
1

Context-Aware Activity Modeling using
Hierarchical Conditional Random Fields

Yingying Zhu, Nandita M. Nayak, and Amit K. Roy-Chowdhury

Abstract—In this paper, rather than modeling activities in videos individually, we jointly model and recognize related activities in
a scene using both motion and context features. This is motivated from the observations that activities related in space and time
rarely occur independently and can serve as the context for each other. We propose a two-layer conditional random field model,
that represents the action segments and activities in a hierarchical manner. The model allows the integration of both motion
and various context features at different levels and automatically learns the statistics that capture the patterns of the features.
With weakly labeled training data, the learning problem is formulated as a max-margin problem and is solved by an iterative
algorithm. Rather than generating activity labels for individual activities, our model simultaneously predicts an optimum structural
label for the related activities in the scene. We show promising results on the UCLA Office Dataset and VIRAT Ground Dataset
that demonstrate the benefit of hierarchical modeling of related activities using both motion and context features.

Index Terms—Activity localization and recognition, Context-aware activity model, Hierarchical Conditional Random Field.
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1 INTRODUCTION
It has been demonstrated in [28] that context is significant
in human visual systems. As there is no formal defini-
tion of context in computer vision, we consider all the
detected objects and motion regions as providing contextual
information about each other. Activities in natural scenes
rarely happen independently. The spatial layout of activities
and their sequential patterns provide useful cues for their
understanding. Consider the activities that happen in the
same spatio-temporal region in Fig. 1: the existence of
the nearby car gives information about what the person
(bounded by red circle) is doing, and the relative position
of the person of interest and the car says that activities (b)
and (c) are very different from activity (a). Moreover, just
focusing on the person, it may be hard to tell what the
person is doing in (b) and (c) - “opening vehicle trunk”
or “closing vehicle trunk”. If we knew that these activities
occurred around the same vehicle along time, it would be
immediately clear that in (b) the person is opening the
vehicle trunk and in (c) the person is closing the vehicle
trunk. This example shows the importance of spatial and
temporal relationships for activity recognition.

1.1 Overview of the Framework
Many existing works on activity recognition assume that,
the temporal locations of the activities are known [1], [27].
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Fig. 1. An example that demonstrates the importance of
context in activity recognition. Motion region surrounding the
person of interest is located by red circle, interacting vehicle
is located by blue bounding box.

In practice, activity-based analysis of videos should involve
reasoning about motion regions, objects involved in these
motion regions, and spatio-temporal relationships between
the motion regions. We focus on the problem of detecting
activities of interest in continuous videos without prior
information about the locations of the activities. The main
challenge is to develop a representation of the continuous
video that respects the spatio-temporal relationships of the
activities. To achieve this goal, we build upon existing
well-known feature descriptors and spatio-temporal con-
text representations that, when combined together, provide
a powerful framework to model activities in continuous
videos.

An activity can be considered as a union of action
segments or actions that are neighbors to each other closely
in space and time. We provide an integrated framework
that conducts multiple stages of video analysis, starting
with motion localization. The detected motion regions are
divided into action segments, which are considered as the
elements of activities, using a motion segmentation algo-
rithm based on the nonlinear dynamic model (NDM) in [5].
The goal then is to generate smoothed activity labels, which
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are optimum in a global sense, for the action segments; and
thus obtaining semantically meaningful activity regions and
corresponding activity labels.

Towards this goal, we perform an initial labeling to
group adjacent action segments into semantically meaning-
ful activities using a baseline activity detector. Any existing
activity detection method, such as sliding window bag-
of-words (BOW) with a support vector machine (SVM)
[25] can be used in this step. We call the labeled groups
of action segments as the candidate activities. Candidate
activities that are related to each other in space and time
are grouped together into activity sets. For each set, the
underlying activities are jointly modeled and recognized
with the proposed two-layer Conditional Random Field
model, which models the hierarchical relationship between
the action segments and activities. We refer to this proposed
two-layer Hierarchical-CRF as Hierarchical-CRF in short
for simplicity of expression. First, the action layer is mod-
eled as a linear-chain CRF model with the activity labels
with the action segments as the random variables. Latent
activity variables, which represent the detected activities,
are then introduced in the hidden activity layer. Doing so,
action-activity consistency and intra-activity potentials, as
the higher-order smoothness potentials, can be introduced
into the model to smooth the preliminary activity labels
in the action layer. Finally, the activity layer variables,
whose underlying activities are within the neighborhoods of
each other in space and time, are connected to utilize the
spatial and temporal relationships between activities. The
resulting model is the action-based two-layer Hierarchical-
CRF model.

Potentials in and between the action and activity layers
are developed to represent the motion and context patterns
of individual variables and groups of them in both action
and activity levels, as well as action-activity consistency
patterns between variables in the two layers. The action-
activity potentials upon sets of action nodes and their
corresponding activity nodes are introduced between ac-
tion and activity layers. Such potentials, as smoothness
potentials, are used to enforce label consistency of action
segments within activity regions while allowing for label
inconsistency for certain circumstances. This allows the
rectification of the preliminary activity labels of action
segments during the inference of the Hierarchical-CRF
model according to the motion and context patterns in and
between actions and activities.

Fig. 2 shows the framework of our approach. Given
a video, we detect the motion regions using background
subtraction. Then, the segmentation algorithm aims to
divide a continuous motion region into action segments,
whose motion pattern is consistent and is different from its
adjacent segments. These action segments, as the nodes in
the action layer, are modeled as a linear-chain CRF and
the proposed Hierarchical-CRF model is built accordingly
as described above.

The model parameters are learned automatically from
weakly-labeled training data with the location and labels of
activities of interest. Image-level features are detected and
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Fig. 2. The left graph shows the video representation of an
activity set with n motion segments and m candidate activ-
ities. The right graph shows the graphical representation of
our Hierarchical-CRF model. The white nodes are the action
variables and the gray nodes in the graph are the hidden
activity variables. Note that observations associated with the
model variables are not shown for clear representation.

organized to form the context for activities. Common sense
domain knowledge about the activities of interest is used
to guide the formulation of these context features within
activities from the weakly-labeled training data. We utilize
a structural model in a max-margin framework, iteratively
inferring the hidden activity variables and learning the
parameters of different layers. For the testing, the action
segments, which are merged together and assigned with
activity labels by the preliminary activity detection method,
are relabeled through inference on the learned Hierarchical-
CRF model.

1.2 Main Contributions
The main contribution of this work is three-fold.
(i) We combine low-level motion segmentation with high-
level activity model under one framework. With the detect-
ed individual action segments as the elements of activities,
we design a Hierarchical-CRF model that jointly models
the related activities in the scene.
(ii) We propose a weakly supervised approach that utilizes
context within and between actions and activities that
provide helpful cues for activity recognition. The proposed
model integrates motion and various context features within
and between actions and activities into a unified model. The
proposed model can localize and label activities in con-
tinuous videos simultaneously, in the presence of multiple
actors in the scene interacting with each other or acting
independently.
(iii) With a task-oriented discriminative approach, the mod-
el learning problem is formulated as a max-margin problem
and is solved by an Expectation Maximization approach.

