each ray with the

surface and computing the derivatives, which extracts a huge computational cost. Thus, it is

inefficient to use G•|p̂t−1+mt in each step of motion and lighting estimation.

Fig. 1. Illustration of the warping function W. A point v in image

plane is projected onto the surface of the 3D object model. After

the pose transformation with 4p, the point on the surface is back

projected onto the image plane at a new point u. The warping function

maps from v ∈ R2 to u ∈ R2. The red ellipses show the common

part in both frames that the warping function W is defined upon.

Let us now introduce a warp operator W : R2 → R2 such that, if we denote the pose of

It(v) as p, the pose of It(Wp(v,4p)) is p +4p. Specifically, a 2D point on the image plane

is projected onto the 3D object surface. Then we transform the pose of the object surface by

4p and back project the point from the 3D surface onto the image plane. Thus, W represents

the displacement in the image plane due to a pose transformation of the 3D model. Note that

this warping involves a 3D pose transformation (unlike [7]). In [11], the warping was from a

point on the 3D surface to the image plane, and was used for fitting a 3D model to an image.
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We propose a new warping function for the inverse compositional estimation of 3D rigid motion

and illumination in video sequence, which is not addressed in [7] or [11].

Using this warp operator, for any frame It(v), the cost function (8) can be written as

m̂t = arg min
mt

∑
v

(
f(v, p̂t−1)− It(Wp̂t−1(v,−mt))

)2
. (15)

Rewriting the cost function (15) in the inverse compositional framework [7], we consider mini-

mizing

arg min
4m

∑
v

(
f(Wp̂t−1(v,4m), p̂

t−1
)− It(Wp̂t−1(v,−mt))

)2

(16)

with the update rule

Wp̂t−1(v,−mt) ← Wp̂t−1(v,−mt) ◦Wp̂t−1(v,4m)−1.3 (17)

We will first derive the solution to (16), then we will prove its equivalence to (15) in Sec. III-C.

The compositional operator ◦ in (17) means the second warp is composed into the first warp,

i.e., Wp̂t−1(v,−mt) ≡ Wp̂t−1(Wp̂t−1(v,4m)−1,−mt).

According to the definition of W, we can approximate f(Wp̂t−1(v,4m), p̂
t−1

) in (16) with

f(v, p̂t−1 +4m)4. Applying the first order Taylor expansion on it, we have

∑
v

(
f(v, p̂t−1) +

∂f(v,p)

∂p
|p=p̂t−14m− It(Wp̂t−1(v,−mt))

)2

. (18)

Taking the derivative of (18) with respect to 4m and setting it to be zero, we have
∑
v

(
f(v, p̂t−1) + GT

v|p̂t−1
4m− It(Wp̂t−1(v,−mt))

)Gv|p̂t−1 = 0. (19)

3The inverse of the warp W is defined to be the R2 → R2 mapping such that if we denote the pose of It(v) as p, the pose

of It(Wp(Wp(v,4p),4p)−1) is p itself. As the warp Wp(v,4p) transforms the pose from p to p + 4p, the inverse

Wp(v,4p)−1 should transform the pose from p + 4p to p, i.e. Wp(v,4p)−1 = Wp+4p(v,−4p). Thus {Wp} is a

group.
4This is because f(v, p̂t−1 + 4m) is the image synthesized at p̂t−1 + 4m, while f(Wp̂t−1(v,4m), p̂

t−1
) is the

image synthesized at p̂t−1 followed with the warp of the pose increments 4m. Although illumination is rotated by ∆m in

f(Wp̂t−1(v,4m), p̂
t−1

), for Lambertian objects it is not difficult to show that f(Wp̂t−1(v,4m), p̂
t−1

) − f(v, p̂t−1 +

4m) ∼ O(∆m) = o(∆p̂t−1). Neglecting this amounts to neglecting second order pose variations, which is the same

approximation as the one used for the proof of the IC algorithm in Sec. III-C. Thus this substitution is valid for our case.
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Solving for 4m, we get:

4m = HIC

∑
v

Gv|p̂t−1

(
It(Wp̂t−1(v,−mt))− f(v, p̂t−1)

)
, where HIC =

[∑
v

Gv|p̂t−1GT
v|p̂t−1

]−1

.(20)

Comparing with equation (13), the derivative Gv|p̂t−1 and Hessian HIC in (20) do not depend

upon the updating variable mt, which is moved into the warp operator W. The computational

complexity of Wp̂t−1(v,−mt) will be significantly lower than that of recomputing Gv|p̂t−1+mt

and Hessian H in every iteration (see Section III-F for details on the computational cost).

