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Abstract

In this paper we develop a theory for characterizing how deformable a shape is given a sequence of its observations. We define a term
called ‘‘deformability index’’ (DI) for shapes. The novelty of the proposed method lies in its ability to separate the effects of observation
noise from the underlying non-rigid deformation process. The DI is computed from the tracked positions of a sequence of deformable
shapes, using an affine camera model. Our method assumes that a deformable shape sequence can be represented by a linear combination
of rigid basis shapes, where the weights assigned to each basis shape change with time. The tracked points obtained from the 2D shape
sequence are transformed to a 3D shape space, whose dimension is then estimated using spectral analysis methods. The dimension of this
shape space determines the number of basis shapes needed to represent the shape sequence, which, in turn, determines the deformability
index. Our method is different from existing techniques since it is non-iterative, does not require setting an arbitrary threshold and is able
to precisely model the effects of noise in the feature positions. Rigid 3D transformations of the shape are taken into account in estimating
the DI; however, the method does not require estimation of 3D structure or motion. Experimental results show that the DI is in accor-
dance with our intuitive judgment. Applications and comparative analysis on 3D deformable object modeling are also presented.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Shape theory is an active area of research in mathemat-
ics, statistics and image analysis because of its ability to
provide a representation for complex objects and their
deformations. Recently, there has been some work on
shape sequence analysis, including an understanding of
the underlying dynamics (Liu and Ahuja, 2004; Soatto
and Yezzi, 2002; Vaswani et al., 2003; Veeraraghavan
et al., 2005). In 3D computer vision applications, a 2D
shape is usually represented by a finite-dimensional linear
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combination of 3D basis shapes and a camera projection
model relating the 3D and 2D representations (Torresani
et al., 2001; Brand, 2001, 2005; Xiao et al., 2004). The
method has been applied primarily to deformable object
modeling.

One of the unanswered questions in studying shape
sequences is how to obtain a quantitative understanding
of the deformation the shape undergoes. In fact, in order
to properly estimate the 3D deformable models, it is impor-
tant to quantitatively characterize the degree of non-rigid-
ity. While many of the existing methods obtain an estimate
of the number of deformation modes from the rank of the
matrix of tracked feature points (the measurement matrix),
they are accurate only in the noiseless case (Torresani et al.,
2001; Brand, 2001, 2005; Xiao et al., 2004). In the noisy
case, some of these methods consider the linear subspace
of the tracking data that contains most of the variance
(e.g., 99% in Brand, 2005). The existing methods do not
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relate the estimate of the amount of deformation in a shape
sequence to the statistics of the noise in the tracked feature
points. This can lead to a larger estimate of the deforma-
tion modes induced by the noise.

This paper proposes a method for estimating the num-
ber of deformation modes taking into account the statistics
of the underlying noise in the shape sequence. It does so by
deriving a measure, termed as the ‘‘deformability index’’
(DI), of the shape sequence. Estimation of the DI is non-
iterative, does not require selecting an arbitrary threshold
and can be done before estimation of the 3D structure.
Experimental results of the DI estimates are shown using
motion capture data as well as real imagery of different
human activities. The results show that the DI is in accor-
dance with our intuitive judgment and corroborates certain
hypotheses in human movement analysis studies. Applica-
tions and comparative analysis in 3D deformable object
modeling are presented. We would like to clarify that our
proposed method is not a separate strategy for 3D recon-
struction of non-rigid objects.

2. Estimating deformability of a shape sequence

2.1. Background material

We hypothesize that each shape sequence can be repre-
sented by a linear combination of 3D basis shapes. Math-
ematically, if we consider the trajectories of P points
representing the shape (e.g. landmark points), then the
overall configuration of the P points is represented as a lin-
ear combination of the basis shapes as

S ¼
XK

i¼1

liS i; S;Si 2 R3�P ; l 2 R: ð1Þ

The choice of K is determined by quantifying the deforma-
bility of the shape sequence and will be the studied in detail
in Section 2.2. We will assume an affine projection model
for the camera.