2 RELATED WORK

Many existing works exploring context focus on interac-
tions among features, objects and actions [1], [3], [14],
[34], [39], environmental conditions such as spatial loca-
tions of certain activities in the scene [23], and temporal
relationships between activities [24], [35]. Spatio-temporal
constraints across activities in a wide-area scene are rarely
considered.
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Motion segmentation and action recognition are done
simultaneously in [26]. The proposed algorithm models
the temporal order of actions while ignoring the spatial
relationships between actions. The work in [35] models
a complex activity by a variable-duration hidden Markov
model on equal-length temporal segments. It decomposes
a complex activity into sequential actions, which are the
context of each other. However, it considers only the
temporal relationships, while ignoring the spatial relation-
ships between actions. AND-OR graph [2], [13], [32] is
a powerful tool for activity representation. It has been
used for multi-scale analysis of human activities in [2],
α , β , γ procedures were defined for a bottom-up cost
sensitive inference of low-level action detection. However,
the learning and inference processes of AND-OR graphs
become more complex as the graph grows large and more
and more activities are learned. In [20], [21], a structural
model is proposed to learn both feature-level and action-
level interactions of group members. This method labels
each image with a group activity label. How to smooth the
labeling results along time is a problem and is not addressed
in the paper. Also, these methods aim to recognize group
activities and are not suitable in our scenario where activ-
ities cannot be considered as the parts of larger activities.

In [4], complex activities are represented as spatiotem-
poral graphs representing multi-scale video segments and
their hierarchical relationships. Existing higher-order mod-
els [16], [17], [19], [42] propose the use of higher order
potentials that encourage the smoothness of variables within
cliques of the graph. Higher-order graphical models have
been frequently used in image segmentation, object recog-
nition, etc. However, few works exist in the field of activity
recognition. We propose a novel method that explicitly
models the action and activity level motion and context
patterns with a Hierarchical-CRF model and use them in
the inference stage for recognition.

The problem of simultaneous tracking and activity recog-
nition was addressed in [6], [15]. In these works, track-
ing and action/activity recognition are expected to benefit
each other through an iterative process that maximizes a
decomposable potential function which consists of track-
ing potentials and action/activity potentials. However, only
collective activities are considered in [6], [15], in which
the individual persons of interest have a common goal in
terms of activity. This work address the general problem of
activity recognition, when individual persons in the scene
may conduct heterogeneous activities.

The inference method on a structural model proposed
in [20], [21] searches through the graphical structure, in
order to find the one that maximizes the potential function.
Though this inference method is computationally less in-
tensive than exhaustive search, it is still time consuming.
As an alternative, greedy search has been used for inference
in object recognition [8].

This paper has major differences with our previous work
in [45]. In [45], we proposed a structural SVM to explicitly
model the durations, motion, intra-activity context and the
spatio-temporal relationships between the activities. In this

work, we develop a hierarchical model which represents
the related activities in a hidden activity layer, which
interacts with a lower-level action layer. Representing ac-
tivities as hidden activity variables simplifies the inference
problem, by associating each hidden activity with a small
set of neighboring action segments, and enables efficient
iterative learning and inference algorithms. Furthermore,
the modeling of more aspects of the activities of interest
adds additional feature functions that measure both action
and activity variables. Since more information about the
activities to be recognized is modeled, the recognition
accuracy is improved as demonstrated by the experiments.

3 MODEL FORMULATION FOR CONTEXT-
AWARE ACTIVITY REPRESENTATION

In this section, we describe how the higher-order con-
ditional random field (CRF) modeling of activities that
integrates activity durations, motion features and various
context features within and across activities is built upon
automatically detected action segments to jointly model
related activities in space and time.

3.1 Video Preprocessing
Assuming there are M+1 classes of activities at the scene,
including a background class with label 0 and M classes of
interest with labels 1, ...,M (the background class can be
omitted if all the activity classes in the scene are known).
Our goal is to locate and label each activity of interest in
videos. Given a continuous video, background substraction
[46] is used to locate the moving objects. Moving persons
are identified, and local trajectories of moving persons are
generated (any existing tracking methods like [33] can
be used). Spatio-temporal Interest Point (STIP) features
[22] are generated only for these motion regions. Thus,
STIPs generated by noise, such as slight tree shaking,
camera jitter and motion of shadows, are avoided. Each
motion region is segmented into action segments using the
motion segmentation based on the method in [5] with STIP
histograms as the model observation. The detailed motion
segmentation algorithm is described in Section 5.3.1.

3.2 Hierarchical-CRF Models for Activities
The problem of activity recognition in continuous videos
requires two main tasks: to detect motion regions and to
label these detected motion regions. The detection and la-
beling problems can be solved simultaneously as proposed
in [26] or separately as proposed in [44], [45]. For the latter,
candidate action or activity regions are usually detected
before the labeling task. The problem of activity recognition
is then converted to a problem of labeling, that is, to assign
each candidate region with an optimum activity label.

CRF is a discriminative model often used usually used
for labeling problems of image and image objects. Es-
sentially, CRF can be considered as a special version of
Markov Random Field (MRF) where the variable potentials
are conditioned on the observed data. Let x be the model
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observations and y be the label variables. The posterior
distribution p(y|x,ω) of the label variables over the CRF
is a Gibbs distribution and is usually represented as

p(y|x,ω) =
1

Z(x,ω) ∏
c∈C

exp(ωc
T

ϕc(x,yc)), (1)

where ωc is a model weight vector, which needs to be
learned from training data. Z(x,ω) is a normalizing con-
stant called the partition function. ϕc(x,yc) is a feature
vector derived from the observation x and the label vector,
yc, in the clique c.

The potential function of the CRF model given the
observations x and model weight vector ω is defined as

ψ(y|x,ω) = ∑
c

ωc
T

ϕc(x,yc). (2)

For the development of the Hierarchical-CRF model, the
action layer is first modeled as a linear-chain CRF. Activity
layer variables which are associated with detected activities
are then introduced for the smoothing of the action-layer
variables. Finally, activity-layer variables are connected
to represent the spatial and temporal relationships be-
tween activities. The evolution of the proposed two-layer
Hierarchical-CRF model from the one-layer CRF model is
shown in Fig. 3. Details on the development of these models
will be described in the following sub-sections. The various
feature vectors used for the calculation of the potentials are
described in Section 3.3.