Reintroducing the illumination variation and following the same derivation as (14), we have

4m = HIC

∑
v

(Cv|p̂t−1 ×1 lt)
(
It(Wp̂t−1(v,−mt))− Bv|p̂t−1 ×1 lt

)
,

where HIC =

[∑
v

(Cv|p̂t−1 ×1 lt)(Cv|p̂t−1 ×1 lt)
T

]−1

. (21)

C. Proof of the IC Estimation Algorithm

Using the above update rule, we will now show the equivalence of (16) to (15), which is

equivalent to the cost function (8) in the Lucas-Kanade 3D tracking method.

Considering (16), the continuous version of which can be written as
∫

V

(f(Wp̂t−1(v,4m), p̂t−1)− It(Wp̂t−1(v,−mt)))
2dv, (22)

where V is the collection of all the pixels within the image at the pose p̂t−1. Let u , Wp̂t−1(v,4m),

thus v = Wp̂t−1(u,4m)−1 = Wp̂t−1+4m(u,−4m). Plugging it into (22), we have
∫

U

(f(u, p̂t−1)− It(Wp̂t−1(Wp̂t−1+4m(u,−4m),−mt)))
2|dWp̂t−1+4m(u,−4m)

du
|du. (23)

Note that with Wp̂t−1+4m(u, 0) = u, it follows that

dWp̂t−1+4m(u,−4m)

du
= 1 + O(4m) = 1 + o(mt) = 1 + o(4p̂t−1). (24)

Recall that u = Wp̂t−1(v,4m), i.e., U is the image of V after warping with W. Since V is

the collection of all the pixels within the image at pose p̂t−1, U is the collection of all the

pixels within the image at pose p̂t−1 +4m. For a video sequence, the motion m between the

consecutive frames is usually small, thus the increments 4m should be even smaller. With such

small increments, the change of the image region should be small, i.e.

U = V + O(4m) = V + o(mt) = V + o(4p̂t−1). (25)
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Thus U and V differ only in the second order pose variation terms. Also, in the warp composition

Wp̂t−1(Wp̂t−1+4m(u,−4m),−mt), the inner warp transforms the pose of the object from

p̂t−1 +4m to p̂t−1, while the outer warp transforms the pose from p̂t−1 to p̂t−1−mt. Thus, it

can be simplified as Wp̂t−1+4m(u,−mt −4m). Neglecting the second order variation of the

pose with respect to p̂t−1, i.e., neglecting 4m w.r.t. p̂t−1, but not w.r.t. m, we get (see footnote5

for details)

Wp̂t−1+4m(u,−mt −4m)) ≈ Wp̂t−1(u,−mt −4m)) + o(mt)

= Wp̂t−1(u,−mt −4m)) + o(4p̂t−1). (26)

Consequently, using (24), (25) and (26), and neglecting the second order pose variations, (23)

can be approximated with
∫

V

(f(v, p̂t−1)− It(Wp̂t−1(v,−mt −4m)))2dv. (27)

Note that this assumption of ignoring the second order pose variations is similar to the assumption

in [7] of neglecting the second order variation in the parameter set.

Rewriting (27) in the discrete format, we have

arg min
4m

∑
v

(
f(v, p̂t−1)− It(Wp̂t−1(v,−mt −4m))

)2
, (28)

which is the solution strategy for minimizing (15) using the additive update rule mt ← mt+4m.

Thus the cost functions (15) and (16) are equivalent, and the inverse compositional update rule

can be approximated with the additive rule.

D. Inverse Compositional Estimation Over A Sequence of Frames

The computational complexity in the above derivation is reduced by pre-computing the deriva-

tive G and Hessian HIC for reuse in each iteration. For the new input frame at time t, although

5Consider the warp Wp+ξ1(u, ξ2), where ξ1 and ξ2 are both small w.r.t. p. Let ξ1 = $14θ1 and ξ2 = $24θ2, where $1

and $2 are unit vectors. x is the 3D coordinate of a vertex on the 3D model. Using an orthographic or weak perspective camera

model, the first dimension of the warp can be expressed as (eξ1epx)(1) − (eξ2eξ1epx)(1) ≈ ((I + $̃1 sin θ1)epx)(1) − ((I +

$̃2 sin θ2)(I + $̃1 sin θ1)epx)(1) = −($̃2 sin θ2epx)(1) +o(ξ1, ξ2), where $̃ denotes the skew symmetric matrix with entries


0 −$(3) $(2)

$(3) 0 −$(1)

−$(2) $(1) 0


, and the superscript (1) indicates the first dimension of the vector. Similar operations can be

applied on the second dimension of warp. Thus, when both ξ1 and ξ2 are small terms w.r.t. p, Wp+ξ1(u, ξ2) ≈ Wp(u, ξ2).
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G•|p̂t would be close to G•|p̂t−1 , it still needs to be recomputed. To further save computation

complexity in the video sequence context, we can apply a similar idea by choosing a cardinal

pose pc, pre-compute the derivatives Gv|pc and HIC|pc , and then reuse them for consequent

frames.