Given F frames of a video sequence with P moving
points, we can obtain the trajectories of all these points
over the entire video sequence. These P points for the fth
frame can be represented in the measurement matrix, W,
of size 2F · P. Under the affine camera model assumption,
the P points of a configuration in a frame f, are projected
onto 2D image points (uf,i,vf,i) as

½W2F�P �f ¼
uf ;1 � � � uf ;P

vf ;1 � � � vf ;P

� �
¼ Rf

XK

i¼1

lf ;iS i

 !
þ Tf ;

ð2Þ

where,

Rf ¼
rf 1 rf 2 rf 3

rf 4 rf 5 rf 6

� �
,

R
ð1Þ
f

R
ð2Þ
f

" #
: ð3Þ

Rf represents the first two rows of the full 3D camera rota-
tion matrix and Tf is the translation matrix consisting of P
copies of the camera translation. The translation compo-
nent can be eliminated by subtracting out the mean of all
the 2D points (assuming that we deal with single objects),
as in (Tomasi and Kanade, 1992). We can now form the
measurement matrix W with the means of each of the rows
subtracted.

Using (2) and putting together the tracked features for
all the frames, it can be shown that

W ¼

l1;1R1 � � � l1;KR1

l2;1R2 � � � l2;KR2

..

. ..
. ..

.

lF ;1RF � � � lF ;KRF

2
66664

3
77775

S1

S2

..

.

SK

2
66664

3
77775 ¼ Q2F�3K � B3K�P ;

ð4Þ

which is of rank 3K (Torresani et al., 2001). The matrix Q
contains the pose for each frame of the video sequence and
the weights l1,1, . . . , lF,K. The matrix B contains the basis
shapes in (1). Since W is rank constrained and is the prod-
uct of the rotation and basis shapes, it is possible to com-
pute these two parameters.

In (Torresani et al., 2001), it was shown that Q and B
can be obtained using singular value decomposition
(SVD), and retaining the top 3K singular values, as

W2F·P = UDVT and Q ¼ UD
1
2 and B ¼ D

1
2VT. The solution

is unique upto an invertible transformation. Methods have
been proposed for obtaining an unique solution using the
physical constraints of the problem (Torresani et al.,
2001; Brand, 2001, 2005; Xiao et al., 2004). This will, how-
ever, not affect the derivation of the deformability index
(and hence we do not deal with it further), but would be
important in estimating the basis shapes for the
applications.
2.2. The deformability index (DI)

The above mentioned rank constraint requires knowl-
edge of K in order to estimate the shape and motion
parameters. In the noiseless case, this can be estimated
from the rank of the measurement matrix (Xiao et al.,
2004; Brand, 2005), while in the noisy case a linear sub-
space of the tracked features that contains most of the var-
iance of the noisy data is considered (Brand, 2005). The
dimension of the subspace is selected arbitrarily, without
taking into consideration the exact statistics of the noise.
Alternatively, minimum error thresholding (Kale et al.,
2004) has been employed, but this involves recomputing
the entire model if the error threshold is not met. Another
related work is (Irani, 1999), where the author proposed
projecting the measurement matrix of a rigid scene onto
the lower dimensional linear subspace obtained in the
noiseless case. This can be extended to non-rigid cases, pro-
vided we know the proper subspace dimension for every
kind of non-rigid object (since it depends on K), which is
clearly not practical. Information theoretic measures like
geometric AIC or MDL (Kanatani, 2004) are a possibility,
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but they would require estimation of the model parameters
in order to compute the residuals. The method proposed in
this paper for estimating the number of deformation modes
takes into account the statistics of the noise, and does not
require estimation of the 3D model parameters. It is also
non-iterative and does not require determination of an
arbitrary threshold. In turn, it leads to a quantitative mea-
sure of deformability of a shape sequence (Roy-Chowdh-
ury, 2005).