3.2.1 Action-based Linear-chain CRF
We first describe the linear-chain CRF model in Fig. 3(a).
We first define the following items: intra-action potential
ψν(ya

i |x,ω), which measures the compatibility of the ob-
served feature of i and its label ya

i ; inter-action potential
ψε(ya

i ,y
a
j |x,ω), which measures the consistency between

two connected action segments i and j. Let V a be the
set of vertices, each representing an action segment as
the element in the action layer and E a denotes the set of
connected action pairs. The potential function of the action-
layer linear-chain CRF is

ψ(ya|x,ω) = ∑
i∈V a

ψν(ya
i |x,ω)+ ∑

i j∈E a
ψε(ya

i ,y
a
j |x,ω) (3)

= ∑
i∈V a

ω
a
ν ,ya

i

T
ϕν(xa

i ,y
a
i )+ ∑

i j∈E a
ω

a
ε,ya

i ,y
a
j

T
ϕε(xa

i ,x
a
j ,y

a
i ,y

a
j),

where ϕν(xa
i ,y

a
i ) is the intra-action feature vector that

describes action segment i. ωa
ν ,ya

i
is the weight vector of

the intra-action features for class ya
i . ϕε(xa

i ,xa
j ,y

a
i ,y

a
j) is the

inter-action feature, which is derived from the labels ya
i ,

ya
j and intra-action feature vectors xa

i and xa
j . ωa

ε,ya
i ,y

a
j

is
the weight vector of the inter-action features for class pair
ya

i ,y
a
j .

3.2.2 Incorporating Higher Order Potentials
According to experimental observations, action segments in
a candidate activity region, which are generated by activity
detection methods [44], tend to have the same activity
labels. However, consistent labeling is not guaranteed due

to inaccurate detections. Let an action clique ca denote the
union of action segments in a candidate activity c. The
linear-chain CRF can be converted to a higher-order CRF
by adding a latent activity variable yh

c , representing the
label of c, for each action clique ca. All action variables
associated with the same activity variable are connected.
Then, the associated higher-order potential ψc(ya

c |x,ω) is
introduced to encourage action segments in the clique ca

to take the same label, while still allowing some of them
to have different labels without additional penalty. The
resulting CRF model is shown in 3 (b). The potential
function ψ for the higher-order CRF model is represented
as

ψ(ya,yh
c |x,ω) = ∑

i∈V a
ω

a
ν ,ya

i

T
ϕν(xa

i ,y
a
i ) (4)

+ ∑
i j∈{E ′a}

ω
a
ε,ya

i ,y
a
j

T
ϕε(xa

i ,x
a
j ,y

a
i ,y

a
j)+ ∑

c∈Cah

ψc(ya
c |x,ω),

where E ′a denotes the set of connected action pairs in the
new model. Cah is the set of action-activity cliques and
each action-activity clique c in Cah corresponds to an action
clique ca in the action layer and its associated activity c
in the activity layer. Let L = 0,1, · · · ,M be the activity
label set in the action layer, from which the action variables
may take values. The activity variable yh

c takes values from
an extended label set Lh = L ∪ l f , where L is the set
of variable values in the action layer. When an activity
variable takes value l f , it allows its child variables to take
different labels in L , without additional penalty upon label
inconsistency.

We define ϕc,l(ya
c ,y

h
c) as the action-activity consistency

feature of activity c, and ωah
c,l,yh

c
to be the weight vector of

the action-activity consistency feature for class yh
c . Define

ϕc, f (xa
c ,y

h
c) as the intra-activity feature for activity c, and

ωah
c, f ,yh

c
to be the weight vector of intra-activity feature

for class yh
c . The corresponding action-activity higher-order

potential can be defined as

ψ(ya
c |x,ω) = max

yh
c

ω
ah
c,yh

c

T
ϕc(xa

c ,x
h
c ,y

a
c ,y

h
c) (5)

= max
yh

c

[ωah
c,l,ya

c ,yh
c

T
ϕc,l(ya

c ,y
h
c)+ω

ah
c, f ,yh

c

T
ϕc, f (xa

c ,y
h
c)],

where ωah
c,l,yh

c

T
ϕc,l(ya

c ,y
h
c) measures the labeling consistency

within the activity c. Intuitively, the higher-order potentials
are constructed such that a latent variable tends to take a
label from L if majority of its child nodes take the same
value, and take the label l f if its child nodes take diversified
values. ωah

c, f ,yh
c

T
ϕc, f (xa

c ,y
h
c) is the intra-activity potential that

measures the compatibility between the activity label of
clique c and its activity features.

3.2.3 Incorporating Inter-Activity Potentials
As stated before, it would be helpful to model the spa-
tial and temporal relationships between activities. For this
reason, we connect activity nodes in the higher-order CRF
model. The resulting CRF is shown in Fig. 3(c). We define
ϕsc(xh

s ,xh
d ,y

h
s ,y

h
d) as the inter-activity spatial feature that
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Symbols used in this figure.
ya

i label variable for action segment i,
ya

i ∈L , where L = {0,1, ...,M} and a
denotes the action-layer and i denotes
the index of the action segment.

yh
c label variable for activity c, yh

c ∈ Lh,
where Lh = {0,1, ...,M}

⋃
l f and h

denotes the hidden activity layer and c
denotes the index of the hidden activity.

(d) (e)

Fig. 3. Illustration of CRF models for activity recognition. (a): Action-based Linear-Chain CRF; (b): Action-based higher-order
CRF model (with latent activity variables); (c): Action-based two-layer Hierarchical-CRF. Note that all the observations for the
random variables are omitted for compactness; (d): symbols in sub-figures (a, b, c); (e): graph representation of the model in
[45] for comparison. One action segment denotes a random variable in the action layer, whose value is the activity label for
the action segment. A colored circle denotes a random variable in the activity layer, whose value is the label for its connected
clique. As shown in (a), in the action layer, action segments that belong to the same trajectory are modeled as a linear-chain
CRF. Then, hidden activity-level variables with action-activity edges (in light blue) are added for each action clique to form
higher-order CRF as shown in (b). An activity and its associated action nodes have a same color. Finally, pair-wise activity
edges (in red) are added to form the proposed two-layer Hierarchical-CRF mdoel.

encodes the spatial relationship between activities s and d,
and ωh

sc,yh
s ,y

h
d

to be the weight vector of inter-activity spatial

feature for class pair (yh
s ,y

h
d). Define ϕtc(xh

s ,xh
d ,y

h
s ,y

h
d) as

the inter-activity temporal feature that encodes the temporal
relationship between activities s and d, and ωh

tc,yh
s ,y

h
d

to be
the weight vector of inter-activity temporal feature for class
pair (yh

s ,y
h
d).

The pairwise activity potential between clique s and d is
defined as

ψ(yh|x,ω) = ∑
sd∈E h

[ωh
sc,yh

s ,y
h
d

T
ϕsc(xh

s ,x
h
d ,y

h
s ,y

h
d)

+ω
h
tc,yh

s ,y
h
d

T
ϕtc(xh

s ,x
h
d ,y

h
s ,y

h
d)], (6)

where ωh
sc,yh

s ,y
h
d

T
ϕsc(xh

s ,xh
d ,y

h
s ,y

h
d) is the pairwise spatial

potential between activities s and d that measures the
compatibility between the candidate labels of s and d and
their spatial relationship. ωh

tc,yh
s ,y

h
d

T
ϕtc(xh

s ,xh
d ,y

h
s ,y

h
d) is the

pairwise temporal potential between activities s and d that
measures the compatibility between the candidate labels of
s and d and their temporal relationship.