Let us consider a sequence of frames I(•, 1), . . . I(•, t), . . . I(•, N). Without loss of generality,

let us assume that the cardinal pose, pc, is at frame I(•, 1), i.e. pc = p̂1. Assume we already

know the estimated motion upto time instance t − 1, m̂1, . . . m̂t−1. For the input frame It(v),

we use the pose transformation operator W to normalize the pose to the cardinal pose based on

p̂1, . . . p̂t−1, i.e.,

m̂t = arg min
mt

∑
v

(
f(v,pc)− It(Wp̂t−1(v, (pc − p̂t−1)−mt))

)2
. (29)

Rewriting the cost function (29) in the inverse compositional framework, we consider minimizing

arg min
4m

∑
v

(
f(Wpc(v,4m),pc)− It(Wp̂t−1(v, (pc − p̂t−1)−mt))

)2
. (30)

with the update rule

Wp̂t−1(v, (pc − p̂t−1)−mt) ← Wp̂t−1(v, (pc − p̂t−1)−mt) ◦Wpc(v,4m)−1. (31)

Note that (30) is similar to (16), except that the warping for f is computed at the cardinal pose.

Following the derivation of equations (18) - (21) and reintroducing the illumination variation,

we have

4m = HIC

∑
v

(Cv|pc ×1 lt)
(
It(Wp̂t−1(v, (pc − p̂t−1)−mt))− Bv|pc ×1 lt

)
,

where HIC =

[∑
v

(Cv|pc ×1 lt)(Cv|pc ×1 lt)
T

]−1

. (32)

The proof of (32) can be done in a way similar to that of Section III-C. Rewriting (30)

in continuous domain and substituting u , Wpc(v,4m) (conversely, v = Wpc(u,4m)−1 =

Wpc+4m(u,−4m)),
∫

U

(f(u,pc)− It(Wp̂t−1(Wpc+4m(u,−4m), (pc − p̂t−1)−mt)))
2|dWpc+4m(u,−4m)

du
|du.(33)

Assuming that pose p̂t−1 does not deviate from pc too much, and from footnote 5 we have

Wp̂t−1(Wpc+4m(u,−4m), (pc − p̂t−1)−mt) ≈ Wp̂t−1(Wp̂t−1+4m(u,−4m), (pc − p̂t−1)−mt)

= Wp̂t−1+4m(u, (pc − p̂t−1)−mt −4m) ≈ Wp̂t−1(u, (pc − p̂t−1)−mt −4m).(34)
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Using the same reasoning as in (24)-(25), and under the assumption of neglecting second and

higher order pose variations, (33) can be approximated as
∫

V

(f(v,pc)− It(Wp̂t−1(v, (pc − p̂t−1)−mt −4m)))2dv, (35)

which is equivalent to (29) with the additive update rule.

In a video sequence, pc − p̂t−1 might become large as t increases. This invalidates the

assumption used in deriving (33). Thus, the cardinal pose needs to be changed within a long

sequence. In our experiments, we found that this reinitialization was needed for every 15◦−20◦.

The physical interpretation of this is that the visibility of a significant portion of the object will

change due to the difference between pc and p̂t−1, and thus W will no longer be reliable.

E. Overall Algorithm

Consider a sequence of image frames It, t = 0, ..., N − 1.

Initialization: Take the first frame of the video sequence, register the 3D model onto this frame

and map the texture onto the 3D model. Take this pose as cardinal pose pc. Pre-compute the

C•|pc and B•|pc at this pose. Assume that we know the pose and illumination estimates for frame

t− 1, i.e., p̂t−1 and l̂t−1.

• Step 1. For the new input frame It(v), apply the pose transformation operator to get the pose

normalized version of the frame It(Wp̂t−1(v,pc − p̂t−1)). Let l̂t = l̂t−1, and m̂t = 0.

• Step 2. Compute the increments of motion 4m using (32), and update the motion m̂t ←
m̂t +4m.

• Step 3. Use m̂t to update the pose normalized image It(Wp̂t−1(v,pc − p̂t−1 − m̂t)).

• Step 4. Use pre-computed B•|pc and equation (4) to estimate the illumination vector l̂t of the

updated pose normalized image It(Wp̂t−1(v,pc − p̂t−1 − m̂t)).