As a shape deforms, the position of the set of points
defining the shape changes from one image frame to the
next. Defining a deformability index (DI) depends on the
ability to obtain a mathematical description of this shape
change. The theoretical derivation which follows does pre-
cisely this. It proceeds by using the transformation of the
point sequence to a shape space (as shown in Section 2.1)
and estimating the dimensionality of this shape space.
Spectral analysis provides a method for achieving this pur-
pose, the intuitive notion being that spatial deformations in
shape must be reflected in the frequency domain. The
dimensionality of the shape space will determine the DI.
The statistics of the noise in the sequence of feature posi-
tions is taken into account in order to correctly estimate
the DI. This is important since the noise can randomly alter
the positions of the points, giving a false notion of
increased variability in the shape sequence, leading to a
higher dimensionality of the shape space. Also, rigid 3D
transformations of the shape can provide the impression
of deformation. This will be factored out in estimating
the DI. However, estimation of 3D structure will not be
required for this purpose.
2.2.1. Computation of deformability index

Consider the set of coordinates representing the shape of
the deformable object in a particular frame of a video
sequence to be the realization of a random process. The
sequence of frames depicts the deformation of the shape,
along with the effects of the 3D translation and rotation.
Represent the u and v coordinates of the sampled points
in a single frame as a vector y = [u1, . . . ,uP,v1, . . . ,vP]T.
Then, from (4), it is easy to show that for K basis shapes
(K is unknown)

yT ¼ l1Rð1Þ; . . . ; lKRð1Þ; l1Rð2Þ; . . . ; lKRð2Þ
� �

�

S1

..

.

Sk

0

0

S1

..

.

Sk

2
666666664

3
777777775
þ gT;

ð5Þ
i:e:; y¼ ðq1�6Kb6K�2P ÞTþ g¼ bTqTþ g; ð6Þ

where g represents the noise in the sequence of tracked
points and is assumed to be a zero-mean random process.
The vector q is obtained by juxtaposing two consecutive
rows of Q, corresponding to the same image frame, in
Eq. (4). The matrix b, which is constant across all the
frames, is obtained by duplicating B in Eq. (4).

Assuming that the coordinates of the points representing
the shape in all the F frames can be considered to be real-
izations of the same random process (which is a reasonable
assumption since they represent the same shape), with pos-
sibly different noise statistics, we can compute the correla-
tion matrix of y. Let Ry = E[yyT] be the correlation matrix
of y and Cg the covariance matrix of g. Hence,

Ry ¼ bTE½qTq�bþ Cg: ð7Þ

The correlation matrix, Ry, is of size 2P · 2P and can be
estimated from the sequence of points representing the
shapes as Ry ¼ 1

F

PF
f¼1yf yT

f , where yf is the vector y (defined
above) in the frame f. The expectation on the right hand
side of Eq. (7) can be computed similarly as

E½qTq� ¼ 1
F

PF
f¼1qT

f qf , where qf is the vector q (defined
above) for frame f and is obtained from the matrix Q in
Eq. (4).

The noise covariance matrix, Cg, represents the accuracy
with which the feature points are tracked and needs to be
estimated from the image frames. Since g need not be an
independent and identically distributed (IID) noise process,
Cg will not necessarily have a diagonal structure (but it is
symmetric and positive semi-definite). For the purposes
of setting a precise threshold (which will become clear
soon), it is desirable that Cg be a diagonal matrix.