3.3 Feature Descriptors
We now define the concepts we use for the feature de-
velopment. An activity is a 3D region consisting of one

or multiple consecutive action segments. An agent is the
underlying moving person(s) or a trajectory. Motion region
at frame n is the region surrounding the moving objects of
interest in the nth frame of the activity. Activity region is
the smallest rectangle region that encapsulates the motion
regions over all frames of the activity. In general, same type
of features for different class or class pair can be different.
There are mainly three kinds of features in our model:
action-layer features, action-activity features and activity-
layer features, which can be further divided into five types
of features. We now describe how to encode motion and
context information into feature descriptors.

Intra-action Feature: ϕν(xa
i ,y

a
i ) encodes the motion

information of the action segment i that is extracted from
low-level motion features such as STIP features. Since in
the action layer, we obtain action segments by utilizing
their discriminative motion patterns, we use only motion
features for the development of action-layer features. STIP
histograms are generated for each action segment using
bag-of-word method [25]. We train a kernel multi-SVM
upon action segments to generate the normalized confidence
scores, si, j, of classifying the action segment i as activity
class j, where j ∈ {0,1, ...,M}, such that ∑

M
j=0 si, j = 1.

In general, any kind of classifier and low-level motion
features can be used here. Given an action segment i,
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ϕν(xa
i ,y

a
i ) = [si,0 · · ·si,M]T is developed as the intra-action

feature descriptor of action segment i.
Inter-action Feature: ϕε(xa

i ,xa
j ,y

a
i ,y

a
j) encodes the

probabilities of coexistence of action segments i and
j according to their features and activity labels.
ϕε(xa

i ,xa
j ,y

a
i ,y

a
j) = I(ya

i )I(ya
j), where I(ya

k) is the Dirac
measure that equals 1 if the true label of segment k is ya

k
and equals to 0 other wise, for k = i, j.

Action-Activity Consistency Feature: ϕc,l(ya
c ,y

h
c) en-

codes the labeling information within clique c as

ϕc,l(ya
c ,y

h
c) =

{ 1 yh
c = l f

∑i∈c I(ya
i =yh

c)
Nc

yh
c ∈L

.

where I(·) is the Dirac measure and Nc is the number of
action segments in clique c.

Intra-activity Feature: ϕc, f (xa
c ,x

h
c ,ya

c ,y
h
c) encodes the

intra-activity motion and context information of activity c.
To capture the motion pattern of an activity, we use the
intra-action features of action segments which belong to
the activity. Given an activity, [maxi∈ℵ si,0, ...,maxi∈ℵ si,M]
is developed as the intra-activity motion feature descriptor,
where ℵ is a list of action segments in activity c.

Intra-activity context feature captures the context infor-
mation about the agents and relationships between the
agents, as well as the the interacting objects (e.g. the
object classes, interactions between agents and their sur-
roundings). We define a set, G, of attributes that describes
such context for activities of interest, using common-sense
knowledge about the activities of interest (how to identify
such attributes automatically is another research topic that
we do not address in this paper). For a given activity,
whether the defined attributes are true or not are determined
from image-level detection results. The resulting feature
descriptor is a normalized feature histogram. The attributes
used and the development of intra-activity context features
are different for different tasks (please refer to Section 5.3.1
for the details).

Finally, the weighted motion and context features are
used as the input to a multi-SVM and the output confidence
scores are used to develop the intra-activity feature as
ϕc, f (xa

c ,y
h
c) = [sc,0, ...,sc,M]T .

Inter-activity Spatial and Temporal Features
ϕsc(xh

s ,xh
d ,y

h
s ,y

h
d) and ϕtc(xh

s ,xh
d ,y

h
s ,y

h
d) capture the spatial

and temporal relationships between activities s and d.
Define the scaled distance between activities s and d at
the nth frame of s as

rs(s(n),d) =
D(Os(n),Od)

Rs(n)+Rd
, (7)

where Os(n) and Rs(n) denote the center and radius of the
motion region of activity s at its nth frame and Od and
Rd denote the center and radius of the activity region of
activity d. D(·) denotes the Euclidean distance. Then, the
spatial relationship of s and d at the nth frame is modeled by
scsd(n) = bin(rs(s(n),d)) as in Fig. 4 (a). The normalized
histogram scs,d =

1
N f

∑
N f
n=1 scsd(n) is the inter-activity spatial

feature of activity s and d.

Let TC be defined by the following temporal relation-
ships: nth frame of s is before d, nth frame of s is during
d and nth frame of s is after d. tcsd(n) is the temporal
relationship of s and d at the nth frame of s as shown in
Fig. 4 (b). The normalized histogram tc = 1

N f
∑

N f
n=1 tcsd(n)

is the inter-activity temporal context feature of activity s
with respect to activity d.

(a) (b)

Fig. 4. (a) The image shows one example of inter-activity
spatial relationship. The red circle indicates the motion region
of s at this frame while the purple rectangle indicates the
activity region of d. Assume SC is defined by quantizing and
grouping rs(n) into three bins: rs(n) ≤ 0.5 (s and d is at the
same spatial position at the nth frame of s), 0.5 < rs(n) < 1.5
(s is near d at the nth frame of s) and rs(n) ≥ 1.5 (s is far
away from d at the nth frame of s). In the image, rs(n) > 1.5,
so, scsd(n) = [0 0 1]. (b) The image shows one example of
inter-activity temporal relationship. The nth frame of s occurs
before d. So, tsd(n) = [1 0 0].

4 MODEL LEARNING AND INFERENCE

The parameters of the overall potential function ψ(y|x,ω)
for the two-layer hierarchical CRF include ωa

v , ωa
ε , ωah

c,l ,
ωah

c, f , ωh
sc and ωh

tc. We define the weight vector as the
concatenation of these parameters:

ω = [ωa
v ,ω

a
ε ,ω

ah
c,l ,ω

ah
c, f ,ω

h
sc,ω

h
tc]. (8)

Thus, the potential function, ψ(y|x,ω), can be converted
into a linear function with a single parameter ω as

ψ(ya) = max
yh

ω
T

Γ(x,ya,yh), (9)

where Γ(x,ya,yh), called the joint feature of activity set
x, can be easily obtained by concatenating various feature
vectors in (4),(5) and (6).

4.1 Learning Model Parameters
Suppose we have P activity sets for learning. Let the train-
ing set be (X ,Y a,Y h) = (x1,y1,a,y1,h), ...,(xP,yP,a,yP,h),
where xi denotes the ith activity set as well as the observed
features of the set. yi,a is the label vector in the action layer
and yi,h is the label vector in the hidden activity layer. While
there are various ways of learning the model parameters, we
choose a task-oriented discriminative approach. We would
like to train the model in such a way that it increases the
average precision scores on a training data and thus tend to
produce the correct activity labels for each action segment.