• Step 5. Repeat Steps 2, 3 and 4 with the new estimated l̂t for that input frame till the difference

error between the input frame and the rendered frame can be reduced lower than an acceptable

threshold.

• Step 6. If the p̂t − pc is larger than a threshold, re-initialize p̂t as the new cardinal pose pc.

Re-compute C•|pc and B•|pc at this new cardinal pose.

• Step 7. Set t = t + 1. Repeat Steps 1, 2, 3, 4, 5 and 6. Continue till t = N - 1.
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F. Computational Complexity Analysis

The computation of B and C needs to exhaustively search over all the pixels, while the IC

algorithm saves significant computational cost by pre-computing the derivatives B|pc and C|pc

at the cardinal pose pc. In both approaches, a number of iterations will be needed to track

each frame. As shown in section III-C and III-D, the increments 4m obtained from (32) in IC

approach is approximately the same order as the 4m obtained from (14) in the direct approach,

thus about the same number of iterations will be needed. In each iteration, the direct approach

needs to compute the derivatives Bv|p̂t−1+mt and Cv|p̂t−1+mt , while the IC approach needs to

compute the 3D warping Wp̂t−1(v,4p). According to the definition of B and C in [4], we

need 24 multiplications plus 2 additions for computing Bv|p̂t−1+mt and 93 multiplications plus

24 additions for computing Cv|p̂t−1+mt at only one pixel v, while only one assignment operation

(mapping the intensity at It(v) to It(Wp(v,4p))) will be needed for computing Wp̂t−1 at

the same pixel v. Thus, by precomputing the the derivatives B|pc and C|pc at the cardinal

pose pc, a significant amount of computation can be saved. The saving will depends upon the

implementation, and our experimental results show that the IC algorithm has an average speed-

up of > 50 times (maximum > 100) over the direct approach for the controlled data, while for

the uncontrolled data, the average speed-up is over 30 times with maximum of 75.9 times, while

maintaining the same estimation accuracy.

IV. EXPERIMENTAL ANALYSIS OF COMPUTATION TIME AND ACCURACY

A. Analysis on Controlled Data

To show the tracking accuracy of the IC tracking algorithms, we first do a synthetic experiment

with the Stanford Bunny rabbit model under varying illumination conditions. The bunny rabbit is

rotating along the vertical axis at some specific angular velocity, and the illumination is changing

both in direction (from right-bottom corner to the left-top corner) and in brightness (from dark

to bright to dark). The first row in Fig. 2 shows the back projection of some feature points on the

3D model back onto the input frames using the estimated motion with the IC tracking algorithm

under three different illumination conditions. The second row shows the synthesis images with

the motion and illumination estimates. There is no perceptual difference between the original

frame and the synthesized ones.
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In Fig. 3, we compare the IC algorithm with the direct approach described in section II. We

showed the comparison of the computational cost between the two approaches in (a), the motion

estimation accuracy in (b), and the frequency of convergence in (c). The computational cost is

measured by the processing time needed for each frame on a standard PC with 1.8GHz CPU,

2G RAM with a Matlab implementation. The average processing time for each frame in direct

approach is 9.7 seconds, while in IC algorithm it is 0.18 seconds per frame. Thus, IC algorithm

has an 52.1 fold speeding up while sacrificing little in the estimation accuracy. The frequency of

convergence is computed as the percentage of the frames among the 180 frames in the control

experiment that converge to the specific accuracy of the pose estimates measured in degree. On

the average, the direct approach and the IC algorithm have the same frequency of convergence,

validating the equivalence between the two. The divergence of the two curves is due to the

relatively small number of the frames used for measuring the percentage of the convergence.

Fig. 2. Top: the back projection of the mesh vertices of the 3D bunny rabbit model using the estimated 3D motion onto some

input frames. Bottom: Synthesized images with estimated motion and illumination.

In Fig. 4, we show some accuracy analysis of the motion and illumination estimation. We

designed three experiments: Expt. A - estimate both motion and illumination simultaneously;

Expt. B - estimate motion with known illumination; Expt. C - estimate illumination with known

motion. We show the results of this analysis in Fig. 4.

Note that illumination bases B are functions of pose, while the motion bases C do not rely

upon illumination. Thus, knowing motion should be helpful for estimating the illumination. This

is seen in Fig. 4 (b) where the illumination estimation error in Expt. C is consistently lower than

that of Expt. A. Due to the same reason, the synthesis error in Expt. C is consistently lower

than that in Expt. A, as shown in Fig. 4 (c). On the other hand, knowing illumination does not
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Fig. 3. (a) shows the comparison of the computational time needed for each frame in the direct approach and the IC algorithm.