Consider the diagonalization of Cg = PKPT, where
K = diag[Ks, 0] and Ks is an L · L matrix of non-zero singu-
lar values of K. Let Ps denote the orthonormal columns
of P corresponding to the non-zero singular values.
Therefore,

Cg ¼ PsKsP
T
s : ð8Þ

Pre-multiplying Eq. (6) by ðK�1
2

s PT
s Þ, we see that (6) becomes

~y ¼ ~bTqT þ ~g; ð9Þ

where ~y ¼ K�
1
2

s PT
s y is a L · 1 vector, ~bT ¼ K�

1
2

s PT
s bT is a

L · 6K matrix and ~g ¼ K�
1
2

s PT
s g. It can be easily verified

that the covariance of ~g is an identity matrix IL·L. This is
known as the process of ‘‘whitening’’, whereby the noise
process is transformed to be IID (Stoica and Moses, 1997).

Representing by R~y the correlation matrix of ~y, it can be
seen that

R~y ¼ ~bTE½qTq�~bþ I ¼ Dþ I ; ð10Þ

where, for simplicity, D , ~bTE½qTq�~b. Now, R~y is of dimen-
sion L · L, ~bT is of rank L · 6K and E[qTq] is of rank
6K · 6K. Thus, D has maximum rank 6K, where K is the
number of basis shapes (assuming L > 6K, which is true
when there are enough tracked points on the object). This
is based on the fact that if Am·n = Fm·rGr·n, then the
Rank(A) 6 r. For a general 3D scene undergoing transla-
tion and rotation, the rank will be 6K, which is the case
we will consider below. Representing by li(A) the ith eigen-
value of the matrix A, we see that



Fig. 1. Plots of the first basis shape, S1, for walk, sit, broom, jog, blind
walk and crawl sequences, respectively.
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liðR~yÞ ¼ liðDÞ þ 1; for i ¼ 1; . . . ; 6K; and

liðR~yÞ ¼ 1; for i ¼ 6K þ 1; . . . ; L:
ð11Þ

Hence, there are 6K eigenvalues above 1. By counting the
number of eigenvalues that are greater than 1 and dividing
it by 6, we can obtain an estimate of K, which is the dimen-
sionality of the shape space represented by the sequence of
deforming points. Since K denotes the number of basis
shapes that can model the feature point sequence, it pro-
vides a measure of the deformability of the shape sequence.
The more the number of basis shapes required to model a
shape sequence, the more deformable it is. Thus, for a gen-
eral 3D scene undergoing translation and rotation, we have

Deformability Index ðDIÞ ¼ # eigenvalues of R~y > 1

6
:

ð12Þ
The DI is not necessarily a whole number. The number of
basis shapes, K, is estimated by rounding the DI to the
nearest integer. The division by 6 is because there are 6K
eigenvalues greater than 1, which is due to the construction
of the matrices in (6).

2.2.2. Properties of the deformability index

• For the case of a 3D rigid body, the DI is 1. In this case,
the only variation in the values of the vector y from one
image frame to the next is due to the global rigid trans-
lation and rotation of the object. The rank of the matrix
D will be 6 and the deformability index will be 1.

• Estimation of the DI does not require explicit computa-
tion of the 3D structure and motion in Eq. (4), since we
only need to compute the eigenvalues of the covariance
matrix of the 2D feature positions.

• The computation of the DI takes into account any rigid
3D translation and rotation of the object (as recoverable
under a scaled orthographic camera projection model).
Thus it is more general than a method that considers
purely 2D image plane motion.

• The ‘‘whitening’’ procedure described above enables us
to choose a fixed threshold of one for comparing the
eigenvalues.

• The proposed algorithm in non-iterative unlike in some
other approaches (Kale et al., 2004; Torresani et al.,
2001) where the sum of squared differences is minimized
to determine K.

• As evident in the derivation above, the DI is dependent
only on the covariance of the measurement data and
relies on the rank properties of the structure and motion
matrices (not their actual values). Hence it is not affected
by the orthonormality constraints required to obtain a
unique solution and can be integrated with the methods
in (Torresani et al., 2001; Xiao et al., 2004; Brand, 2005).