A natural way to learn the model parameter ω is to adopt
the latent structural SVM. The loss ∆(xi, ŷi,a) of labeling
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xi with ŷi,a in the action layer equals the number of action
segments that associate with incorrect activity labels (an
action segment is mislabeled if over half of the segment
is mislabeled). From the construction of the higher-order
potentials in section 3.2.2, it is observed that, in order
to achieve the best labeling of the action segments, the
optimum latent activity label of an action clique must be
the dominant ground truth label lc of its child nodes in the
action layer; or the free label l f if no dominant label exists
for the action clique. Thus the loss ∆(xi, ŷi,h) of labeling
the activity layer of xi with ŷi,h is

∆(xi, ŷi,h) = ∑
c∈V h

I(yi,h
c 6= {li

c, l f }), (10)

where I(·) is the indicator function which equals 1 if the
inside equation is satisfied and 0 otherwise. (10) counts the
number of activity labels in ŷi,h that are neither a free label
nor the dominant label of its child nodes. Finally, the loss
function of assigning xi with (ŷi,a, ŷi,h) is defined as the
summation of the two, that is

∆(xi, ŷi,a, ŷi,h) = ∆(xi, ŷi,a)+∆(xi, ŷi,h). (11)

Next, we define a convex function F(ω) and a concave
function J(ω) as

F(ω) =
1
2

ω
T

ω (12)

+C
P

∑
i=1

max
(ŷi,a,ŷi,h)

[
ω

T
Γ

(
xi, ŷi,a, ŷi,h

)
+∆

(
xi, ŷi,a, ŷi,h

)]
,

and J(ω) =−C
P

∑
i=1

max
yi,h

ω
T

Γ

(
xi,yi,a,yi,h

)
.

The model learning problem is given as:

ω
∗ = argmin

ω
[F(ω)+ J(ω)] (13)

Although the objective function to be minimized in (13)
is not convex, it is a combination of a convex function
and a concave function [29]. Such kind of problems can
be solved using the Concave-Convex Procedure (CCCP)
[40], [41]. We describe an algorithm similar to the CCCP
in [40] that iteratively infers the latent variables yi,h for i =
1, ...,P and optimizes the weight vector ω . The inference
and optimization procedures continue until convergence or
a predefined maximum number of iterations is reached.

The limitation of all learning algorithms that involve
gradient optimization is that they are susceptible to local
extrema and saddle points [18]. Thus, the performance of
the proposed latent structural model is sensitive to initializa-
tion. There have been many works dealing with the problem
of learning the parameters of hierarchical models [10], [36].
We use a coarse to fine scheme that separately initializes the
model parameters using piecewise training, and then refines
the model parameters jointly in a globally optimum manner.
Specifically, the separately learned model parameters are
used as the initialization values for the proposed learning
algorithm. Given the weakly labeled training data with
activity labels for each action segment, the dominant label
lc for each action clique can be determined. We initialize

the latent activity variable of c with the dominant label lc
of its action clique ca, and with l f if there is no dominant
label for ca.

In the “E step”, we infer latent variables using the pre-
viously learned weight vector ωt (or the initially assigned
weight vector for the first iteration) leading to

yi,h∗
t+1 = argmax

yi,h
ωt

T
Γ

(
xi,yi,a,yi,h

)
. (14)

Then, in the “M step”, with the inferred latent variable
yi,h∗

t+1, we solve a fully visible structural SVM (SSVM). Let
us define the risk function at iteration t +1, Λ(ω), as

Λt+1(ω) =C
P

∑
i=1

max
(ŷi,a,ŷi,h)

{
∆

(
xi, ŷi,a, ŷi,h

)
(15)

+ω
T
[
Γ

(
xi, ŷi,a, ŷi,h

)
−Γ

(
xi,yi,a,yi,h∗

t+1

)]}
.

Thus, the optimization problem in (13) is converted to a
fully visible SSVM as

ω
∗
t+1 = argmin

ω

{
1
2

ω
T

ω +Λt+1(ω)

}
. (16)

The problem in (16) can be converted to an unconstrained
convex optimization problem [44] and solved by the mod-
ified bundle method in [38]. The algorithm iteratively
searches for the increasingly tight quadratic upper and
lower cutting planes of the objective function until the gap
between the two bounds reaches a predefined threshold. The
algorithm is effective because of its very high convergence
rate [37]. The visible SSVM learning algorithm specified
for our problem is summarized in Algorithm 1.

Algorithm 1 Learning the model parameter in (16) through
bundle method

Input: S = ((aT (1),yT (1)), . . . ,(aT (P),yT (P))),ω∗t ,y
i,h∗
t+1,C,ε

Output: Optimum model parameter ω∗t+1

1) initialize ω0
t+1 with ω∗t , Gt+1(cutting plane set) ← Ø.

2) for k = 0 to ∞ do
3) for i = 1, ...,P do

find the most violated label vector for each training instance,
if any, using ωk

t+1 (the value of ωt+1 at the kth iteration);
4) end for
5) find the cutting plane g

ωk
t+1

of Λ(ω) at ωk
t+1:

g
ωk

t+1
= ωT ∂ω Λt+1(ω

k
t+1)+b

ωk
t+1

,

where b
ωk

t+1
= Λt+1(ω

k
t+1)−ωk

t+1
T

∂ω Λ(ωk
t+1).

6) Gt+1← Gt+1 ∪g
ωk

t+1
(ω);

7) update ωt+1: ω
k+1
t+1 = argminω F

ωk
t+1

(ω),

where F
ωk

t+1
(ω) = 1

2 ωT ω +max(0,max j=1,...,kg
ω

j
t+1

(ω)).

8) gapk+1 = mink′≤k F
ω

k′+1
t+1

(ωk′+1
t+1 )−F

ωk
t+1

(ωk+1
t+1 );

9) if gapk+1 ≤ ε , then return ω∗t+1 = ω
k+1
t+1 ;

10) end for

4.2 Inference
Suppose the model parameter vector ω is given. We now
describe how to identify the optimum label vector ya for a
test instance x that maximizes (9). The inference problem
is generally NP hard for multi-class problems, thus MAP
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inference algorithms, such as loopy belief propagation [29],
are slow to converge. We propose an approximation method
that alternatively optimizes the hidden variable yh and the
label vector ya. Such an algorithm is guaranteed to increase
the objective at every iteration [29]. Let us define the
activity layer potential function as

ψ
h(yh) = ∑

c∈Ca
ψ(ya

c |x,ω)+ψ(yh|x,ω). (17)

For each iteration, with current predicted label vector ya

fixed, the inference sub-problem is to find the yh that
maximizes ψh(yh). An efficient greedy search method is
used to find the optimum yh as described in Algorithm 2.
In order to simplify the inference, we force the edge weights
between non-adjacent actions to be zeros. With the inferred
hidden variable yh, the model is reduced to a one-layer
discriminative CRF. The inference sub-problem of finding
the optimum ya can now be solved by computing the exact
mixed integer solution. We initialize the process by holding
the hidden variable fixed using the values obtained from
automatic activity detection. The process continues until
convergence or a predefined maximum number of iterations
is reached.