(b) shows the comparison of the motion estimation accuracy obtained by the direct approach and the IC algorithm. (c) shows

the comparison of the frequency of convergence in the control experiment between the direct approach and the IC algorithm.

Fig. 4. (a) shows the comparison between the pose estimates with known illumination, unknown illumination, and the ground

truth, (b) shows the normalized error of the illumination estimates without knowing the true motion and with the true motion

known, (c) shows the normalized synthesis error with unknown illumination and motion, unknown motion but known illumination,

and unknown illumination but known motion.

help as much in motion estimation, since the motion bases do not depend upon illumination.

Thus, the motion estimates of Expt. A are neither consistently better nor worse than those of

Expt. B as shown in Fig. 4 (a), and the same is true for the synthesis errors, shown in Fig. 4

(c). Thus, knowing the ground truth motion can lead to more accurate estimates of illumination

(the average synthesis error is 2.51%), while knowledge of illumination produces an average
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Fig. 5. (a) to (f) show the plots of the true and the estimated coefficients from the 1st to the 6th illumination principle

components. The solid red plots are for the true illumination vector, the dotted blue ones are the illumination coefficients

estimated from the inverse compositional algorithm.

Fig. 6. The comparison between the original frames and the synthesized ones with the estimated motion and

illumination variables. The first rows show the original frames, and the second row shows the synthesized frames

with the estimated illumination and motion from the images in the same column.

synthesis error of 3.78%. In Fig. 5, we show the plots of six illumination coefficients 6.

6It has been shown that from a specific viewing point, the spherical harmonic functions will not be orthogonal to each other;

therefore, not all the illumination coefficients will be observable [22]. We orthogonalize the spherical harmonic basis functions

by taking their principal components, and estimate the illumination condition with this principal component basis.
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B. Analysis on Real-Life Face Data

Fig. 6 shows the motion and illumination estimates on two real data examples. The images

in the first row are the input frames with the back projection of some feature mesh vertices, and

the ones in the second row are synthesized with the estimated illumination and motion. This

result shows that it is possible to synthesize images with the motion and illumination parameters

learned from natural videos. This is extremely useful for applications in video-based rendering

and object recognition.

In Fig. 7, we show the comparison of the computational cost and the estimation accuracy

between the direct approach described in section II and the inverse compositional approach

described in d) in section III on the sequence shown in the first row of Fig. 6. We use totally

80 frames, in which the head rotates from frontal pose to about 45 degree along the vertical

axis. To assess the quality of the motion and illumination estimation accuracy on the real data,

we synthesize the images with the estimated motion and illumination parameters, and take the

pairwise pixel intensity difference between the synthesized frame and the input frame. Some

peaks and plateaus in the plot of the direct approach in Fig. 7 (a) indicate that at those frames

more iterations are needed for convergence. It is also shown in the plot that usually it takes about

6 seconds for one computation of the bilinear bases; thus the processing time for each frame is

approximately a multiple of this time. From Fig. 7 (a), we can see that more iterations are used

in the first 30 frames. This is because the motion between these frames is large and hence more

iterations are needed. Around frame 30, the synthesis error was above a threshold and a new

cardinal pose was chosen. After this, the inter-frame motion is smaller and the computation time

and synthesis error are low. By taking the mean of the processing time for the 80 frames, the

inverse compositional approach is 31.6 times faster than the direct approach, while the synthesis

error is about the same in both approaches. The maximum improvement is 75.9 faster than the

direct approach at specific frame. This shows the significant improvement of the IC algorithm

over the direct approach.

V. CONCLUSIONS

In this paper, we presented an accurate and efficient approach for estimating illumination and

3D rigid motion from a video sequence. The work is based on a recently proposed theory that the

set of images of a moving Lambertian object lies in a bilinear space of motion and illumination
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Fig. 7. Computational cost and the estimation accuracy comparison between the direct approach and the inverse compositional

algorithm on the real data. (a) The vertical axis shows the processing time needed for each frame, while the horizontal axis

shows the index of frames. By taking the mean of the processing time for all the frames in each approach, the direct approach

has an average processing time of 10.11 seconds for each frame, while the IC algorithm uses 0.32 seconds per frame. (b) the

vertical axis shows the MSE between the input frame and the synthesized frames using the estimated motion and illumination

parameters.

parameters. We showed that it is possible to estimate the motion and lighting parameters using

the inverse compositional approach. We proposed a new warping function, proved the converge

of the IC approach, and showed experimental results on accuracy and computational efficiency.

We presented experimental evaluation on controlled data with known ground truth, tracking

results on real data and results in video synthesis.
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