• For the special case of a planar scene, the corresponding
rank of D would be 4K, and thus the DI should be
calculated by dividing the number of eigenvalues over
1 by 4.
• Accuracy of the DI estimates will depend upon correctly
estimating the noise covariance matrix, which has been
studied extensively by a number of researchers (Trucco
and Verri, 1998; Kanatani, 1996; Sun et al., 2001; Dani-
ilidis and Spetsakis, 1993; Weng et al., 1987).
3. Experimental results

We first show experimental results for estimating the DI
on motion capture data of different activities, and on
human gait analysis data. Thereafter we show experiments
in 3D non-rigid modeling using the DI measure. The DI
measure has also been used by other authors in non-rigid
face modeling (Del Bue et al., 2005).
3.1. Estimating DI on motion capture data

In this experiment, we computed the DI of the human
body for a large number of activities and found them to
be very consistent with what would be expected intuitively
by a human observer. We used the motion capture data
available from Credo Interactive Inc. and Carnegie Mellon
University. The dataset included a number of subjects per-
forming various activities, like walking, jogging, sitting,
crawling, brooming, etc. Some examples are shown in
Fig. 1. For each of these activities, we had multiple video
sequences consisting of tracked feature points using motion
capture data. Also, many of the activities contained video
from different viewpoints.

For the different activities in this database, we computed
the DI from Eq. (12), as shown in Table 1. We used all the
frames in one cycle for cyclic activities, while for the other
activities, like brooming, sitting, all the available frames
were used. Because motion capture data (which can be
quite accurate) was available, we assumed that the noise
is small with a standard deviation of 2 pixels. Since the



Table 1
Deformability index for human activities using motion capture data

Activity Deformability index

1 Male Walk (Seq. 1) 5.8
2 Male Walk (Seq. 2) 4.7
3 Fast Walk 8.0
4 Walk while throwing hands around 6.8
5 Walk with drooping head 8.8
6 Sit (Seq. 1) 8.0
7 Sit (Seq. 2) 8.2
8 Sit (Seq. 3) 8.2
9 Broom (Seq. 1) 7.5

10 Broom (Seq. 2) 8.8
11 Jog 5.0
12 Blind walk 8.8
13 Crawl 8.0
14 Jog while taking U-turn (Seq. 1) 4.8
15 Jog while taking U-turn (Seq. 1) 5.0
16 Broom in a circle 9.0
17 Female Walk 7.0
18 Slow Dance 8.0
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DI is related to the number of basis shapes required to rep-
resent the video sequences, we resynthesized the original
sequences using the basis shapes and combination coeffi-
cients obtained from Eq. (4). Eq. (2) was used for the syn-
thesis and the value of K was determined by the procedure
in Section 2.2.1.

From Table 1, a number of interesting observations can
be made. For the walk sequences, the DI was between 5
and 6. This matches the hypotheses in papers on gait recog-
nition where it is mentioned that about five exemplars are
necessary to represent a full cycle of gait (Kale et al.,
2004; Lee and Grimson, 2002). The number of basis shapes
increases for fast walk, as expected from some of the results
in (Tanawongsuwan and Bobick, 2002). When the person
walks doing some other things (like moving head or hands
or a blind person’s walk), the number of basis shapes
needed to represent it (i.e. the deformability index)
increases from that of normal walk. Modeling female walk
needs more basis shapes than male walk, and this is justi-
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Fig. 2. (a) Plot of the eigenvalues, in decreasing order of magnitude, for a typ
exemplars on USF gait data (reproduced from Fig. 4 of Kale et al., 2004).
fied from various studies that have shown that gait cycles
of women usually have higher frequency content (Kale
et al., 2004; Lee and Grimson, 2002). The result that might
seem surprising initially is the high DI for sitting
sequences. On closer examination though, it was found
that the person, while sitting, was making all kinds of ran-
dom gestures as in talking to someone else. That increased
the DI for these sequences. Also, the DI is insensitive to
changes in viewpoint (azimuth angle variation only), as
can be seen by comparing the jog sequences (14 and 15 with
11) and broom sequences (16 with 9 and 10). This is not
surprising since we do not expect the deformation of the
human body to change due to rotation about the vertical
axis. Note that DI by itself will usually not be enough to
distinguish between activities; however, it is very helpful
for identifying models that can be used for activity
recognition.
3.2. Estimating DI on Gait Dataset