Algorithm 2 Greedy Search Algorithm for the sub-problem of
finding optimum hidden variable yh

Input: Testing instance with action layer labels ya

Output: Hidden variable labels yh

1) initialize (V h,yh)←{Ø,Ø} and ψh = 0.
2) repeat

∆ψh(yh
c)c*V h = ψ(yh ∪ yh

c)−ψ(yh);

yh
c

opt
= argmaxc*V h ∆ψh(yh

c);

(V h,yh)← (V h,yh)∪ (c,yh
c

opt
);

3) end if all activities are labeled.

4.2.1 Analysis of Computational Complexity
We now discuss the computational complexity of inference
for a particular activity set consists of n action segments
and m activities. Assuming there are M activity classes in
the problem. For the graphical model in [45], the time
complexity of the inference as discussed in the paper is
O(dmaxn2M), where dmax is the maximum number of action
segments one activity may have. The inference on both the
higher-order CRF and hierarchical-CRF is carried out layer-
by-layer, and so the overall time complexity is linear in
the number of layers used. Specifically, we use two-layer
CRFs with an action layer and an activity layer. For the
higher-order CRF model, inference on the activity layer
takes O(mM) computation to obtain the activity labels for
each candidate activity. With the inferred activity labels,
inference on the action layer takes O(nM2), since the model
is reduced to a chain-CRF. For the hierarchical-CRF, the
increase of computational complexity over the higher-order
CRF lies in the inference on the activity layer, because the
activities are connected with each other in this model. Using
the proposed greedy search algorithm, the time complexity
for inference on the activity layer is O(m2M). Thus, the
overall complexity of inference is O[T · ((mM)+O(nM2))]

for higher-order CRF and O[T · ((m2M) + O(nM2))] for
hierarchical-CRF, where T is the number of iterations.
Furthermore, the number of action segments n is usually
several times of the number of activities, that is n = αm,
where α is a small positive value larger that one. dmax and T
are small positive value larger than one. Assuming n, m and
M are in the same order, which is a reasonable assumption
for our case, the asymptotic computational complexity of
the model in [45] and the compared higher-order CRF and
hierarchical-CRF models is of the same order.

5 EXPERIMENTAL RESULTS
The goal of our framework is to locate and recognize activ-
ities of interest in continuous videos using both motion and
context information about the activities; therefore, datasets
with segmented video clips or independent activities like
Weizmann [11], KTH [31], UT-Interaction Dataset [30] and
Collective Activity Dataset [7] do not fit our evaluation
goal. To assess the effectiveness of our framework in activ-
ity modeling and recognition, we perform experiments on
two challenging datasets containing long duration videos:
the UCLA office Dataset [32] and VIRAT Ground Dataset
[9].

5.1 Motion Segmentation and Activity Localiza-
tion
We first develop an automatic motion segmentation algo-
rithm by detecting boundaries where the statistics of motion
features change dramatically, and thus obtain the action
segments. Let two NDMs be denoted as M1 and M2, and
ds be the dimension of the hidden states. The distance
between the models can be measured by the normalized
geodesic distance dist(M1,M2) =

4
dsπ2 ∑

ds
i=1 θi

2, where θi is
the principal subspace angle (please refer to [5] for details
on the distance computation).

A sliding window of size Ts, where Ts is the number
of temporal bins in the window, is applied to each detected
motion region along time. A NDM M(t) is built for the time
window centered at the tth temporal bin. Since an action
can be modeled as one dynamic model, the model distances
between subsequences from the same action should be
small, compared to those of subsequences from a different
action. Suppose an activity starts from temporal bin k; the
average model distance between temporal bin j > k and k
is defined as the weighted average distance between model
j and neighboring models of k as

DEk( j) =
Td−1

∑
i=0

γi ·dist(M(k+ i),M( j)), (18)

where Td is the number of neighboring bins used, and γi is
the smoothing weight for model k+ i that decreases along
time. When the average model distance grows above a
predefined threshold dth, an action boundary is detected.
Action segments along tracks are thus obtained.

A multi-class SVM is trained upon the intra-activity
features (as described in Section 3.3) of activities of d-
ifferent classes. After obtaining the action segments, we
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use the sliding window method with the trained multi-
class SVM to group adjacent action segments into candidate
activities. To speed up, we only work on candidate activities
with confidence scores larger than a predefined threshold,
indicating they are likely to be of activity classes of interest.

5.2 UCLA Dataset

The UCLA Office Dataset [32] consists of indoor and
outdoor videos of single activities and person-person in-
teractions. Here, we perform experiments on the videos of
office scene containing about 35 minutes of activities in an
office room that captured with a single fixed camera. We
identify 10 frequent activities as the activities of interest:1
- enter room, 2 - exit room, 3 - sit down, 4 - stand up, 5
- work on laptop, 6 - work on paper, 7 - throw trash, 8 -
pour drink, 9 - pick phone, 10 - place phone down. Each
activity occurs 9 to 26 times in the dataset. Since the dataset
contains only single person activities, it is natural to model
activities in one sequence together. The dataset is divided
into 8 sets, each set contains 2 sequences of activities and
each sequence contains 2 to 19 activities of interest, as well
as varying number of background activities. We use leave-
one-set-out cross validation for the evaluation: use 7 sets
for training and 1 set for testing.

5.2.1 Preprocessing

Intra-activity context feature is based on interactions be-
tween the agent and the surroundings. In the office dataset,
there are 7 classes of objects that are frequently involved in
the activities of interest: laptop, garbage can, papers, phone,
coffee maker and cup. Fig. 5 shows the detected objects of
interest in the office room. Since the UCLA Dataset consists

 

(a)

Fig. 5. Detected objects of interest in the UCLA office scene.

of single person activities, the intra-activity attributes con-
sidered include agent-object interactions and their relative
locations. We identify (NG = 10) subsets of attributes for
the development of intra-activity context features in the
experiment as shown in Fig. 6. For a given activity, the
above attributes are determined from image-level detection
results. The locations of objects are automatically tracked.
Similar to [32], if enough skin color is detected within
the areas of laptop, paper and phone,the corresponding

Attribute Subset Associated Attributes
G1 G2 G3 the agent is touching / not touching

laptop1, paper2, phone3.
G4 G5 the agent is occluding / not occluding

the garbage can4, coffee maker5.
G6 G7 G8 the agent is near / far away from the

garbage can6, coffee maker7, door8.
G9 the agent disappears / not disappears at

the door.
G10 the agent appears / not appears at the

door.

Fig. 6. Subsets of context attributes used for the devel-
opment of intra-activity context features for UCLA Dataset
(the superscripts indicates the correspondence between the
subsets and the objects).