The USF Gait Challenge Dataset (Sarkar et al., 2005)
was used for our experiments because of two reasons. It
has a number of examples of different people walking
under different conditions. Thus it would allow us to test
the consistency of the estimates for the DI. Secondly, a
number of researchers have reported results in this dataset
and thus we would be able to corroborate our conclusions
with their results.

We used the background subtracted images of the walk-
ing person, when the person is presenting a side view to the
camera. The outer boundary of the person was sampled in
order to obtain the shape vector. The method described in
(Sun et al., 2001) was adopted to estimate the variance of
the noise in the feature positions from the original images.
The method uses the inverse of the Hessian matrix of the
second-order partial derivatives of the intensity along the
horizontal and vertical axes. By using the same number
of sample points in each frame, an approximate correspon-
dence was maintained between the feature points in the dif-
b

ical walking sequence in the USF database. (b) Distortion vs. number of
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ferent frames. We experimented with 10 subjects walking
on grass and concrete surfaces and wearing different types
of shoes. For all the cases, the DI ranged from 3.8 to 5.2.
Fig. 2a shows a typical plot of the eigenvalues arranged
in descending order of magnitude along with the threshold
of one (there are some eigenvalues below one due to errors
in the estimation of the noise covariance matrix). It has
been noted in (Kale et al., 2004) that four to five exemplars
are needed to represent a complete cycle of gait. However,
this was arrived at using a minimum error thresholding
method after repeating the recognition experiment with dif-
ferent numbers of exemplars (see Fig. 4 of Kale et al.
(2004), reproduced here in Fig. 2b). Our analysis provides
a one-shot, non-iterative estimate and a theoretical justifi-
cation for the choice of the number of exemplars.
1 There may be some wrong correspondences on the contour, though the
amount of deviation in pixels is small. However, most of the correspon-
dences in our examples are correct. The noise is calculated from the image
gradients around each point and is not affected very much by a few pixels
(due to the clean nature of this data and fixed background). Since the DI is
derived from the most significant eigenvalues of the transformed obser-
vation matrix (Section 2.2), a few mismatches with a small deviation in
pixels does not affect the estimate of the DI. Also, the DI will usually be
applied in a learning phase and then used for further analysis. Thus
correspondences can be chosen carefully so as to obtain an accurate
estimate of the DI.
3.3. Estimating DI for 3D deformable modeling

We now show results on modeling 3D deformable
objects using the estimate of the number of basis shapes.
We also compare our approach against other methods
for estimating the deformation modes. We use the 3D mod-
eling approach described in (Torresani et al., 2003) and use
the associated software available at http://www-cs-stu-
dents.stanford.edu/�ltorresa/software.html. We first show
the importance of estimating the DI accurately on the syn-
thetic shark data available on this website. We then show
some examples on real data.

On the shark data, we computed the DI at various noise
levels and using a different number of basis shapes. The
noise was added as percentage of the norm of the measure-
ment matrix, W. The results are shown in Fig. 3a. From
here we see that the minimum error in 3D reconstruction
occurred when the number of basis shapes was equal to 2
(which was used in generating this data). Our estimate of
the DI was correct (i.e., K = 2), which is to be expected
as the noise distribution is known. On the other hand, we
see from Fig. 3b, that it is very difficult to set a threshold
on the eigenvalues of the covariance matrix of the original
measurements. This is because such a threshold would
change depending upon the noise in the observations. This
provides a strong example for combining DI estimation
with 3D modeling.

The 3D modeling was also applied to video sequences of
a person performing different Yoga postures (Keogh,
2006). A representative image from five of the postures is
shown in the top left corner of Fig. 4.

The deformable modeling algorithm requires the num-
ber of deformation modes (i.e., K) as the input. The esti-
mated value of K using the proposed algorithm is shown
in Fig. 4a–e for the five different postures.. The noise
covariance was estimated using the approach described
earlier on the gait dataset.1

We analyzed the estimation process for K against other
approaches, and the reconstruction error for the 3D mod-
els. In Fig. 5a we plot the reprojection error for the 3D
models against the number of basis shapes used (starting
at two basis shapes). The reprojection error is the squared
difference between the projection of the 3D model and the
tracked features averaged over all the frames and feature
points. We see that for each Yoga posture there is a cut-
off value for the number of basis shapes, after which there
is little or no decrease of the reconstruction error.
However, the number of basis shapes needed to reach this
cut-off value is significantly different ranging from four for

http://www-cs-students.stanford.edu/ltorresa/software.html
http://www-cs-students.stanford.edu/ltorresa/software.html
http://www-cs-students.stanford.edu/ltorresa/software.html
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Fig. 4. One representative image for each posture with tracked features overlayed is shown on the top left. (a–e) Plot of the eigenvalues (magnitude vs.
number of eigenvalues) of R~y. The values of K, indicated on top of the plots, are 8, 5, 4, 9 and 8, respectively.
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Posture 3 to nine for Posture 4. This is to be expected
because the amount of deformation the body undergoes
in each of these postures is very different. Comparing
Fig. 5a with Fig. 4a–e, we see that the estimated number
of basis shapes using our theory is close to this cut-off
value. We consider this to be an ‘‘optimal’’ choice of the
number of basis shapes since increasing it further increases
the computational complexity without any significant gain
in accuracy.
We now compare this result with existing methods for
estimating the number of deformation modes. In most of
these methods, this is done based on the rank of the mea-
surement matrix, W. We plot the eigenvalues of this matrix
for each posture in Fig. 5b. We can see from the plots that
choosing the ‘‘optimal’’ number of basis shapes requires
different thresholds which are difficult to know a-priori.
If we choose a fixed threshold, the numbers of basis shapes
are nowhere near the optimal values. This underlines the
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Fig. 5. (a) Plot of the distortion in the 3D reconstruction (measured in
terms of the reprojection error averaged over all points and all frames) vs.
the number of basis shapes used for the 3D model estimation. (b) Plot of
the eigenvalues of Ry, i.e., the original measurement matrix.
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difficulty of choosing the number of deformation modes
based on the measurement matrix.

We want to note here that there are many accurate
methods for reconstructing 3D models of articulated
objects. Some recent examples are (Tresadern and Reid,
2005; Yan and Pollefeys, 2005). We do not propose alter-
native methods for 3D modeling. However, the rank con-
straints that are derived from the deformable contour
analysis are retained in the more complex modeling meth-
ods and can be used for reconstructing articulated bodies.

4. Conclusions

In this paper, we have a presented a method for estimat-
ing the deformability of shape sequences obtained from a
sequence of video frames. We assumed an affine camera
projection model and that a deformable shape can be rep-
resented using a linear combination of basis shapes. The
theory relied on estimating the number of 3D basis shapes
from the 2D feature positions representing the shapes. The
deformability index is directly related to the number of
basis shapes. The computation of the deformability index
can handle rigid 3D transformations of the shape, though
it does not require prior estimation of the 3D structure
or motion. Our method takes into account the statistics
of the noise in the feature positions. We presented experi-
mental results in human movement analysis using motion
capture and real-life video images. The estimates of the
deformability index are in accordance with what would
be expected intuitively by a human observer and corrobo-
rate certain hypotheses in the existing literature on human
motion analysis. Results on 3D deformable object model-
ing and comparison with existing approaches are also
presented.
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