 

 

 

touch laptop  touch paper  occlude garbage can touch phone 

   
 

(a)

Fig. 7. Examples of agent-object interactions detected from
image.

attributes are considered as true. Fig. 7 shows examples
of detected agent-object interactions.

Whether the agent is near or far away from an object
is determined by the distance between the two based on
normal distributions of the distances of the two scenarios.
Probabilities indicating how likely the agent is near or
far away from an object are thus obtained. For frame n
of an activity, we obtain gi(n) = I(Gi(n)), where I(·) is
the indicator function. gi(n) is then normalized so that its
elements sum to 1.

Related candidate activities are connected. Whether two
activities are related can be naturally determined by their
temporal distances. One way to decide if the relationships
between two candidate activities should be modeled is to
see if they are in the α-neighborhood of each other in
time. Two activities are said to be in the α-neighborhood of
each other if there are less than α other activities occurring
between the two.

5.2.2 Experimental Results
Although UCLA Dataset has been used in [32], the
recognition accuracy for the office dataset has not been
provided in the paper. We compare the performance of
the popular BOW+SVM classifier and our model. The
experiment results in precision and recall as shown in Fig.
8. In order to show the affects of incorporating different
kinds of motion and context features, we also show results
of using the action-based linear-chain CRF approach and
the action-based higher-order CRF approach (Fig. 3 (a)
and 3 (b)). It can be seen that the use of intra-activity
context increases the recognition accuracy of activities
with obvious context patterns. For example, “enter room”
is characterized by the context that the agent appears at
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the door. The increased recognition accuracy of “enter
room” by using intra-activity context features indicates
that our model successfully captures this characteristics.
From the performance of higher-order CRF approach and
Hierarchical-CRF approach, we can see that for activities
with strong spatio-temporal patterns, such as “pick phone”
and “place phone down”, modeling the inter-activity spatio-
temporal relationships increases the recognition accuracy
significantly. Next, we change the value of α to see how it

0
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0.6

0.8

1

0

1 2 3 4 5 6 7 8 9 10
BOW+SVM Linear‐chain CRF Higher‐order CRF HCRF α=2

(a)

0
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0.6
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BOW+SVM Linear‐chain CRF Higher‐order CRF HCRF α=2

(b)

Fig. 8. Precision (a) and recall (b) for the ten activities in
UCLA Office Dataset. The activities are defined in Section
5.2. HCRF is the short of Hierarchical-CRF.

influences the recognition accuracy of the Hierarchical-CRF
approach. Fig. 9 compares the overall accuracy of different
methods and the Hierarchical-CRF approach with different
α values. From the results, we can see that Hierarchical-

Method Overall Average per-class
BOW+SVM 82.2 80.7

Linear-chain CRF 73.6 72.5
Higher-order CRF 83.9 84.3

HCRF (α = 1) 87.9 87.1
HCRF (α = 2) 89.9 90.8

HCRF (fully connected) 73.5 74.2

Fig. 9. Overall and average per-class accuracy for dif-
ferent methods on UCLA Office Dataset. The BOW+SVM
method is tested on video clips, while other results are in the
framework of our proposed action-based CRF models upon
automatically detected action segments. HCRF is the short
of Hierarchical-CRF.

CRF approach with α = 2 outperforms other models. This
is expected. When α is too small, the spatio-temporal
relationships of related activities are not fully utilized,
while Hierarchical-CRF with fully connected activity layer
models the spatio-temporal relationships of unrelated activ-
ities. For instance, in the UCLA office Dataset, one typical
temporal pattern of activities is a person sits down to work
on the laptop, then, the same person stands up to do other
things, and then sits down to work on the laptop. All these
activities are conducted sequentially. Thus, Hierarchical-
CRF model with fully connected activity layer captures the

false temporal pattern of “stand up” followed by “work on
the laptop”. The optimum value of α can be obtained using
cross validation on the training data.

5.3 VIRAT Ground Dataset
The VIRAT Ground Dataset is a state-of-the-art activity
dataset with many challenging characteristics, such as wide
variation in the activities and clutter in the scene. The
dataset consists of surveillance videos of realistic scenes
with different scales and resolution, each lasting 2 to
15 minutes and containing upto 30 events. The activities
defined in Release 1 include 1 - person loading an object
to a vehicle; 2 - person unloading an object from a vehicle;
3 - person opening a vehicle trunk; 4 - person closing a
vehicle trunk; 5 - person getting into a vehicle; 6 - person
getting out of a vehicle. We work on the all the scenes in
Release 1 except scene 0002 and use half of the data for
training and the rest for testing. Five more activities are
defined in VIRAT Release 2 as: 7 - person gesturing; 8 -
person carrying an object; 9 - person running; 10 - person
entering a facility; 11 - person exiting a facility. We work
on the all the scenes in Release 2 except scene 0002 and
0102, and use two-third of the data for training and the rest
for testing.

5.3.1 Preprocessing
Motion regions that do not involve people are excluded
from the experiments since we are only interested in
person activities and person-vehicle interactions. For the
development of STIP histograms, nearest neighbor soft-
weighting scheme [25] is used.

Since we work on the VIRAT Dataset with individual
person activities and person-object interactions, we use the
following NG = 7 subsets of attributes for the development
of intra-activity context features in the experiments as
shown in Fig. 10.

Persons and vehicles are detected based on the part-
based object detection method in [9]. Opening/closing
entrance/exit doors of facilities, boxes and bags are de-
tected using method in [6] with binary linear-SVM as the
classifier. Using these high-level image features, we follow
the description in Section 5.2.1 to develop the feature
descriptors for each activity set. The first three sets of
attributes in Fig. 10 are used for the experiments on Release
1, and all are used for the experiments on Release 2. Fig.
11 shows examples of gi(n) defined as in Section 5.2.1 for
different activities in VIRAT. Since, in VIRAT, activities are
naturally related to each other, the activity layer nodes are
fully connected to utilize the spatio-temporal relationships
of activities occurring in the same local space-time volume.

5.4 Recognition Results on VIRAT Release 1
Fig. 12 compares the precision and recall for the six
activities defined in VIRAT Release 1 using BOW+SVM
method and our approach with different kinds of features.
The results show, as expected, the recognition accuracy
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Subset Associated Attributes
G1 moving object is a person; moving object is a

vehicle trunk; moving object is of other kind.
G2 the agent is at the body of the interacting

vehicle; the agent is at the rear/head of the
interacting vehicle; the agent is far away from
the vehicles.

G3 the agent disappears at the body of the inter-
acting vehicle; the agent appears at the body
of the interacting vehicle; none of the two.

G4 the agent disappears at the entrance of a facil-
ity; the agent appears at the exit of a facility;
none of the two.

G5 velocity of the agent (in pixel) is larger than
a predefined threshold; velocity of object of
interest is smaller than a predefine threshold.

G6 the activity occurs at parking areas; the activity
occurs at other areas.

G7 an object (e.g. bag/box) is detected on the
agent; no object is detected on the agent.

Fig. 10. Subsets of context attributes used for the develop-
ment of intra-activity context features.

Activity person
loading

person
unloading

opening
trunk

closing trunk

Example
Image

g1(n)
[ 1

2 0 1
2

]
[1 0 0]

[ 1
2

1
2 0

] [ 1
2

1
2 0

]
g2(n) [0 1 0] [0 1 0] [0 1 0] [0 1 0]

g5(n) [0 1] [0 1] [0 1] [0 1]

g6(n) [1 0] [1 0] [1 0] [1 0]

g7(n) [1 0] [0 1] [0 1] [1 0]

Activity getting into
vehicle

getting out
of vehicle

gesturing carrying
object

Example
Image

g1(n) [1 0 0] [1 0 0] [1 0 0] [ 1
2 0 1

2 ]

g2(n) [1 0 0] [1 0 0] [0 0 1] [0 0 1]

g5(n) [0 1] [0 1] [0 1] [0 1]

g6(n) [1 0] [1 0] [1 0] [1 0]

g7(n) [0 1] [0 1] [0 1] [1 0]

Fig. 11. Examples of detected intra-activity context features.
The example images are shown with detected high-level
image features. Object in red bounding box is a moving
person; object in blue bounding box is a static vehicle; object
in orange bounding box is a moving object of other kind;
object in black bounding box is a bag/box on the agent.

increases by encoding the various context features. For
instance, the higher-order CRF approach encodes intra-
activity context patterns of activities of interest. Thus,
activities with strong intra-activity context pattern, such as
“person getting into vehicle”, are better recognized by the
higher-order CRF approach than by the linea-chain CRF
approach, which does not model intra-activity context of
activities. The Hierarchical-CRF approach further encodes

inter-activity context patterns of activities. Thus, activities
with strong spatio-temporal relationships with each other
are better recognized by the Hierarchical-CRF approach.
For instance, the higher-order CRF approach often confuses
“open a vehicle trunk” and “close a vehicle trunk” with each
other. However, if the two activities happen closely in time
in the same place, the first activity in time is probably “open
a vehicle trunk”. This kind of contextual information within
and across activity classes are captured by the Hierarchical-
CRF approach and used to improve the recognition per-
formance. Fig. 13 shows examples that demonstrate the
significance of context in activity recognition.
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Fig. 12. Precision (a) and recall (b) for the six activities
defined in VIRAT Release 1.

getting out of vehicle opening trunk getting into vehicle

loading an object unloading an object getting into vehicle

getting out of vehicle closing trunk getting into vehicle

Figure 2 Examples show the effect of context features in recognizing activities that wereFigure 2. Examples show the effect of context features in recognizing activities that were
incorrectly recognized by the baseline (NDM+SVM) classifier (related example results for
Figure 6 in Section 5.4).

Fig. 13. Example activities (defined in VIRAT Release 1)
correctly recognized by action-based linear-chain CRF (top),
incorrectly by linear-chain CRF but corrected using higher-
order CRF with intra-activity context (middle), and incorrectly
recognized by higher-order CRF, but rectified using action-
based hierarchical CRF with inter-activity context (bottom).

We also show the results on VIRAT Release 1 for
different methods using overall and average accuracy in
Fig. 14. We have compared our results with the popular
BOW+SVM approach, the more recently proposed String-
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of-Feature-Graphs approach [12], [43] and structural model
in [45].

Method average accuracy
BOW+SVM [25] 45.8

SFG [44] 57.6
Structural Model [45] 62.9

Linear-chain CRF 42.6
Higher-order CRF 60.4
Hierarchical-CRF 66.2

Fig. 14. Average accuracy for the six activities defined
in VIRAT Release 1. Note that SVM+BOW works on video
clips; while other methods work on continuous videos. Note
that BOW+SVM works on video clip while others work on
continuous video.

The Hierarchical-CRF approach outperforms the other
methods. The results are expected since the intra-activity
and inter-activity context within and between action and
activities gives the model additional information about
the activities of interest beyond the motion information
encoded in low-level features. SFG approach models the
spatial and temporal relationships between the low-level
features and thus takes into account the local structure of
the scene; However, it does not consider the relationships
between various activities and thus our method outperforms
the SFGs. Structural model in [45] models the intra and
inter context within and between activities, however, it does
not model the action layer and the interactions between
action and activities.

5.5 Recognition Results on VIRAT Release 2
VIRAT Release 2 defines additional activities of interest.
We work on VIRAT Release 2 to further evaluate the
effectiveness of the proposed approach. We follow the
method defined above to get the recognition results on
this dataset. Fig. 15 compares the precision and recall
for the eleven activities defined in VIRAT Release 2 for
BOW+SVM method, the structural model in [45], and our
method. We see that by modeling the relationships between
activities, those with strong context patterns, such as “per-
son closing a vehicle trunk”(4) and “person running”(9),
achieve larger performance gain compared to activities with
weak context patterns such as “person gesturing”(7). Fig.
16 shows example results on activities in Release 2.

Fig. 17 compares the recognition accuracy using recall
for different methods. We can see that the performance
of our Hierarchical-CRF approach is comparable to the
recently proposed method in [1]. In [1], a SPN on BOW
is learned to explore the context among motion features.
However, [1] works on video clips, each containing an
activity of interest with additional 10 seconds occurring
randomly before or after the target activity instance, while
we work on continuous video.

6 CONCLUSION
In this paper, we design a framework for modeling and
detection of activities in continuous videos. The proposed
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Fig. 15. Precision (a) and recall (b) for the eleven activities
defined in VIRAT Release 2.

opening trunk getting out of vehicle entering a facility

exiting a facility  person running   carrying an object

Fig. 16. Examples of recognition results (from VIRAT Re-
lease 2). For each two rows, examples in the bottom row
show the effect of context features in correctly recognizing
activities that were incorrectly recognized by the linear-chain
CRF approach, while other examples of the same activities
correctly recognized by the linear-chain CRF are shown in
the top row.

framework jointly models a variable number of activities
in continuous videos, with action segments as the basic
motion elements. The model explicitly learns the activity
durations and motion patterns for each activity class as
well as the context patterns within and across action and
activities of different classes from training activity sets. It
has been demonstrated that joint modeling of activities by
encapsulating object interactions and spatial and temporal
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Method average accuracy
BOW+SVM [25] 55.4

SPN [1] 70
Structural Model [45] 73.5

Linear-chain CRF 52.5
Higher-order CRF 69.4
Hierarchical-CRF 75.1

Fig. 17. Average accuracy (in recall) for different methods.

relationships of activity classes can significantly improve
the recognition accuracy.

It is worth noticing that more complex activities can
be modeled by adding additional layers to the hierarchical
model. However, the additional layers increase the learning
and inference complexity by increasing the tree width.
Balance between the representation power of the hierarchi-
cal model and the computational complexity of the model
should be achieved.
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